| """Pydantic schemas for key-point matching prediction endpoints""" | |
| from pydantic import BaseModel, Field, ConfigDict | |
| from typing import List, Optional, Dict | |
| class PredictionRequest(BaseModel): | |
| """Request model for single key-point/argument prediction""" | |
| model_config = ConfigDict( | |
| json_schema_extra={ | |
| "example": { | |
| "argument": "Climate change is accelerating due to industrial emissions.", | |
| "key_point": "Human industry contributes significantly to global warming." | |
| } | |
| } | |
| ) | |
| argument: str = Field( | |
| ..., min_length=5, max_length=1000, | |
| description="The argument text to evaluate" | |
| ) | |
| key_point: str = Field( | |
| ..., min_length=5, max_length=500, | |
| description="The key point used for comparison" | |
| ) | |
| class PredictionResponse(BaseModel): | |
| """Response model for single prediction""" | |
| model_config = ConfigDict( | |
| json_schema_extra={ | |
| "example": { | |
| "prediction": 1, | |
| "confidence": 0.874, | |
| "label": "MATCH", | |
| "probabilities": { | |
| "match": 0.874, | |
| "no_match": 0.126 | |
| } | |
| } | |
| } | |
| ) | |
| prediction: int = Field(..., description="1 = match, 0 = no match") | |
| confidence: float = Field(..., ge=0.0, le=1.0, | |
| description="Confidence score of the prediction") | |
| label: str = Field(..., description="MATCH or NO_MATCH") | |
| probabilities: Dict[str, float] = Field( | |
| ..., description="Dictionary of class probabilities" | |
| ) | |
| class BatchPredictionRequest(BaseModel): | |
| """Request model for batch predictions""" | |
| model_config = ConfigDict( | |
| json_schema_extra={ | |
| "example": { | |
| "pairs": [ | |
| { | |
| "argument": "Schools should implement AI tools to support learning.", | |
| "key_point": "AI can improve student engagement." | |
| }, | |
| { | |
| "argument": "Governments must reduce plastic usage.", | |
| "key_point": "Plastic waste harms the environment." | |
| } | |
| ] | |
| } | |
| } | |
| ) | |
| pairs: List[PredictionRequest] = Field( | |
| ..., max_length=100, | |
| description="List of argument-keypoint pairs (max 100)" | |
| ) | |
| class BatchPredictionResponse(BaseModel): | |
| """Response model for batch key-point predictions""" | |
| predictions: List[PredictionResponse] | |
| total_processed: int = Field(..., description="Number of processed items") | |
| class HealthResponse(BaseModel): | |
| """Health check model for the API""" | |
| model_config = ConfigDict( | |
| json_schema_extra={ | |
| "example": { | |
| "status": "ok", | |
| "model_loaded": True, | |
| "device": "cuda" | |
| } | |
| } | |
| ) | |
| status: str = Field(..., description="API health status") | |
| model_loaded: bool = Field(..., description="Whether the model is loaded") | |
| device: str = Field(..., description="Device used for inference (cpu/cuda)") | |