File size: 26,540 Bytes
f171734 200de02 f171734 997d57e 200de02 83c5f9d 1315b27 76c719b 1ce17ff 45e145b 1ce17ff 45e145b c508ed0 f171734 1ce17ff f171734 8791d59 f171734 8791d59 f171734 8791d59 f171734 b36d7d0 1ce17ff b36d7d0 f171734 b36d7d0 c508ed0 b36d7d0 c508ed0 b36d7d0 c508ed0 b36d7d0 1ce17ff b36d7d0 f171734 b36d7d0 f171734 bd8a3b8 1ce17ff bd8a3b8 f171734 dd55f1d 997d57e b36d7d0 997d57e b36d7d0 997d57e b36d7d0 997d57e b36d7d0 997d57e b36d7d0 f171734 b36d7d0 f171734 45e145b f171734 76c719b 45e145b 76c719b 45e145b 76c719b 45e145b 76c719b 45e145b 200de02 f171734 76c719b 997d57e f171734 45e145b f171734 76c719b 45e145b 76c719b 45e145b 76c719b 45e145b 76c719b 45e145b 200de02 f171734 76c719b 997d57e f171734 45e145b 200de02 f171734 200de02 dd55f1d 200de02 f171734 45e145b 997d57e 45e145b 997d57e 45e145b b36d7d0 45e145b 997d57e 45e145b f171734 997d57e 200de02 f171734 200de02 45e145b 200de02 f171734 dd55f1d f171734 45e145b 997d57e 45e145b 997d57e 45e145b b36d7d0 45e145b 200de02 45e145b 200de02 45e145b 200de02 45e145b f171734 997d57e f171734 c508ed0 f171734 76c719b 200de02 76c719b 45e145b c508ed0 76c719b 200de02 c508ed0 45e145b c508ed0 45e145b f171734 76c719b 997d57e 8791d59 1ce17ff f171734 dd55f1d 997d57e f171734 997d57e f171734 b36d7d0 997d57e b36d7d0 997d57e b36d7d0 997d57e b36d7d0 f171734 997d57e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
"""Routes pour exposer MCP via FastAPI pour Swagger UI"""
from fastapi import APIRouter, HTTPException, UploadFile, File
from fastapi.responses import FileResponse
from typing import Dict, Any, Optional
from pydantic import BaseModel, Field
import logging
import json
import tempfile
import os
from pathlib import Path
from services.mcp_service import mcp_server
from services.stance_model_manager import stance_model_manager
from services.label_model_manager import kpa_model_manager
from services.generate_model_manager import generate_model_manager
from services.topic_service import topic_service
from services.chat_service import generate_chat_response
from models.mcp_models import (
ToolListResponse,
ToolInfo,
ToolCallRequest,
ToolCallResponse,
DetectStanceResponse,
MatchKeypointResponse,
TranscribeAudioResponse,
GenerateSpeechResponse,
ExtractTopicResponse,
VoiceChatResponse
)
from models.generate import GenerateRequest, GenerateResponse
from datetime import datetime
router = APIRouter(prefix="/api/v1/mcp", tags=["MCP"])
logger = logging.getLogger(__name__)
# ===== Models pour chaque outil MCP =====
class DetectStanceRequest(BaseModel):
"""Request pour détecter la stance d'un argument"""
topic: str = Field(..., description="Le sujet du débat")
argument: str = Field(..., description="L'argument à analyser")
class Config:
json_schema_extra = {
"example": {
"topic": "Climate change is real",
"argument": "Rising global temperatures prove it"
}
}
class MatchKeypointRequest(BaseModel):
"""Request pour matcher un argument avec un keypoint"""
argument: str = Field(..., description="L'argument à évaluer")
key_point: str = Field(..., description="Le keypoint de référence")
class Config:
json_schema_extra = {
"example": {
"argument": "Renewable energy reduces emissions",
"key_point": "Environmental benefits"
}
}
class GenerateSpeechRequest(BaseModel):
"""Request pour générer de la parole"""
text: str = Field(..., description="Texte à convertir en parole")
voice: str = Field(default="Aaliyah-PlayAI", description="Voix à utiliser")
format: str = Field(default="wav", description="Format audio (wav, mp3, etc.)")
class Config:
json_schema_extra = {
"example": {
"text": "Hello, this is a test",
"voice": "Aaliyah-PlayAI",
"format": "wav"
}
}
class ExtractTopicRequest(BaseModel):
"""Request pour extraire un topic d'un texte"""
text: str = Field(..., min_length=5, max_length=5000, description="Le texte/argument à partir duquel extraire le topic")
class Config:
json_schema_extra = {
"example": {
"text": "Governments should subsidize electric cars to encourage adoption."
}
}
class VoiceChatRequest(BaseModel):
"""Request pour générer une réponse de chatbot vocal"""
user_input: str = Field(..., description="L'entrée utilisateur (en anglais)")
conversation_id: Optional[str] = Field(None, description="ID de conversation pour maintenir le contexte")
class Config:
json_schema_extra = {
"example": {
"user_input": "What is climate change?",
"conversation_id": "optional-conversation-id"
}
}
# ===== Routes MCP =====
@router.get("/health", summary="Health Check MCP")
async def mcp_health():
"""Health check pour le serveur MCP"""
try:
# Liste hardcodée des outils disponibles (plus fiable)
tool_names = [
"detect_stance",
"match_keypoint_argument",
"transcribe_audio",
"generate_speech",
"generate_argument",
"extract_topic",
"voice_chat",
"health_check"
]
return {
"status": "healthy",
"tools": tool_names,
"tool_count": len(tool_names)
}
except Exception as e:
logger.error(f"MCP health check error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/tools", response_model=ToolListResponse, summary="Liste des outils MCP")
async def list_mcp_tools():
"""Liste tous les outils MCP disponibles"""
try:
# Définir manuellement les outils avec leurs schémas
tool_list = [
ToolInfo(
name="detect_stance",
description="Détecte si un argument est PRO ou CON pour un topic donné",
input_schema={
"type": "object",
"properties": {
"topic": {"type": "string", "description": "Le sujet du débat"},
"argument": {"type": "string", "description": "L'argument à analyser"}
},
"required": ["topic", "argument"]
}
),
ToolInfo(
name="match_keypoint_argument",
description="Détermine si un argument correspond à un keypoint",
input_schema={
"type": "object",
"properties": {
"argument": {"type": "string", "description": "L'argument à évaluer"},
"key_point": {"type": "string", "description": "Le keypoint de référence"}
},
"required": ["argument", "key_point"]
}
),
ToolInfo(
name="transcribe_audio",
description="Convertit un fichier audio en texte",
input_schema={
"type": "object",
"properties": {
"audio_path": {"type": "string", "description": "Chemin vers le fichier audio"}
},
"required": ["audio_path"]
}
),
ToolInfo(
name="generate_speech",
description="Convertit du texte en fichier audio",
input_schema={
"type": "object",
"properties": {
"text": {"type": "string", "description": "Texte à convertir en parole"},
"voice": {"type": "string", "description": "Voix à utiliser", "default": "Aaliyah-PlayAI"},
"format": {"type": "string", "description": "Format audio", "default": "wav"}
},
"required": ["text"]
}
),
ToolInfo(
name="generate_argument",
description="Génère un argument de débat pour un topic et une position donnés",
input_schema={
"type": "object",
"properties": {
"topic": {"type": "string", "description": "Le sujet du débat"},
"position": {"type": "string", "description": "La position à prendre (positive ou negative)"}
},
"required": ["topic", "position"]
}
),
ToolInfo(
name="extract_topic",
description="Extrait un topic à partir d'un texte/argument donné",
input_schema={
"type": "object",
"properties": {
"text": {"type": "string", "description": "Le texte/argument à partir duquel extraire le topic"}
},
"required": ["text"]
}
),
ToolInfo(
name="voice_chat",
description="Génère une réponse de chatbot vocal en anglais",
input_schema={
"type": "object",
"properties": {
"user_input": {"type": "string", "description": "L'entrée utilisateur (en anglais)"},
"conversation_id": {"type": "string", "description": "ID de conversation pour maintenir le contexte (optionnel)"}
},
"required": ["user_input"]
}
),
ToolInfo(
name="health_check",
description="Health check pour le serveur MCP",
input_schema={
"type": "object",
"properties": {},
"required": []
}
)
]
return ToolListResponse(tools=tool_list, count=len(tool_list))
except Exception as e:
logger.error(f"Error listing MCP tools: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/tools/call", response_model=ToolCallResponse, summary="Appeler un outil MCP")
async def call_mcp_tool(request: ToolCallRequest):
"""
Appelle un outil MCP par son nom avec des arguments
**Exemples d'utilisation:**
1. **detect_stance** - Détecter la stance d'un argument:
```json
{
"tool_name": "detect_stance",
"arguments": {
"topic": "Climate change is real",
"argument": "Rising global temperatures prove it"
}
}
```
2. **match_keypoint_argument** - Matcher un argument avec un keypoint:
```json
{
"tool_name": "match_keypoint_argument",
"arguments": {
"argument": "Renewable energy reduces emissions",
"key_point": "Environmental benefits"
}
}
```
3. **generate_argument** - Générer un argument:
```json
{
"tool_name": "generate_argument",
"arguments": {
"topic": "Assisted suicide should be legal",
"position": "positive"
}
}
```
4. **transcribe_audio** - Transcrire un audio:
```json
{
"tool_name": "transcribe_audio",
"arguments": {
"audio_path": "/path/to/audio.wav"
}
}
```
5. **generate_speech** - Générer de la parole:
```json
{
"tool_name": "generate_speech",
"arguments": {
"text": "Hello, this is a test",
"voice": "Aaliyah-PlayAI",
"format": "wav"
}
}
```
6. **extract_topic** - Extraire un topic d'un texte:
```json
{
"tool_name": "extract_topic",
"arguments": {
"text": "Governments should subsidize electric cars to encourage adoption."
}
}
```
7. **voice_chat** - Générer une réponse de chatbot vocal:
```json
{
"tool_name": "voice_chat",
"arguments": {
"user_input": "What is climate change?",
"conversation_id": "optional-conversation-id"
}
}
```
"""
try:
result = await mcp_server.call_tool(request.tool_name, request.arguments)
# Gérer différents types de retours MCP
if isinstance(result, dict):
# Si le résultat contient une clé "result" avec une liste de ContentBlock
if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
content_block = result["result"][0]
if hasattr(content_block, 'text') and content_block.text:
try:
final_result = json.loads(content_block.text)
except json.JSONDecodeError:
final_result = {"text": content_block.text}
else:
final_result = result
else:
final_result = result
elif isinstance(result, (list, tuple)) and len(result) > 0:
# Si c'est une liste de ContentBlock, extraire le contenu
if hasattr(result[0], 'text') and result[0].text:
try:
final_result = json.loads(result[0].text)
except json.JSONDecodeError:
final_result = {"text": result[0].text}
else:
final_result = {"result": result[0] if result else {}}
else:
final_result = {"result": result}
return ToolCallResponse(
success=True,
result=final_result,
tool_name=request.tool_name
)
except Exception as e:
logger.error(f"Error calling MCP tool {request.tool_name}: {e}")
return ToolCallResponse(
success=False,
error=str(e),
tool_name=request.tool_name
)
# ===== Routes individuelles pour chaque outil (pour Swagger) =====
@router.post("/tools/detect-stance", response_model=DetectStanceResponse, summary="Détecter la stance d'un argument")
async def mcp_detect_stance(request: DetectStanceRequest):
"""Détecte si un argument est PRO ou CON pour un topic donné"""
try:
# Vérifier que le modèle est chargé
if not stance_model_manager.model_loaded:
raise HTTPException(status_code=503, detail="Stance model not loaded")
# Appeler directement le modèle (plus fiable que via MCP)
result = stance_model_manager.predict(request.topic, request.argument)
# Construire la réponse structurée directement depuis le résultat du modèle
response = DetectStanceResponse(
predicted_stance=result["predicted_stance"],
confidence=result["confidence"],
probability_con=result["probability_con"],
probability_pro=result["probability_pro"]
)
logger.info(f"Stance prediction: {response.predicted_stance} (conf={response.confidence:.4f})")
return response
except HTTPException:
raise
except KeyError as e:
logger.error(f"Missing key in detect_stance response: {e}")
raise HTTPException(status_code=500, detail=f"Invalid response format: missing {e}")
except Exception as e:
logger.error(f"Error in detect_stance: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error executing tool detect_stance: {e}")
@router.post("/tools/match-keypoint", response_model=MatchKeypointResponse, summary="Matcher un argument avec un keypoint")
async def mcp_match_keypoint(request: MatchKeypointRequest):
"""Détermine si un argument correspond à un keypoint"""
try:
# Vérifier que le modèle est chargé
if not kpa_model_manager.model_loaded:
raise HTTPException(status_code=503, detail="KPA model not loaded")
# Appeler directement le modèle (plus fiable que via MCP)
result = kpa_model_manager.predict(request.argument, request.key_point)
# Construire la réponse structurée directement depuis le résultat du modèle
response = MatchKeypointResponse(
prediction=result["prediction"],
label=result["label"],
confidence=result["confidence"],
probabilities=result["probabilities"]
)
logger.info(f"Keypoint matching: {response.label} (conf={response.confidence:.4f})")
return response
except HTTPException:
raise
except KeyError as e:
logger.error(f"Missing key in match_keypoint response: {e}")
raise HTTPException(status_code=500, detail=f"Invalid response format: missing {e}")
except Exception as e:
logger.error(f"Error in match_keypoint_argument: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error executing tool match_keypoint_argument: {e}")
@router.post("/tools/transcribe-audio", response_model=TranscribeAudioResponse, summary="Transcrire un audio en texte")
async def mcp_transcribe_audio(file: UploadFile = File(...)):
"""Convertit un fichier audio en texte (upload de fichier)"""
# Vérifier le type de fichier
if not file.content_type or not file.content_type.startswith('audio/'):
raise HTTPException(status_code=400, detail="File must be an audio file")
# Créer un fichier temporaire
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_path = temp_file.name
content = await file.read()
if len(content) == 0:
os.unlink(temp_path)
raise HTTPException(status_code=400, detail="Audio file is empty")
temp_file.write(content)
try:
# Appeler le service MCP avec le chemin temporaire
result = await mcp_server.call_tool("transcribe_audio", {
"audio_path": temp_path
})
# Extraire le texte du résultat MCP
transcribed_text = None
if isinstance(result, dict):
if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
content_block = result["result"][0]
if hasattr(content_block, 'text'):
transcribed_text = content_block.text
elif "text" in result:
transcribed_text = result["text"]
elif isinstance(result, str):
transcribed_text = result
elif isinstance(result, (list, tuple)) and len(result) > 0:
if hasattr(result[0], 'text'):
transcribed_text = result[0].text
else:
transcribed_text = str(result[0])
else:
transcribed_text = str(result)
if not transcribed_text:
raise HTTPException(status_code=500, detail="Empty transcription result from MCP tool")
response = TranscribeAudioResponse(text=transcribed_text)
logger.info(f"Audio transcribed: {len(transcribed_text)} characters")
return response
except FileNotFoundError as e:
logger.error(f"File not found in transcribe_audio: {e}")
raise HTTPException(status_code=500, detail=f"Error executing tool transcribe_audio: {e}")
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in transcribe_audio: {e}")
raise HTTPException(status_code=500, detail=f"Error executing tool transcribe_audio: {e}")
finally:
# Nettoyer le fichier temporaire
if os.path.exists(temp_path):
os.unlink(temp_path)
@router.post("/tools/generate-speech", summary="Générer de la parole à partir de texte")
async def mcp_generate_speech(request: GenerateSpeechRequest):
"""Convertit du texte en fichier audio (téléchargeable)"""
try:
result = await mcp_server.call_tool("generate_speech", {
"text": request.text,
"voice": request.voice,
"format": request.format
})
# Extraire le chemin audio du résultat MCP
audio_path = None
if isinstance(result, dict):
if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
content_block = result["result"][0]
if hasattr(content_block, 'text'):
audio_path = content_block.text
elif "audio_path" in result:
audio_path = result["audio_path"]
elif isinstance(result, str):
audio_path = result
elif isinstance(result, (list, tuple)) and len(result) > 0:
if hasattr(result[0], 'text'):
audio_path = result[0].text
else:
audio_path = str(result[0])
else:
audio_path = str(result)
# Nettoyer le chemin si c'est une représentation string d'objet
if audio_path and isinstance(audio_path, str):
# Si c'est une représentation d'objet TextContent, extraire le chemin
if "text='" in audio_path and ".wav" in audio_path:
import re
match = re.search(r"text='([^']+)'", audio_path)
if match:
audio_path = match.group(1)
if not audio_path:
raise HTTPException(status_code=500, detail="Empty audio path from MCP tool")
# Vérifier que le fichier existe
if not Path(audio_path).exists():
raise HTTPException(status_code=500, detail=f"Audio file not found: {audio_path}")
# Déterminer le type MIME
media_type = "audio/wav" if request.format == "wav" else "audio/mpeg"
# Retourner le fichier pour téléchargement
logger.info(f"Speech generated: {audio_path}")
return FileResponse(
path=audio_path,
filename=f"speech.{request.format}",
media_type=media_type,
headers={
"Content-Disposition": f"attachment; filename=speech.{request.format}"
}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in generate_speech: {e}")
raise HTTPException(status_code=500, detail=f"Error executing tool generate_speech: {e}")
@router.post("/tools/generate-argument", response_model=GenerateResponse, summary="Générer un argument de débat")
async def mcp_generate_argument(request: GenerateRequest):
"""Génère un argument de débat pour un topic et une position donnés"""
try:
# Vérifier que le modèle est chargé
if not generate_model_manager.model_loaded:
raise HTTPException(status_code=503, detail="Generation model not loaded")
# Appeler directement le modèle (plus fiable que via MCP)
argument_text = generate_model_manager.generate(
topic=request.topic,
position=request.position
)
# Construire la réponse structurée
response = GenerateResponse(
topic=request.topic,
position=request.position,
argument=argument_text,
timestamp=datetime.now().isoformat()
)
logger.info(f"Argument generated for topic '{request.topic}' with position '{request.position}': {len(response.argument)} characters")
return response
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in generate_argument: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error executing tool generate_argument: {e}")
@router.post("/tools/extract-topic", response_model=ExtractTopicResponse, summary="Extraire un topic d'un texte")
async def mcp_extract_topic(request: ExtractTopicRequest):
"""Extrait un topic à partir d'un texte/argument donné"""
try:
# Vérifier que le service est initialisé
if not topic_service.initialized:
topic_service.initialize()
# Appeler directement le service (plus fiable que via MCP)
topic_text = topic_service.extract_topic(request.text)
# Construire la réponse structurée
response = ExtractTopicResponse(
text=request.text,
topic=topic_text,
timestamp=datetime.now().isoformat()
)
logger.info(f"Topic extracted from text '{request.text[:50]}...': {topic_text[:50]}...")
return response
except ValueError as e:
logger.error(f"Validation error in extract_topic: {str(e)}")
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
logger.error(f"Error in extract_topic: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error executing tool extract_topic: {e}")
@router.post("/tools/voice-chat", response_model=VoiceChatResponse, summary="Générer une réponse de chatbot vocal")
async def mcp_voice_chat(request: VoiceChatRequest):
"""Génère une réponse de chatbot vocal en anglais"""
try:
# Appeler directement le service (plus fiable que via MCP)
response_text = generate_chat_response(
user_input=request.user_input,
conversation_id=request.conversation_id
)
# Construire la réponse structurée
response = VoiceChatResponse(
user_input=request.user_input,
conversation_id=request.conversation_id,
response=response_text,
timestamp=datetime.now().isoformat()
)
logger.info(f"Voice chat response generated for input '{request.user_input[:50]}...': {response_text[:50]}...")
return response
except ValueError as e:
logger.error(f"Validation error in voice_chat: {str(e)}")
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
logger.error(f"Error in voice_chat: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error executing tool voice_chat: {e}")
@router.get("/tools/health-check", summary="Health check MCP (outil)")
async def mcp_tool_health_check() -> Dict[str, Any]:
"""Health check via l'outil MCP"""
try:
result = await mcp_server.call_tool("health_check", {})
# Gérer différents types de retours MCP
import json
if isinstance(result, dict):
# Si le résultat contient une clé "result" avec une liste de ContentBlock
if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
content_block = result["result"][0]
if hasattr(content_block, 'text') and content_block.text:
try:
return json.loads(content_block.text)
except json.JSONDecodeError:
return {"text": content_block.text}
return result
elif isinstance(result, (list, tuple)) and len(result) > 0:
if hasattr(result[0], 'text') and result[0].text:
try:
return json.loads(result[0].text)
except json.JSONDecodeError:
return {"text": result[0].text}
return {"result": result[0] if result else {}}
return {"result": result}
except Exception as e:
logger.error(f"Error in health_check tool: {e}")
raise HTTPException(status_code=500, detail=f"Error executing tool health_check: {e}")
|