File size: 12,129 Bytes
8791d59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
from typing import List, Dict, Any
from mcp import Resource
from datetime import datetime
import logging
logger = logging.getLogger(__name__)
class ModelResource(Resource):
"""Resource representing a loaded model"""
def __init__(self, model_name: str, model_info: Dict[str, Any]):
self.model_name = model_name
self.model_info = model_info
super().__init__(
uri=f"model://{model_name}",
name=model_name,
description=f"{model_name} model information and status",
mime_type="application/json"
)
async def get_content(self) -> str:
"""Get model information as JSON"""
import json
return json.dumps({
**self.model_info,
"timestamp": datetime.now().isoformat(),
"uri": self.uri
})
class StanceDetectionResource(ModelResource):
"""Resource for stance detection model"""
def __init__(self):
from services.stance_model_manager import stance_model_manager
model_info = {
"type": "stance_detection",
"description": "Detects PRO/CON stance for topic-argument pairs",
"capabilities": ["single_prediction", "batch_prediction"],
"input_format": {"topic": "string", "argument": "string"},
"output_format": {
"predicted_stance": "PRO/CON",
"confidence": "float",
"probabilities": {"PRO": "float", "CON": "float"}
}
}
if stance_model_manager and stance_model_manager.model_loaded:
model_info.update({
"loaded": True,
"device": str(stance_model_manager.device),
"model_id": getattr(stance_model_manager, 'model_id', 'unknown')
})
else:
model_info["loaded"] = False
super().__init__("stance_detection", model_info)
class KPAResource(ModelResource):
"""Resource for Keypoint-Argument matching model"""
def __init__(self):
from services.label_model_manager import kpa_model_manager
model_info = {
"type": "keypoint_argument_matching",
"description": "Matches arguments with key points (apparie/non_apparie)",
"capabilities": ["single_prediction", "batch_prediction"],
"input_format": {"argument": "string", "key_point": "string"},
"output_format": {
"prediction": "0/1",
"label": "apparie/non_apparie",
"confidence": "float",
"probabilities": {"non_apparie": "float", "apparie": "float"}
}
}
if kpa_model_manager and kpa_model_manager.model_loaded:
model_info.update({
"loaded": True,
"device": str(kpa_model_manager.device),
"model_id": getattr(kpa_model_manager, 'model_id', 'unknown'),
"max_length": getattr(kpa_model_manager, 'max_length', 256)
})
else:
model_info["loaded"] = False
super().__init__("kpa_matching", model_info)
class STTResource(Resource):
"""Resource for Speech-to-Text capabilities"""
def __init__(self):
from config import GROQ_API_KEY, GROQ_STT_MODEL
super().__init__(
uri="service://speech-to-text",
name="speech_to_text",
description="Speech-to-Text service using Groq Whisper API",
mime_type="application/json"
)
self.config = {
"provider": "Groq",
"model": GROQ_STT_MODEL,
"enabled": bool(GROQ_API_KEY),
"language": "English only",
"max_audio_size": "10MB",
"supported_formats": ["wav", "mp3", "m4a", "mp4"]
}
async def get_content(self) -> str:
"""Get STT service information"""
import json
return json.dumps({
**self.config,
"timestamp": datetime.now().isoformat(),
"uri": self.uri
})
class TTSResource(Resource):
"""Resource for Text-to-Speech capabilities"""
def __init__(self):
from config import GROQ_API_KEY, GROQ_TTS_MODEL, GROQ_TTS_VOICE
super().__init__(
uri="service://text-to-speech",
name="text_to_speech",
description="Text-to-Speech service using Groq PlayAI TTS",
mime_type="application/json"
)
self.config = {
"provider": "Groq",
"model": GROQ_TTS_MODEL,
"voice": GROQ_TTS_VOICE,
"enabled": bool(GROQ_API_KEY),
"language": "English only",
"format": "wav/mp3",
"voices_available": ["Aaliyah-PlayAI", "Aria-PlayAI", "Dexter-PlayAI", "Fiona-PlayAI"]
}
async def get_content(self) -> str:
"""Get TTS service information"""
import json
return json.dumps({
**self.config,
"timestamp": datetime.now().isoformat(),
"uri": self.uri
})
class ChatbotResource(Resource):
"""Resource for Chatbot capabilities"""
def __init__(self):
from config import GROQ_API_KEY, GROQ_CHAT_MODEL
super().__init__(
uri="service://chatbot",
name="chatbot",
description="Chatbot service using Groq LLM API",
mime_type="application/json"
)
self.config = {
"provider": "Groq",
"model": GROQ_CHAT_MODEL,
"enabled": bool(GROQ_API_KEY),
"language": "English only",
"features": ["conversation", "context_awareness", "voice_chat"],
"max_context_length": 8192
}
async def get_content(self) -> str:
"""Get chatbot service information"""
import json
return json.dumps({
**self.config,
"timestamp": datetime.now().isoformat(),
"uri": self.uri
})
class ArgumentGenerationResource(Resource):
"""Resource for Argument Generation model (à compléter)"""
def __init__(self):
super().__init__(
uri="model://argument-generation",
name="argument_generation",
description="Persuasive argument generation model",
mime_type="application/json"
)
self.config = {
"type": "argument_generation",
"status": "not_implemented",
"description": "TODO: Implement your argument generation model",
"planned_capabilities": [
"single_argument_generation",
"batch_generation",
"stance_controlled_generation",
"counter_argument_generation"
]
}
async def get_content(self) -> str:
"""Get argument generation model information"""
import json
return json.dumps({
**self.config,
"timestamp": datetime.now().isoformat(),
"uri": self.uri,
"note": "This is a placeholder. Implement your model in services/argument_generation.py"
})
class SystemHealthResource(Resource):
"""Resource for system health and status"""
def __init__(self):
super().__init__(
uri="system://health",
name="system_health",
description="System health and service status",
mime_type="application/json"
)
async def get_content(self) -> str:
"""Get system health information"""
import json
from datetime import datetime
# Collect model status
model_status = {}
try:
from services.stance_model_manager import stance_model_manager
model_status["stance_detection"] = {
"loaded": stance_model_manager.model_loaded if stance_model_manager else False
}
except:
model_status["stance_detection"] = {"loaded": False}
try:
from services.label_model_manager import kpa_model_manager
model_status["kpa_matching"] = {
"loaded": kpa_model_manager.model_loaded if kpa_model_manager else False
}
except:
model_status["kpa_matching"] = {"loaded": False}
# Service status
from config import GROQ_API_KEY
service_status = {
"stt": bool(GROQ_API_KEY),
"tts": bool(GROQ_API_KEY),
"chatbot": bool(GROQ_API_KEY),
"argument_generation": False # À implémenter
}
return json.dumps({
"timestamp": datetime.now().isoformat(),
"status": "operational",
"models": model_status,
"services": service_status,
"api_version": "1.0.0",
"mcp_version": "1.0.0"
})
class APIDocumentationResource(Resource):
"""Resource for API documentation"""
def __init__(self):
super().__init__(
uri="documentation://api",
name="api_documentation",
description="API endpoints documentation",
mime_type="application/json"
)
self.documentation = {
"endpoints": {
"mcp": {
"/mcp/health": "GET - Health check",
"/mcp/resources": "GET - List all resources",
"/mcp/tools": "GET - List all tools",
"/mcp/tools/call": "POST - Call a tool"
},
"models": {
"/api/v1/kpa/predict": "POST - KPA prediction",
"/api/v1/stance/predict": "POST - Stance prediction",
"/api/v1/stance/batch-predict": "POST - Batch stance prediction"
},
"voice": {
"/api/v1/stt/": "POST - Speech to text",
"/api/v1/tts/": "POST - Text to speech",
"/voice-chat/voice": "POST - Voice chat",
"/voice-chat/text": "POST - Text chat"
}
},
"authentication": "Currently none (add JWT or API key based auth)",
"rate_limits": "None configured",
"version": "2.0.0"
}
async def get_content(self) -> str:
"""Get API documentation"""
import json
return json.dumps({
**self.documentation,
"timestamp": datetime.now().isoformat(),
"uri": self.uri
})
def get_resources() -> List[Resource]:
"""Return all available MCP resources"""
resources = []
try:
resources.append(StanceDetectionResource())
except Exception as e:
logger.warning(f"Failed to create StanceDetectionResource: {e}")
try:
resources.append(KPAResource())
except Exception as e:
logger.warning(f"Failed to create KPAResource: {e}")
try:
resources.append(STTResource())
except Exception as e:
logger.warning(f"Failed to create STTResource: {e}")
try:
resources.append(TTSResource())
except Exception as e:
logger.warning(f"Failed to create TTSResource: {e}")
try:
resources.append(ChatbotResource())
except Exception as e:
logger.warning(f"Failed to create ChatbotResource: {e}")
try:
resources.append(ArgumentGenerationResource())
except Exception as e:
logger.warning(f"Failed to create ArgumentGenerationResource: {e}")
try:
resources.append(SystemHealthResource())
except Exception as e:
logger.warning(f"Failed to create SystemHealthResource: {e}")
try:
resources.append(APIDocumentationResource())
except Exception as e:
logger.warning(f"Failed to create APIDocumentationResource: {e}")
logger.info(f"Created {len(resources)} MCP resources")
return resources |