malek-messaoudii
commited on
Commit
·
1d14fcd
1
Parent(s):
492be8b
Update label.py
Browse files- models/label.py +124 -12
models/label.py
CHANGED
|
@@ -32,19 +32,19 @@ class PredictionResponse(BaseModel):
|
|
| 32 |
"example": {
|
| 33 |
"prediction": 1,
|
| 34 |
"confidence": 0.874,
|
| 35 |
-
"label": "
|
| 36 |
"probabilities": {
|
| 37 |
-
"
|
| 38 |
-
"
|
| 39 |
}
|
| 40 |
}
|
| 41 |
}
|
| 42 |
)
|
| 43 |
|
| 44 |
-
prediction: int = Field(..., description="1 =
|
| 45 |
confidence: float = Field(..., ge=0.0, le=1.0,
|
| 46 |
description="Confidence score of the prediction")
|
| 47 |
-
label: str = Field(..., description="
|
| 48 |
probabilities: Dict[str, float] = Field(
|
| 49 |
..., description="Dictionary of class probabilities"
|
| 50 |
)
|
|
@@ -57,12 +57,24 @@ class BatchPredictionRequest(BaseModel):
|
|
| 57 |
"example": {
|
| 58 |
"pairs": [
|
| 59 |
{
|
| 60 |
-
"argument": "
|
| 61 |
-
"key_point": "
|
| 62 |
},
|
| 63 |
{
|
| 64 |
-
"argument": "
|
| 65 |
-
"key_point": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
}
|
| 67 |
]
|
| 68 |
}
|
|
@@ -77,8 +89,72 @@ class BatchPredictionRequest(BaseModel):
|
|
| 77 |
|
| 78 |
class BatchPredictionResponse(BaseModel):
|
| 79 |
"""Response model for batch key-point predictions"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
predictions: List[PredictionResponse]
|
| 81 |
total_processed: int = Field(..., description="Number of processed items")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
class HealthResponse(BaseModel):
|
|
@@ -86,13 +162,49 @@ class HealthResponse(BaseModel):
|
|
| 86 |
model_config = ConfigDict(
|
| 87 |
json_schema_extra={
|
| 88 |
"example": {
|
| 89 |
-
"status": "
|
| 90 |
"model_loaded": True,
|
| 91 |
-
"device": "
|
|
|
|
|
|
|
| 92 |
}
|
| 93 |
}
|
| 94 |
)
|
| 95 |
|
| 96 |
status: str = Field(..., description="API health status")
|
| 97 |
model_loaded: bool = Field(..., description="Whether the model is loaded")
|
| 98 |
-
device: str = Field(..., description="Device used for inference (cpu/cuda)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
"example": {
|
| 33 |
"prediction": 1,
|
| 34 |
"confidence": 0.874,
|
| 35 |
+
"label": "apparie",
|
| 36 |
"probabilities": {
|
| 37 |
+
"non_apparie": 0.126,
|
| 38 |
+
"apparie": 0.874
|
| 39 |
}
|
| 40 |
}
|
| 41 |
}
|
| 42 |
)
|
| 43 |
|
| 44 |
+
prediction: int = Field(..., description="1 = apparie, 0 = non_apparie")
|
| 45 |
confidence: float = Field(..., ge=0.0, le=1.0,
|
| 46 |
description="Confidence score of the prediction")
|
| 47 |
+
label: str = Field(..., description="apparie or non_apparie")
|
| 48 |
probabilities: Dict[str, float] = Field(
|
| 49 |
..., description="Dictionary of class probabilities"
|
| 50 |
)
|
|
|
|
| 57 |
"example": {
|
| 58 |
"pairs": [
|
| 59 |
{
|
| 60 |
+
"argument": "School uniforms limit students' self-expression and creativity",
|
| 61 |
+
"key_point": "Uniforms restrict personal freedom and individuality"
|
| 62 |
},
|
| 63 |
{
|
| 64 |
+
"argument": "Renewable energy creates more jobs than fossil fuel industries",
|
| 65 |
+
"key_point": "Green energy generates employment opportunities"
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"argument": "We should invest more in renewable energy to combat climate change",
|
| 69 |
+
"key_point": "Capital punishment violates human rights"
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"argument": "Online education provides flexibility and accessibility for all students",
|
| 73 |
+
"key_point": "Digital learning offers convenient and inclusive education"
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"argument": "Vaccinations are essential for public health and disease prevention",
|
| 77 |
+
"key_point": "Space exploration leads to scientific discoveries"
|
| 78 |
}
|
| 79 |
]
|
| 80 |
}
|
|
|
|
| 89 |
|
| 90 |
class BatchPredictionResponse(BaseModel):
|
| 91 |
"""Response model for batch key-point predictions"""
|
| 92 |
+
model_config = ConfigDict(
|
| 93 |
+
json_schema_extra={
|
| 94 |
+
"example": {
|
| 95 |
+
"predictions": [
|
| 96 |
+
{
|
| 97 |
+
"prediction": 1,
|
| 98 |
+
"confidence": 0.956,
|
| 99 |
+
"label": "apparie",
|
| 100 |
+
"probabilities": {
|
| 101 |
+
"non_apparie": 0.044,
|
| 102 |
+
"apparie": 0.956
|
| 103 |
+
}
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"prediction": 1,
|
| 107 |
+
"confidence": 0.892,
|
| 108 |
+
"label": "apparie",
|
| 109 |
+
"probabilities": {
|
| 110 |
+
"non_apparie": 0.108,
|
| 111 |
+
"apparie": 0.892
|
| 112 |
+
}
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"prediction": 0,
|
| 116 |
+
"confidence": 0.934,
|
| 117 |
+
"label": "non_apparie",
|
| 118 |
+
"probabilities": {
|
| 119 |
+
"non_apparie": 0.934,
|
| 120 |
+
"apparie": 0.066
|
| 121 |
+
}
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"prediction": 1,
|
| 125 |
+
"confidence": 0.878,
|
| 126 |
+
"label": "apparie",
|
| 127 |
+
"probabilities": {
|
| 128 |
+
"non_apparie": 0.122,
|
| 129 |
+
"apparie": 0.878
|
| 130 |
+
}
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"prediction": 0,
|
| 134 |
+
"confidence": 0.967,
|
| 135 |
+
"label": "non_apparie",
|
| 136 |
+
"probabilities": {
|
| 137 |
+
"non_apparie": 0.967,
|
| 138 |
+
"apparie": 0.033
|
| 139 |
+
}
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"total_processed": 5,
|
| 143 |
+
"summary": {
|
| 144 |
+
"total_apparie": 3,
|
| 145 |
+
"total_non_apparie": 2,
|
| 146 |
+
"average_confidence": 0.9254
|
| 147 |
+
}
|
| 148 |
+
}
|
| 149 |
+
}
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
predictions: List[PredictionResponse]
|
| 153 |
total_processed: int = Field(..., description="Number of processed items")
|
| 154 |
+
summary: Dict[str, float] = Field(
|
| 155 |
+
...,
|
| 156 |
+
description="Summary statistics of the batch prediction"
|
| 157 |
+
)
|
| 158 |
|
| 159 |
|
| 160 |
class HealthResponse(BaseModel):
|
|
|
|
| 162 |
model_config = ConfigDict(
|
| 163 |
json_schema_extra={
|
| 164 |
"example": {
|
| 165 |
+
"status": "healthy",
|
| 166 |
"model_loaded": True,
|
| 167 |
+
"device": "cpu",
|
| 168 |
+
"model_name": "NLP-Debater-Project/destlibert-keypoint-matching",
|
| 169 |
+
"timestamp": "2024-01-01T12:00:00Z"
|
| 170 |
}
|
| 171 |
}
|
| 172 |
)
|
| 173 |
|
| 174 |
status: str = Field(..., description="API health status")
|
| 175 |
model_loaded: bool = Field(..., description="Whether the model is loaded")
|
| 176 |
+
device: str = Field(..., description="Device used for inference (cpu/cuda)")
|
| 177 |
+
model_name: Optional[str] = Field(None, description="Name of the loaded model")
|
| 178 |
+
timestamp: str = Field(..., description="Timestamp of the health check")
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class ModelInfoResponse(BaseModel):
|
| 182 |
+
"""Detailed model information response"""
|
| 183 |
+
model_config = ConfigDict(
|
| 184 |
+
json_schema_extra={
|
| 185 |
+
"example": {
|
| 186 |
+
"model_name": "NLP-Debater-Project/destlibert-keypoint-matching",
|
| 187 |
+
"device": "cpu",
|
| 188 |
+
"max_length": 256,
|
| 189 |
+
"num_labels": 2,
|
| 190 |
+
"loaded": True,
|
| 191 |
+
"performance": {
|
| 192 |
+
"accuracy": 0.9285,
|
| 193 |
+
"f1_score": 0.8836,
|
| 194 |
+
"f1_apparie": 0.8113,
|
| 195 |
+
"f1_non_apparie": 0.9559
|
| 196 |
+
},
|
| 197 |
+
"description": "DistilBERT model for key point - argument semantic matching"
|
| 198 |
+
}
|
| 199 |
+
}
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
model_name: str
|
| 203 |
+
device: str
|
| 204 |
+
max_length: int
|
| 205 |
+
num_labels: int
|
| 206 |
+
loaded: bool
|
| 207 |
+
performance: Dict[str, float] = Field(
|
| 208 |
+
..., description="Model performance metrics"
|
| 209 |
+
)
|
| 210 |
+
description: str = Field(..., description="Model description")
|