Yassine Mhirsi
commited on
Commit
·
22ad0ba
1
Parent(s):
e97ac87
similarity
Browse files- routes/topic.py +20 -19
- services/topic_service.py +1 -1
- topic_similarity_google_example.py +182 -0
- topic_similarity_langchain_example.py +54 -0
routes/topic.py
CHANGED
|
@@ -4,7 +4,7 @@ from fastapi import APIRouter, HTTPException
|
|
| 4 |
from datetime import datetime
|
| 5 |
import logging
|
| 6 |
|
| 7 |
-
from services.
|
| 8 |
from models.topic import (
|
| 9 |
TopicRequest,
|
| 10 |
TopicResponse,
|
|
@@ -19,15 +19,16 @@ logger = logging.getLogger(__name__)
|
|
| 19 |
@router.post("/extract", response_model=TopicResponse, tags=["Topic Extraction"])
|
| 20 |
async def extract_topic(request: TopicRequest):
|
| 21 |
"""
|
| 22 |
-
|
| 23 |
|
| 24 |
-
- **text**: The input text or argument to
|
| 25 |
|
| 26 |
-
Returns the
|
| 27 |
"""
|
| 28 |
try:
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
# Build response
|
| 33 |
response = TopicResponse(
|
|
@@ -36,29 +37,29 @@ async def extract_topic(request: TopicRequest):
|
|
| 36 |
timestamp=datetime.now().isoformat()
|
| 37 |
)
|
| 38 |
|
| 39 |
-
logger.info(f"
|
| 40 |
return response
|
| 41 |
|
| 42 |
except ValueError as e:
|
| 43 |
logger.error(f"Validation error: {str(e)}")
|
| 44 |
raise HTTPException(status_code=400, detail=str(e))
|
| 45 |
except Exception as e:
|
| 46 |
-
logger.error(f"Topic
|
| 47 |
-
raise HTTPException(status_code=500, detail=f"Topic
|
| 48 |
|
| 49 |
|
| 50 |
@router.post("/batch-extract", response_model=BatchTopicResponse, tags=["Topic Extraction"])
|
| 51 |
async def batch_extract_topics(request: BatchTopicRequest):
|
| 52 |
"""
|
| 53 |
-
|
| 54 |
|
| 55 |
-
- **texts**: List of texts to
|
| 56 |
|
| 57 |
-
Returns
|
| 58 |
"""
|
| 59 |
try:
|
| 60 |
-
# Batch
|
| 61 |
-
topics =
|
| 62 |
|
| 63 |
# Build response
|
| 64 |
results = []
|
|
@@ -74,10 +75,10 @@ async def batch_extract_topics(request: BatchTopicRequest):
|
|
| 74 |
)
|
| 75 |
)
|
| 76 |
else:
|
| 77 |
-
# Skip failed
|
| 78 |
-
logger.warning(f"Failed to
|
| 79 |
|
| 80 |
-
logger.info(f"Batch topic
|
| 81 |
|
| 82 |
return BatchTopicResponse(
|
| 83 |
results=results,
|
|
@@ -89,6 +90,6 @@ async def batch_extract_topics(request: BatchTopicRequest):
|
|
| 89 |
logger.error(f"Validation error: {str(e)}")
|
| 90 |
raise HTTPException(status_code=400, detail=str(e))
|
| 91 |
except Exception as e:
|
| 92 |
-
logger.error(f"Batch topic
|
| 93 |
-
raise HTTPException(status_code=500, detail=f"Batch topic
|
| 94 |
|
|
|
|
| 4 |
from datetime import datetime
|
| 5 |
import logging
|
| 6 |
|
| 7 |
+
from services.topic_similarity_service import topic_similarity_service
|
| 8 |
from models.topic import (
|
| 9 |
TopicRequest,
|
| 10 |
TopicResponse,
|
|
|
|
| 19 |
@router.post("/extract", response_model=TopicResponse, tags=["Topic Extraction"])
|
| 20 |
async def extract_topic(request: TopicRequest):
|
| 21 |
"""
|
| 22 |
+
Find the most similar topic from predefined topics for a given text/argument
|
| 23 |
|
| 24 |
+
- **text**: The input text or argument to find similar topic for (5-5000 chars)
|
| 25 |
|
| 26 |
+
Returns the most similar topic from the predefined list
|
| 27 |
"""
|
| 28 |
try:
|
| 29 |
+
# Find most similar topic
|
| 30 |
+
result = topic_similarity_service.find_most_similar_topic(request.text)
|
| 31 |
+
topic = result["topic"]
|
| 32 |
|
| 33 |
# Build response
|
| 34 |
response = TopicResponse(
|
|
|
|
| 37 |
timestamp=datetime.now().isoformat()
|
| 38 |
)
|
| 39 |
|
| 40 |
+
logger.info(f"Most similar topic found: {topic[:50]}... (similarity: {result['similarity']:.4f})")
|
| 41 |
return response
|
| 42 |
|
| 43 |
except ValueError as e:
|
| 44 |
logger.error(f"Validation error: {str(e)}")
|
| 45 |
raise HTTPException(status_code=400, detail=str(e))
|
| 46 |
except Exception as e:
|
| 47 |
+
logger.error(f"Topic similarity error: {str(e)}")
|
| 48 |
+
raise HTTPException(status_code=500, detail=f"Topic similarity search failed: {str(e)}")
|
| 49 |
|
| 50 |
|
| 51 |
@router.post("/batch-extract", response_model=BatchTopicResponse, tags=["Topic Extraction"])
|
| 52 |
async def batch_extract_topics(request: BatchTopicRequest):
|
| 53 |
"""
|
| 54 |
+
Find the most similar topics from predefined topics for multiple texts/arguments
|
| 55 |
|
| 56 |
+
- **texts**: List of texts to find similar topics for (max 50)
|
| 57 |
|
| 58 |
+
Returns the most similar topics from the predefined list for all texts
|
| 59 |
"""
|
| 60 |
try:
|
| 61 |
+
# Batch find similar topics
|
| 62 |
+
topics = topic_similarity_service.batch_find_similar_topics(request.texts)
|
| 63 |
|
| 64 |
# Build response
|
| 65 |
results = []
|
|
|
|
| 75 |
)
|
| 76 |
)
|
| 77 |
else:
|
| 78 |
+
# Skip failed searches or handle as needed
|
| 79 |
+
logger.warning(f"Failed to find similar topic for text at index {i}")
|
| 80 |
|
| 81 |
+
logger.info(f"Batch topic similarity search completed: {len(results)}/{len(request.texts)} successful")
|
| 82 |
|
| 83 |
return BatchTopicResponse(
|
| 84 |
results=results,
|
|
|
|
| 90 |
logger.error(f"Validation error: {str(e)}")
|
| 91 |
raise HTTPException(status_code=400, detail=str(e))
|
| 92 |
except Exception as e:
|
| 93 |
+
logger.error(f"Batch topic similarity error: {str(e)}")
|
| 94 |
+
raise HTTPException(status_code=500, detail=f"Batch topic similarity search failed: {str(e)}")
|
| 95 |
|
services/topic_service.py
CHANGED
|
@@ -22,7 +22,7 @@ class TopicService:
|
|
| 22 |
|
| 23 |
def __init__(self):
|
| 24 |
self.llm = None
|
| 25 |
-
self.model_name = "openai/gpt-oss-safeguard-
|
| 26 |
self.initialized = False
|
| 27 |
|
| 28 |
def initialize(self, model_name: Optional[str] = None):
|
|
|
|
| 22 |
|
| 23 |
def __init__(self):
|
| 24 |
self.llm = None
|
| 25 |
+
self.model_name = "openai/gpt-oss-safeguard-20b" # another model meta-llama/llama-4-scout-17b-16e-instruct
|
| 26 |
self.initialized = False
|
| 27 |
|
| 28 |
def initialize(self, model_name: Optional[str] = None):
|
topic_similarity_google_example.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datetime import datetime
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import hashlib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
from google import genai
|
| 8 |
+
from google.genai import types
|
| 9 |
+
import numpy as np
|
| 10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 11 |
+
|
| 12 |
+
# Load environment variables from .env file
|
| 13 |
+
load_dotenv()
|
| 14 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
| 15 |
+
if not GOOGLE_API_KEY:
|
| 16 |
+
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
|
| 17 |
+
|
| 18 |
+
# Get the path to topics.json relative to this file
|
| 19 |
+
TOPICS_FILE = Path(__file__).parent.parent / "data" / "topics.json"
|
| 20 |
+
# Cache file for topic embeddings
|
| 21 |
+
EMBEDDINGS_CACHE_FILE = Path(__file__).parent.parent / "data" / "topic_embeddings_cache.json"
|
| 22 |
+
|
| 23 |
+
# Create a Google Generative AI client with the API key
|
| 24 |
+
client = genai.Client(api_key=GOOGLE_API_KEY)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def load_topics():
|
| 28 |
+
"""Load topics from topics.json file."""
|
| 29 |
+
with open(TOPICS_FILE, 'r', encoding='utf-8') as f:
|
| 30 |
+
data = json.load(f)
|
| 31 |
+
return data.get("topics", [])
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_topics_hash(topics):
|
| 35 |
+
"""Generate a hash of the topics list to verify cache validity."""
|
| 36 |
+
topics_str = json.dumps(topics, sort_keys=True)
|
| 37 |
+
return hashlib.md5(topics_str.encode('utf-8')).hexdigest()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def load_cached_embeddings():
|
| 41 |
+
"""Load cached topic embeddings if they exist and are valid."""
|
| 42 |
+
if not EMBEDDINGS_CACHE_FILE.exists():
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
with open(EMBEDDINGS_CACHE_FILE, 'r', encoding='utf-8') as f:
|
| 47 |
+
cache_data = json.load(f)
|
| 48 |
+
|
| 49 |
+
# Verify cache is valid by checking topics hash
|
| 50 |
+
current_topics = load_topics()
|
| 51 |
+
current_hash = get_topics_hash(current_topics)
|
| 52 |
+
|
| 53 |
+
if cache_data.get("topics_hash") == current_hash:
|
| 54 |
+
# Convert list embeddings back to numpy arrays
|
| 55 |
+
embeddings = [np.array(emb) for emb in cache_data.get("embeddings", [])]
|
| 56 |
+
return embeddings
|
| 57 |
+
else:
|
| 58 |
+
# Topics have changed, cache is invalid
|
| 59 |
+
return None
|
| 60 |
+
except (json.JSONDecodeError, KeyError, ValueError) as e:
|
| 61 |
+
# Cache file is corrupted or invalid format
|
| 62 |
+
print(f"Warning: Could not load cached embeddings: {e}")
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def save_cached_embeddings(embeddings, topics):
|
| 67 |
+
"""Save topic embeddings to cache file."""
|
| 68 |
+
topics_hash = get_topics_hash(topics)
|
| 69 |
+
|
| 70 |
+
# Convert numpy arrays to lists for JSON serialization
|
| 71 |
+
embeddings_list = [emb.tolist() for emb in embeddings]
|
| 72 |
+
|
| 73 |
+
cache_data = {
|
| 74 |
+
"topics_hash": topics_hash,
|
| 75 |
+
"embeddings": embeddings_list,
|
| 76 |
+
"model": "models/text-embedding-004",
|
| 77 |
+
"cached_at": datetime.now().isoformat()
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
with open(EMBEDDINGS_CACHE_FILE, 'w', encoding='utf-8') as f:
|
| 82 |
+
json.dump(cache_data, f, indent=2)
|
| 83 |
+
print(f"Cached {len(embeddings)} topic embeddings to {EMBEDDINGS_CACHE_FILE}")
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Warning: Could not save cached embeddings: {e}")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def get_topic_embeddings():
|
| 89 |
+
"""
|
| 90 |
+
Get topic embeddings, loading from cache if available, otherwise generating and caching them.
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
numpy.ndarray: Array of topic embeddings
|
| 94 |
+
"""
|
| 95 |
+
topics = load_topics()
|
| 96 |
+
|
| 97 |
+
# Try to load from cache first
|
| 98 |
+
cached_embeddings = load_cached_embeddings()
|
| 99 |
+
if cached_embeddings is not None:
|
| 100 |
+
print(f"Loaded {len(cached_embeddings)} topic embeddings from cache")
|
| 101 |
+
return np.array(cached_embeddings)
|
| 102 |
+
|
| 103 |
+
# Cache miss or invalid - generate embeddings
|
| 104 |
+
print(f"Generating embeddings for {len(topics)} topics (this may take a moment)...")
|
| 105 |
+
embedding_response = client.models.embed_content(
|
| 106 |
+
model="models/text-embedding-004",
|
| 107 |
+
contents=topics,
|
| 108 |
+
config=types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY")
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
if not hasattr(embedding_response, "embeddings") or embedding_response.embeddings is None:
|
| 112 |
+
raise RuntimeError("Embedding API did not return embeddings.")
|
| 113 |
+
|
| 114 |
+
embeddings = [np.array(e.values) for e in embedding_response.embeddings]
|
| 115 |
+
|
| 116 |
+
# Save to cache for future use
|
| 117 |
+
save_cached_embeddings(embeddings, topics)
|
| 118 |
+
|
| 119 |
+
return np.array(embeddings)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def find_most_similar_topic(input_text: str):
|
| 123 |
+
"""
|
| 124 |
+
Compare a single input text to all topics and return the highest cosine similarity.
|
| 125 |
+
Uses cached topic embeddings to avoid re-embedding topics on every call.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
input_text: The text to compare against topics
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
dict: Contains 'topic', 'similarity', and 'index' of the most similar topic
|
| 132 |
+
"""
|
| 133 |
+
# Load topics from JSON file
|
| 134 |
+
topics = load_topics()
|
| 135 |
+
|
| 136 |
+
if not topics:
|
| 137 |
+
raise ValueError("No topics found in topics.json")
|
| 138 |
+
|
| 139 |
+
# Get topic embeddings (from cache or generate)
|
| 140 |
+
topic_embeddings = get_topic_embeddings()
|
| 141 |
+
|
| 142 |
+
# Only embed the input text (much faster!)
|
| 143 |
+
embedding_response = client.models.embed_content(
|
| 144 |
+
model="models/text-embedding-004",
|
| 145 |
+
contents=[input_text],
|
| 146 |
+
config=types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY")
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
if not hasattr(embedding_response, "embeddings") or embedding_response.embeddings is None:
|
| 150 |
+
raise RuntimeError("Embedding API did not return embeddings.")
|
| 151 |
+
|
| 152 |
+
# Extract input embedding
|
| 153 |
+
input_embedding = np.array(embedding_response.embeddings[0].values).reshape(1, -1)
|
| 154 |
+
|
| 155 |
+
# Calculate cosine similarity between input and each topic
|
| 156 |
+
similarities = cosine_similarity(input_embedding, topic_embeddings)[0]
|
| 157 |
+
|
| 158 |
+
# Find the highest similarity
|
| 159 |
+
max_index = np.argmax(similarities)
|
| 160 |
+
max_similarity = similarities[max_index]
|
| 161 |
+
most_similar_topic = topics[max_index]
|
| 162 |
+
|
| 163 |
+
return {
|
| 164 |
+
"topic": most_similar_topic,
|
| 165 |
+
"similarity": float(max_similarity),
|
| 166 |
+
"index": int(max_index)
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
if __name__ == "__main__":
|
| 171 |
+
# Example usage
|
| 172 |
+
#start time
|
| 173 |
+
start_time = datetime.now()
|
| 174 |
+
test_text = "we should abandon the use of school uniform since one should be allowed to express their individuality by the clothes they were."
|
| 175 |
+
result = find_most_similar_topic(test_text)
|
| 176 |
+
print(f"Input text: '{test_text}'")
|
| 177 |
+
print(f"Most similar topic: '{result['topic']}'")
|
| 178 |
+
print(f"Cosine similarity: {result['similarity']:.4f}%")
|
| 179 |
+
#end time
|
| 180 |
+
end_time = datetime.now()
|
| 181 |
+
#in seconds
|
| 182 |
+
print(f"Time taken: {(end_time - start_time).total_seconds()} seconds")
|
topic_similarity_langchain_example.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
from langchain_community.vectorstores import FAISS
|
| 8 |
+
from langchain_core.example_selectors import (
|
| 9 |
+
SemanticSimilarityExampleSelector,
|
| 10 |
+
)
|
| 11 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 12 |
+
|
| 13 |
+
# Load topics from data file
|
| 14 |
+
with open(
|
| 15 |
+
file="data/topics.json",
|
| 16 |
+
encoding="utf-8"
|
| 17 |
+
) as f:
|
| 18 |
+
data = json.load(f)
|
| 19 |
+
|
| 20 |
+
# Make sure each example is a dict with "topic" key (wrap as dict if plain string)
|
| 21 |
+
def format_examples(examples):
|
| 22 |
+
formatted = []
|
| 23 |
+
for ex in examples:
|
| 24 |
+
if isinstance(ex, str):
|
| 25 |
+
formatted.append({"topic": ex})
|
| 26 |
+
elif isinstance(ex, dict) and "topic" in ex:
|
| 27 |
+
formatted.append({"topic": ex["topic"]})
|
| 28 |
+
else:
|
| 29 |
+
formatted.append({"topic": str(ex)})
|
| 30 |
+
return formatted
|
| 31 |
+
|
| 32 |
+
# topics.json should have a top-level "topics" key
|
| 33 |
+
examples = data.get("topics", [])
|
| 34 |
+
formatted_examples = format_examples(examples)
|
| 35 |
+
|
| 36 |
+
start_time = datetime.now()
|
| 37 |
+
example_selector = SemanticSimilarityExampleSelector.from_examples(
|
| 38 |
+
examples=formatted_examples,
|
| 39 |
+
embeddings=GoogleGenerativeAIEmbeddings(
|
| 40 |
+
model="models/text-embedding-004",
|
| 41 |
+
api_key=os.getenv("GOOGLE_API_KEY")
|
| 42 |
+
),
|
| 43 |
+
vectorstore_cls=FAISS,
|
| 44 |
+
k=1,
|
| 45 |
+
input_keys=["topic"],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Example call to selector (for demonstration; remove in production)
|
| 49 |
+
result = example_selector.select_examples(
|
| 50 |
+
{"topic": "people who are terminally ill and suffering greatly should have the right to end their own life if they so desire."}
|
| 51 |
+
)
|
| 52 |
+
print(result)
|
| 53 |
+
end_time = datetime.now()
|
| 54 |
+
print(f"Time taken: {(end_time - start_time).total_seconds()} seconds")
|