File size: 2,919 Bytes
0d13811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""Model manager for generation model"""

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import logging

logger = logging.getLogger(__name__)


class GenerateModelManager:
    """Manages generation model loading and predictions"""
    
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.device = None
        self.model_loaded = False
    
    def load_model(self, model_id: str, api_key: str = None):
        """Load model and tokenizer from Hugging Face"""
        if self.model_loaded:
            logger.info("Generation model already loaded")
            return
        
        try:
            logger.info(f"Loading generation model from Hugging Face: {model_id}")
            
            # Determine device
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            logger.info(f"Using device: {self.device}")
            
            # Prepare token for authentication if API key is provided
            token = api_key if api_key else None
            
            # Load tokenizer and model from Hugging Face
            logger.info("Loading tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(
                model_id,
                token=token,
                trust_remote_code=True
            )
            
            logger.info("Loading model...")
            self.model = AutoModelForSeq2SeqLM.from_pretrained(
                model_id,
                token=token,
                trust_remote_code=True
            )
            self.model.to(self.device)
            self.model.eval()
            
            self.model_loaded = True
            logger.info("✓ Generation model loaded successfully from Hugging Face!")
            
        except Exception as e:
            logger.error(f"Error loading generation model: {str(e)}")
            raise RuntimeError(f"Failed to load generation model: {str(e)}")
    
    def generate(self, input_text: str, max_length: int = 128, num_beams: int = 4) -> str:
        """Generate text from input"""
        if not self.model_loaded:
            raise RuntimeError("Generation model not loaded")
        
        # Tokenize
        inputs = self.tokenizer(
            input_text,
            return_tensors="pt",
            truncation=True,
            max_length=512,
            padding=True
        ).to(self.device)
        
        # Generate
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_length=max_length,
                num_beams=num_beams,
                early_stopping=True
            )
            
        # Decode
        generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return generated_text


# Initialize singleton instance
generate_model_manager = GenerateModelManager()