File size: 13,149 Bytes
83c5f9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
"""
Routes FastAPI pour intégration n8n avec MCP
À ajouter dans votre app.py principal
"""
from fastapi import APIRouter, HTTPException, BackgroundTasks, UploadFile, File
from pydantic import BaseModel
from typing import Dict, Any, Optional, List
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
# Router pour n8n
n8n_router = APIRouter(prefix="/n8n", tags=["n8n"])
# ==================== MODELS ====================
class N8NToolRequest(BaseModel):
"""Request model pour appels n8n"""
tool_name: str
arguments: Dict[str, Any]
context: Optional[Dict[str, Any]] = None
async_callback: Optional[str] = None # URL pour callback asynchrone
class Config:
json_schema_extra = {
"example": {
"tool_name": "predict_stance",
"arguments": {
"topic": "climate change",
"argument": "We need renewable energy"
},
"context": {
"session_id": "session_123",
"user_id": "user_456"
}
}
}
class N8NBatchRequest(BaseModel):
"""Request pour traitement batch"""
tool_name: str
items: List[Dict[str, Any]]
batch_size: int = 10
parallel: bool = False
class Config:
json_schema_extra = {
"example": {
"tool_name": "predict_stance",
"items": [
{"topic": "AI", "argument": "AI will help humanity"},
{"topic": "AI", "argument": "AI is dangerous"}
],
"batch_size": 10
}
}
class N8NPipelineRequest(BaseModel):
"""Request pour pipeline complexe"""
pipeline_name: str
input_data: Dict[str, Any]
steps: List[Dict[str, Any]]
class Config:
json_schema_extra = {
"example": {
"pipeline_name": "debate_analysis",
"input_data": {
"topic": "climate change",
"text": "We must act now"
},
"steps": [
{"tool": "predict_stance", "output_key": "stance"},
{"tool": "predict_kpa", "use_previous": True}
]
}
}
class N8NResponse(BaseModel):
"""Response standardisée pour n8n"""
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
execution_time: float
timestamp: datetime = datetime.now()
# ==================== ENDPOINTS ====================
@n8n_router.post("/execute", response_model=N8NResponse)
async def execute_tool(request: N8NToolRequest):
"""
Endpoint principal pour exécuter un outil MCP depuis n8n
"""
import time
start_time = time.time()
try:
from mcp.server import MCPServer
from mcp import server # Importer votre instance MCP
# Exécuter l'outil
result = await server.call_tool(
tool_name=request.tool_name,
arguments=request.arguments
)
# Ajouter le contexte si fourni
if request.context:
result["context"] = request.context
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data=result,
execution_time=execution_time
)
except Exception as e:
logger.error(f"Tool execution failed: {str(e)}")
execution_time = time.time() - start_time
return N8NResponse(
success=False,
error=str(e),
execution_time=execution_time
)
@n8n_router.post("/batch", response_model=N8NResponse)
async def batch_execute(request: N8NBatchRequest):
"""
Endpoint pour traitement batch depuis n8n
"""
import time
import asyncio
start_time = time.time()
try:
from mcp import server
results = []
# Traitement séquentiel ou parallèle
if request.parallel:
# Traitement parallèle
tasks = []
for item in request.items:
task = server.call_tool(
tool_name=request.tool_name,
arguments=item
)
tasks.append(task)
results = await asyncio.gather(*tasks, return_exceptions=True)
else:
# Traitement séquentiel par batch
for i in range(0, len(request.items), request.batch_size):
batch = request.items[i:i + request.batch_size]
for item in batch:
try:
result = await server.call_tool(
tool_name=request.tool_name,
arguments=item
)
results.append(result)
except Exception as e:
results.append({"error": str(e), "item": item})
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data={
"results": results,
"total": len(results),
"successful": sum(1 for r in results if not isinstance(r, Exception) and "error" not in r),
"failed": sum(1 for r in results if isinstance(r, Exception) or "error" in r)
},
execution_time=execution_time
)
except Exception as e:
logger.error(f"Batch execution failed: {str(e)}")
execution_time = time.time() - start_time
return N8NResponse(
success=False,
error=str(e),
execution_time=execution_time
)
@n8n_router.post("/pipeline", response_model=N8NResponse)
async def execute_pipeline(request: N8NPipelineRequest):
"""
Endpoint pour exécuter un pipeline multi-étapes
"""
import time
start_time = time.time()
try:
from mcp import server
pipeline_context = {"input": request.input_data}
results = {}
for step in request.steps:
tool_name = step["tool"]
output_key = step.get("output_key", tool_name)
use_previous = step.get("use_previous", False)
# Préparer les arguments
if use_previous:
# Utiliser le résultat de l'étape précédente
arguments = {**request.input_data, **results}
else:
arguments = step.get("arguments", request.input_data)
# Exécuter l'étape
result = await server.call_tool(
tool_name=tool_name,
arguments=arguments
)
results[output_key] = result
pipeline_context[output_key] = result
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data={
"pipeline": request.pipeline_name,
"results": results,
"context": pipeline_context
},
execution_time=execution_time
)
except Exception as e:
logger.error(f"Pipeline execution failed: {str(e)}")
execution_time = time.time() - start_time
return N8NResponse(
success=False,
error=str(e),
execution_time=execution_time
)
@n8n_router.post("/voice-pipeline")
async def voice_debate_pipeline(
audio: UploadFile = File(...),
topic: str = None,
session_id: str = None
):
"""
Pipeline complet : Audio → STT → Stance → KPA → Argument Generation → TTS
Optimisé pour n8n
"""
import time
import tempfile
import os
start_time = time.time()
try:
from mcp import server
from services.stt_service import transcribe_audio
from services.tts_service import text_to_speech
# 1. Sauvegarder l'audio temporairement
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
content = await audio.read()
tmp.write(content)
tmp_path = tmp.name
try:
# 2. Speech-to-Text
transcription = await transcribe_audio(tmp_path)
user_text = transcription.get("text", "")
# 3. Stance Detection
stance_result = await server.call_tool(
"predict_stance",
{"topic": topic, "argument": user_text}
)
# 4. KPA Matching (optionnel)
# kpa_result = await mcp_server.call_tool(...)
# 5. Generate Counter-Argument
opposite_stance = "CON" if stance_result["predicted_stance"] == "PRO" else "PRO"
counter_arg_result = await server.call_tool(
"generate_argument",
{
"prompt": f"Generate a {opposite_stance} argument about {topic}",
"context": f"User said: {user_text}",
"stance": opposite_stance
}
)
# 6. Text-to-Speech du contre-argument
tts_audio_path = await text_to_speech(
counter_arg_result["generated_argument"]
)
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data={
"transcription": user_text,
"stance_analysis": stance_result,
"counter_argument": counter_arg_result,
"audio_response_path": tts_audio_path,
"session_id": session_id
},
execution_time=execution_time
)
finally:
# Nettoyer le fichier temporaire
if os.path.exists(tmp_path):
os.remove(tmp_path)
except Exception as e:
logger.error(f"Voice pipeline failed: {str(e)}")
return N8NResponse(
success=False,
error=str(e),
execution_time=time.time() - start_time
)
@n8n_router.get("/tools")
async def list_tools():
"""
Liste tous les outils disponibles (format n8n-friendly)
"""
try:
from mcp import server
tools = await server.list_tools()
return {
"success": True,
"tools": tools,
"total": len(tools)
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@n8n_router.get("/resources")
async def list_resources():
"""
Liste toutes les ressources disponibles (format n8n-friendly)
"""
try:
from mcp import server
resources = await server.list_resources()
return {
"success": True,
"resources": resources,
"total": len(resources)
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@n8n_router.get("/health")
async def health_check():
"""
Health check pour n8n monitoring
"""
from services.stance_model_manager import stance_model_manager
from services.label_model_manager import kpa_model_manager
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"models": {
"stance": stance_model_manager.model_loaded if stance_model_manager else False,
"kpa": kpa_model_manager.model_loaded if kpa_model_manager else False
},
"services": {
"stt": True, # Vérifier si GROQ_API_KEY existe
"tts": True,
"chat": True
}
}
# ==================== WEBHOOKS ====================
@n8n_router.post("/webhook/debate-result")
async def webhook_debate_result(data: Dict[str, Any], background_tasks: BackgroundTasks):
"""
Webhook pour recevoir les résultats de débat depuis n8n
Peut être utilisé pour stocker, notifier, etc.
"""
logger.info(f"Received debate result webhook: {data}")
# Traiter en arrière-plan
background_tasks.add_task(process_debate_result, data)
return {"status": "received", "message": "Processing in background"}
async def process_debate_result(data: Dict[str, Any]):
"""
Traiter les résultats de débat en arrière-plan
"""
# TODO: Implémenter votre logique
# - Sauvegarder dans DB
# - Envoyer des notifications
# - Mettre à jour des métriques
logger.info(f"Processing debate result: {data}")
# ==================== EXPORT ====================
def register_n8n_routes(app):
"""
Enregistrer les routes n8n dans l'application FastAPI
"""
app.include_router(n8n_router)
logger.info("n8n routes registered successfully") |