File size: 10,628 Bytes
8791d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
Type definitions for MCP (Model Context Protocol)
"""
from typing import Dict, Any, List, Optional, Union, TypedDict
from enum import Enum
from datetime import datetime
from pydantic import BaseModel, Field

# ==================== ENUMS ====================

class ModelType(str, Enum):
    """Types of models available"""
    STANCE_DETECTION = "stance_detection"
    KPA_MATCHING = "kpa_matching"
    ARGUMENT_GENERATION = "argument_generation"
    CHATBOT = "chatbot"

class StanceType(str, Enum):
    """Stance types"""
    PRO = "PRO"
    CON = "CON"
    NEUTRAL = "NEUTRAL"

class KpaLabel(str, Enum):
    """KPA matching labels"""
    APPARIE = "apparie"
    NON_APPARIE = "non_apparie"

class ServiceStatus(str, Enum):
    """Service status"""
    OPERATIONAL = "operational"
    DEGRADED = "degraded"
    MAINTENANCE = "maintenance"
    OFFLINE = "offline"

class ToolCategory(str, Enum):
    """Tool categories"""
    PREDICTION = "prediction"
    GENERATION = "generation"
    TRANSFORMATION = "transformation"
    ANALYSIS = "analysis"
    UTILITY = "utility"

# ==================== CORE TYPES ====================

class ResourceMetadata(TypedDict):
    """Metadata for a resource"""
    uri: str
    name: str
    description: Optional[str]
    mime_type: str
    created_at: datetime
    updated_at: datetime
    tags: List[str]

class ToolMetadata(TypedDict):
    """Metadata for a tool"""
    name: str
    description: str
    version: str
    category: ToolCategory
    input_schema: Dict[str, Any]
    output_schema: Dict[str, Any]
    rate_limit: Optional[int]
    requires_auth: bool

class ModelMetadata(TypedDict):
    """Metadata for a model"""
    model_id: str
    model_type: ModelType
    provider: str
    version: str
    description: str
    capabilities: List[str]
    parameters: Dict[str, Any]
    hardware_requirements: Dict[str, Any]

# ==================== PREDICTION TYPES ====================

class PredictionInput(BaseModel):
    """Base class for prediction inputs"""
    model_id: Optional[str] = Field(None, description="Specific model to use")

class StancePredictionInput(PredictionInput):
    """Input for stance prediction"""
    topic: str = Field(..., min_length=5, max_length=500, description="Debate topic")
    argument: str = Field(..., min_length=5, max_length=1000, description="Argument text")
    
    class Config:
        json_schema_extra = {
            "example": {
                "topic": "Climate change is the most pressing issue of our time",
                "argument": "Renewable energy investments have created millions of jobs worldwide"
            }
        }

class KPAPredictionInput(PredictionInput):
    """Input for KPA prediction"""
    argument: str = Field(..., description="Argument text")
    key_point: str = Field(..., description="Key point to match")
    
    class Config:
        json_schema_extra = {
            "example": {
                "argument": "Renewable energy is cost-effective in the long term",
                "key_point": "Economic benefits of green energy"
            }
        }

class BatchPredictionInput(BaseModel):
    """Input for batch predictions"""
    items: List[Union[StancePredictionInput, KPAPredictionInput]]
    batch_size: Optional[int] = Field(10, ge=1, le=100)
    parallel: bool = Field(False, description="Process in parallel")

# ==================== GENERATION TYPES ====================

class ArgumentGenerationInput(BaseModel):
    """Input for argument generation"""
    prompt: str = Field(..., description="Main topic or question")
    context: Optional[str] = Field(None, description="Additional context")
    stance: Optional[StanceType] = Field(StanceType.NEUTRAL, description="Desired stance")
    length: Optional[str] = Field("medium", description="Argument length: short/medium/long")
    style: Optional[str] = Field("persuasive", description="Writing style")
    num_arguments: Optional[int] = Field(1, ge=1, le=5, description="Number of arguments to generate")
    
    class Config:
        json_schema_extra = {
            "example": {
                "prompt": "Should artificial intelligence be regulated?",
                "stance": "PRO",
                "context": "Focus on ethical considerations",
                "length": "medium"
            }
        }

class CounterArgumentInput(BaseModel):
    """Input for counter-argument generation"""
    original_argument: str = Field(..., description="Original argument to counter")
    target_stance: StanceType = Field(..., description="Stance for counter-argument")
    context: Optional[str] = Field(None, description="Additional context")
    
    class Config:
        json_schema_extra = {
            "example": {
                "original_argument": "AI regulation stifles innovation",
                "target_stance": "CON",
                "context": "Focus on safety and ethics"
            }
        }

# ==================== VOICE TYPES ====================

class AudioFormat(str, Enum):
    """Supported audio formats"""
    WAV = "wav"
    MP3 = "mp3"
    M4A = "m4a"
    OGG = "ogg"

class VoiceProfile(str, Enum):
    """Available voice profiles"""
    ALIYAH = "Aaliyah-PlayAI"
    ARIA = "Aria-PlayAI"
    DEXTER = "Dexter-PlayAI"
    FIONA = "Fiona-PlayAI"

class STTInput(BaseModel):
    """Input for speech-to-text"""
    audio_format: AudioFormat = Field(AudioFormat.WAV, description="Audio format")
    language: str = Field("en", description="Language code (en, fr, etc.)")
    enable_timestamps: bool = Field(False, description="Include word timestamps")
    
    class Config:
        json_schema_extra = {
            "example": {
                "audio_format": "wav",
                "language": "en",
                "enable_timestamps": False
            }
        }

class TTSInput(BaseModel):
    """Input for text-to-speech"""
    text: str = Field(..., description="Text to convert to speech")
    voice: VoiceProfile = Field(VoiceProfile.ALIYAH, description="Voice to use")
    format: AudioFormat = Field(AudioFormat.WAV, description="Output format")
    speed: float = Field(1.0, ge=0.5, le=2.0, description="Speech speed")
    pitch: float = Field(1.0, ge=0.5, le=2.0, description="Voice pitch")
    
    class Config:
        json_schema_extra = {
            "example": {
                "text": "Hello, this is a test of text-to-speech.",
                "voice": "Aaliyah-PlayAI",
                "format": "wav",
                "speed": 1.0,
                "pitch": 1.0
            }
        }

# ==================== RESPONSE TYPES ====================

class PredictionResult(BaseModel):
    """Base prediction result"""
    prediction: Union[int, str]
    confidence: float = Field(..., ge=0.0, le=1.0)
    processing_time: Optional[float] = Field(None, description="Processing time in seconds")

class StancePredictionResult(PredictionResult):
    """Stance prediction result"""
    predicted_stance: StanceType
    probability_pro: float = Field(..., ge=0.0, le=1.0)
    probability_con: float = Field(..., ge=0.0, le=1.0)
    topic: str
    argument: str

class KPAPredictionResult(PredictionResult):
    """KPA prediction result"""
    label: KpaLabel
    probabilities: Dict[KpaLabel, float]
    argument: str
    key_point: str

class GenerationResult(BaseModel):
    """Base generation result"""
    generated_text: str
    prompt: str
    context: Optional[str]
    parameters: Dict[str, Any]
    generation_time: Optional[float]

class ArgumentGenerationResult(GenerationResult):
    """Argument generation result"""
    stance: StanceType
    length: str
    style: str
    coherence_score: Optional[float] = Field(None, ge=0.0, le=1.0)

class BatchResult(BaseModel):
    """Batch processing result"""
    results: List[Union[StancePredictionResult, KPAPredictionResult, ArgumentGenerationResult]]
    total_processed: int
    successful: int
    failed: int
    average_confidence: Optional[float]
    total_time: float

class ErrorResponse(BaseModel):
    """Error response"""
    error: str
    code: Optional[str]
    details: Optional[Dict[str, Any]]
    timestamp: datetime = Field(default_factory=datetime.now)

class HealthResponse(BaseModel):
    """Health check response"""
    status: ServiceStatus
    version: str
    uptime: float
    models: Dict[str, bool]
    services: Dict[str, bool]
    timestamp: datetime = Field(default_factory=datetime.now)

# ==================== TOOL EXECUTION TYPES ====================

class ToolExecutionContext(BaseModel):
    """Context for tool execution"""
    tool_id: str
    user_id: Optional[str]
    session_id: Optional[str]
    timestamp: datetime = Field(default_factory=datetime.now)
    metadata: Optional[Dict[str, Any]]

class ToolExecutionResult(BaseModel):
    """Result of tool execution"""
    success: bool
    output: Optional[Dict[str, Any]]
    error: Optional[str]
    execution_time: float
    context: ToolExecutionContext

# ==================== CONVERSATION TYPES ====================

class MessageRole(str, Enum):
    """Roles in conversation"""
    USER = "user"
    ASSISTANT = "assistant"
    SYSTEM = "system"

class ConversationMessage(BaseModel):
    """Single message in conversation"""
    role: MessageRole
    content: str
    timestamp: datetime = Field(default_factory=datetime.now)
    metadata: Optional[Dict[str, Any]]

class ConversationState(BaseModel):
    """Conversation state"""
    conversation_id: str
    messages: List[ConversationMessage]
    created_at: datetime
    updated_at: datetime = Field(default_factory=datetime.now)
    metadata: Dict[str, Any] = Field(default_factory=dict)

# ==================== EXPORT ====================

__all__ = [
    # Enums
    "ModelType",
    "StanceType", 
    "KpaLabel",
    "ServiceStatus",
    "ToolCategory",
    "AudioFormat",
    "VoiceProfile",
    "MessageRole",
    
    # Input Types
    "PredictionInput",
    "StancePredictionInput", 
    "KPAPredictionInput",
    "BatchPredictionInput",
    "ArgumentGenerationInput",
    "CounterArgumentInput",
    "STTInput",
    "TTSInput",
    
    # Result Types
    "PredictionResult",
    "StancePredictionResult",
    "KPAPredictionResult", 
    "GenerationResult",
    "ArgumentGenerationResult",
    "BatchResult",
    
    # Response Types
    "ErrorResponse",
    "HealthResponse",
    
    # Tool Types
    "ToolExecutionContext",
    "ToolExecutionResult",
    
    # Conversation Types
    "ConversationMessage",
    "ConversationState",
    
    # TypedDicts (for compatibility)
    "ResourceMetadata",
    "ToolMetadata", 
    "ModelMetadata"
]