diff --git "a/kpa-t5-improved.ipynb" "b/kpa-t5-improved.ipynb" deleted file mode 100644--- "a/kpa-t5-improved.ipynb" +++ /dev/null @@ -1,11068 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "f2b60989", - "metadata": { - "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", - "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5", - "execution": { - "iopub.execute_input": "2025-12-11T04:05:28.652668Z", - "iopub.status.busy": "2025-12-11T04:05:28.652028Z", - "iopub.status.idle": "2025-12-11T04:05:30.226465Z", - "shell.execute_reply": "2025-12-11T04:05:30.225650Z" - }, - "papermill": { - "duration": 1.582329, - "end_time": "2025-12-11T04:05:30.227781", - "exception": false, - "start_time": "2025-12-11T04:05:28.645452", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/kaggle/input/ibm-debator-kpa/combined_argkp.csv\n" - ] - } - ], - "source": [ - "# This Python 3 environment comes with many helpful analytics libraries installed\n", - "# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n", - "# For example, here's several helpful packages to load\n", - "\n", - "import numpy as np # linear algebra\n", - "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", - "\n", - "# Input data files are available in the read-only \"../input/\" directory\n", - "# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n", - "\n", - "import os\n", - "for dirname, _, filenames in os.walk('/kaggle/input'):\n", - " for filename in filenames:\n", - " print(os.path.join(dirname, filename))\n", - "\n", - "# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n", - "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "6c807ffd", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:05:30.237671Z", - "iopub.status.busy": "2025-12-11T04:05:30.237059Z", - "iopub.status.idle": "2025-12-11T04:07:31.218492Z", - "shell.execute_reply": "2025-12-11T04:07:31.217615Z" - }, - "papermill": { - "duration": 120.988001, - "end_time": "2025-12-11T04:07:31.220119", - "exception": false, - "start_time": "2025-12-11T04:05:30.232118", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m162.1/162.1 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n", - "bigframes 2.12.0 requires google-cloud-bigquery-storage<3.0.0,>=2.30.0, which is not installed.\r\n", - "opentelemetry-proto 1.37.0 requires protobuf<7.0,>=5.0, but you have protobuf 3.20.3 which is incompatible.\r\n", - "onnx 1.18.0 requires protobuf>=4.25.1, but you have protobuf 3.20.3 which is incompatible.\r\n", - "a2a-sdk 0.3.10 requires protobuf>=5.29.5, but you have protobuf 3.20.3 which is incompatible.\r\n", - "ray 2.51.1 requires click!=8.3.0,>=7.0, but you have click 8.3.0 which is incompatible.\r\n", - "bigframes 2.12.0 requires rich<14,>=12.4.4, but you have rich 14.2.0 which is incompatible.\r\n", - "tensorflow-metadata 1.17.2 requires protobuf>=4.25.2; python_version >= \"3.11\", but you have protobuf 3.20.3 which is incompatible.\r\n", - "pydrive2 1.21.3 requires cryptography<44, but you have cryptography 46.0.3 which is incompatible.\r\n", - "pydrive2 1.21.3 requires pyOpenSSL<=24.2.1,>=19.1.0, but you have pyopenssl 25.3.0 which is incompatible.\r\n", - "ydf 0.13.0 requires protobuf<7.0.0,>=5.29.1, but you have protobuf 3.20.3 which is incompatible.\r\n", - "grpcio-status 1.71.2 requires protobuf<6.0dev,>=5.26.1, but you have protobuf 3.20.3 which is incompatible.\r\n", - "gcsfs 2025.3.0 requires fsspec==2025.3.0, but you have fsspec 2025.10.0 which is incompatible.\u001b[0m\u001b[31m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.7/130.7 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.5/8.5 MB\u001b[0m \u001b[31m77.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m93.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n", - "sentence-transformers 4.1.0 requires transformers<5.0.0,>=4.41.0, but you have transformers 4.38.2 which is incompatible.\u001b[0m\u001b[31m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m70.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m81.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m42.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m69.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n", - "libcugraph-cu12 25.6.0 requires libraft-cu12==25.6.*, but you have libraft-cu12 25.2.0 which is incompatible.\r\n", - "pylibcugraph-cu12 25.6.0 requires pylibraft-cu12==25.6.*, but you have pylibraft-cu12 25.2.0 which is incompatible.\r\n", - "pylibcugraph-cu12 25.6.0 requires rmm-cu12==25.6.*, but you have rmm-cu12 25.2.0 which is incompatible.\u001b[0m\u001b[31m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m47.7/47.7 MB\u001b[0m \u001b[31m41.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n", - "bigframes 2.12.0 requires google-cloud-bigquery-storage<3.0.0,>=2.30.0, which is not installed.\r\n", - "pylibcudf-cu12 25.2.2 requires pyarrow<20.0.0a0,>=14.0.0; platform_machine == \"x86_64\", but you have pyarrow 22.0.0 which is incompatible.\r\n", - "cudf-cu12 25.2.2 requires pyarrow<20.0.0a0,>=14.0.0; platform_machine == \"x86_64\", but you have pyarrow 22.0.0 which is incompatible.\r\n", - "bigframes 2.12.0 requires rich<14,>=12.4.4, but you have rich 14.2.0 which is incompatible.\r\n", - "cudf-polars-cu12 25.6.0 requires pylibcudf-cu12==25.6.*, but you have pylibcudf-cu12 25.2.2 which is incompatible.\u001b[0m\u001b[31m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.1/61.1 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n", - "\u001b[?25h" - ] - } - ], - "source": [ - "!pip install -q protobuf==3.20.*\n", - "!pip install -q transformers==4.38.2\n", - "!pip install -q sentencepiece\n", - "!pip install -q accelerate\n", - "!pip install -q datasets\n", - "!pip install -q evaluate\n", - "!pip install transformers datasets evaluate rouge-score bert-score -q" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "ae1f7913", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:07:31.283633Z", - "iopub.status.busy": "2025-12-11T04:07:31.282784Z", - "iopub.status.idle": "2025-12-11T04:07:42.792505Z", - "shell.execute_reply": "2025-12-11T04:07:42.791521Z" - }, - "papermill": { - "duration": 11.542119, - "end_time": "2025-12-11T04:07:42.793870", - "exception": false, - "start_time": "2025-12-11T04:07:31.251751", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "✅ All dependencies imported successfully!\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 1: INSTALL AND IMPORT DEPENDENCIES\n", - "# ============================================================================\n", - "\n", - "# Uncomment if running on Kaggle and packages are missing\n", - "# !pip install transformers datasets evaluate rouge-score bert-score -q\n", - "\n", - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "from sklearn.model_selection import train_test_split\n", - "import torch\n", - "from torch.utils.data import Dataset, DataLoader\n", - "from transformers import (\n", - " T5Tokenizer, \n", - " T5ForConditionalGeneration,\n", - " AdamW,\n", - " get_linear_schedule_with_warmup\n", - ")\n", - "from tqdm.auto import tqdm\n", - "import random\n", - "import warnings\n", - "from collections import Counter\n", - "import re\n", - "\n", - "warnings.filterwarnings('ignore')\n", - "\n", - "# Evaluation metrics\n", - "try:\n", - " from rouge_score import rouge_scorer\n", - " from bert_score import score as bert_score\n", - " ROUGE_AVAILABLE = True\n", - " BERT_SCORE_AVAILABLE = True\n", - "except:\n", - " print(\"⚠️ ROUGE or BERTScore not available. Install with: pip install rouge-score bert-score\")\n", - " ROUGE_AVAILABLE = False\n", - " BERT_SCORE_AVAILABLE = False\n", - "\n", - "print(\"✅ All dependencies imported successfully!\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "49eed528", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:07:42.858417Z", - "iopub.status.busy": "2025-12-11T04:07:42.857428Z", - "iopub.status.idle": "2025-12-11T04:07:42.949123Z", - "shell.execute_reply": "2025-12-11T04:07:42.948148Z" - }, - "papermill": { - "duration": 0.12516, - "end_time": "2025-12-11T04:07:42.950447", - "exception": false, - "start_time": "2025-12-11T04:07:42.825287", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "🖥️ Using device: cuda\n", - " GPU: Tesla P100-PCIE-16GB\n", - " Memory: 17.06 GB\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 2: SETUP AND CONFIGURATION\n", - "# ============================================================================\n", - "\n", - "# Set random seeds for reproducibility\n", - "def set_seed(seed=42):\n", - " random.seed(seed)\n", - " np.random.seed(seed)\n", - " torch.manual_seed(seed)\n", - " if torch.cuda.is_available():\n", - " torch.cuda.manual_seed_all(seed)\n", - "\n", - "set_seed(42)\n", - "\n", - "# Configuration\n", - "class Config:\n", - " MODEL_NAME = 't5-base' # Using base model for better quality\n", - " BATCH_SIZE = 8 # Reduced for larger model\n", - " EPOCHS = 5 # More epochs for better learning\n", - " LEARNING_RATE = 3e-5 # Lower learning rate for stability\n", - " MAX_INPUT_LENGTH = 128\n", - " MAX_TARGET_LENGTH = 256\n", - " AUGMENTATION_RATIO = 0.9 # Better balance\n", - " VAL_SPLIT = 0.15\n", - " TEST_SPLIT = 0.1\n", - " MIN_ARGUMENT_LENGTH = 50 # Filter short arguments (characters)\n", - " MIN_WORD_COUNT = 8 # Minimum words in argument\n", - " \n", - "config = Config()\n", - "\n", - "# Check device\n", - "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", - "print(f\"🖥️ Using device: {device}\")\n", - "if torch.cuda.is_available():\n", - " print(f\" GPU: {torch.cuda.get_device_name(0)}\")\n", - " print(f\" Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "68cd8a9b", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:07:43.014687Z", - "iopub.status.busy": "2025-12-11T04:07:43.014161Z", - "iopub.status.idle": "2025-12-11T04:07:44.091705Z", - "shell.execute_reply": "2025-12-11T04:07:44.090770Z" - }, - "papermill": { - "duration": 1.11139, - "end_time": "2025-12-11T04:07:44.092979", - "exception": false, - "start_time": "2025-12-11T04:07:42.981589", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "📂 Loading dataset...\n", - " Removed 0 rows with missing values\n", - " After length filter: 34762 samples\n", - " After quality filter: 34726 samples\n", - " Total removed: 2074 low-quality arguments\n", - "✅ Loaded 34726 high-quality samples\n", - "\n", - "📊 Dataset Statistics:\n", - " Total samples: 34726\n", - " Unique topics: 41\n", - " Average argument length: 111 characters\n", - "\n", - "📊 Stance Distribution:\n", - " Positive: 18816 (54.2%)\n", - " Negative: 15910 (45.8%)\n", - "\n", - "📊 Top 5 Topics:\n", - "topic\n", - "We should legalize cannabis 1226\n", - "The USA is a good country to live in 1151\n", - "We should legalize sex selection 1107\n", - "The vow of celibacy should be abandoned 1056\n", - "We should ban the use of child actors 1032\n", - "Name: count, dtype: int64\n", - "\n", - "📋 Sample Data:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
topicstanceargument
0Assisted suicide should be a criminal offencenegative`people reach their limit when it comes to the...
1Assisted suicide should be a criminal offencepositivea cure or treatment may be discovered shortly ...
2Assisted suicide should be a criminal offencepositivea cure or treatment may be discovered shortly ...
3Assisted suicide should be a criminal offencepositivea cure or treatment may be discovered shortly ...
4Assisted suicide should be a criminal offencepositivea cure or treatment may be discovered shortly ...
\n", - "
" - ], - "text/plain": [ - " topic stance \\\n", - "0 Assisted suicide should be a criminal offence negative \n", - "1 Assisted suicide should be a criminal offence positive \n", - "2 Assisted suicide should be a criminal offence positive \n", - "3 Assisted suicide should be a criminal offence positive \n", - "4 Assisted suicide should be a criminal offence positive \n", - "\n", - " argument \n", - "0 `people reach their limit when it comes to the... \n", - "1 a cure or treatment may be discovered shortly ... \n", - "2 a cure or treatment may be discovered shortly ... \n", - "3 a cure or treatment may be discovered shortly ... \n", - "4 a cure or treatment may be discovered shortly ... " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 3: DATA LOADING AND EXPLORATION\n", - "# ============================================================================\n", - "\n", - "def load_and_preprocess_data(file_path):\n", - " \"\"\"\n", - " Load CSV and extract only topic, stance, and argument columns\n", - " Convert stance to readable format (positive/negative)\n", - " Filter out low-quality arguments\n", - " \"\"\"\n", - " print(\"📂 Loading dataset...\")\n", - " df = pd.read_csv(file_path)\n", - " \n", - " # Keep only required columns\n", - " df = df[['topic', 'stance', 'argument']].copy()\n", - " \n", - " # Remove rows with missing values\n", - " original_len = len(df)\n", - " df = df.dropna()\n", - " print(f\" Removed {original_len - len(df)} rows with missing values\")\n", - " \n", - " # Filter out very short arguments (likely low quality)\n", - " df = df[df['argument'].str.len() >= config.MIN_ARGUMENT_LENGTH].copy()\n", - " df = df[df['argument'].str.split().str.len() >= config.MIN_WORD_COUNT].copy()\n", - " print(f\" After length filter: {len(df)} samples\")\n", - " \n", - " # Remove arguments that just repeat the topic\n", - " def is_low_quality(row):\n", - " topic_words = set(row['topic'].lower().split())\n", - " arg_words = set(row['argument'].lower().split())\n", - " overlap = len(topic_words & arg_words) / max(len(arg_words), 1)\n", - " # If more than 70% of argument words are from topic, it's likely low quality\n", - " if overlap > 0.7:\n", - " return True\n", - " \n", - " # Filter out arguments with common filler patterns\n", - " arg_lower = row['argument'].lower()\n", - " \n", - " # Remove arguments that are too generic or illogical\n", - " bad_patterns = [\n", - " 'waste of time and money',\n", - " 'waste of money and time',\n", - " 'good thing',\n", - " 'bad thing',\n", - " 'for example',\n", - " 'etc. etc.',\n", - " 'and so on',\n", - " ]\n", - " \n", - " # Count how many bad patterns appear\n", - " pattern_count = sum(1 for pattern in bad_patterns if pattern in arg_lower)\n", - " if pattern_count >= 2: # If 2+ generic patterns, likely low quality\n", - " return True\n", - " \n", - " return False\n", - " \n", - " df = df[~df.apply(is_low_quality, axis=1)].copy()\n", - " print(f\" After quality filter: {len(df)} samples\")\n", - " print(f\" Total removed: {original_len - len(df)} low-quality arguments\")\n", - " \n", - " # Convert stance from 1/-1 to positive/negative\n", - " df['stance'] = df['stance'].apply(lambda x: 'positive' if x == 1 else 'negative')\n", - " \n", - " print(f\"✅ Loaded {len(df)} high-quality samples\")\n", - " \n", - " return df\n", - "\n", - "# Load the data\n", - "df = load_and_preprocess_data('/kaggle/input/ibm-debator-kpa/combined_argkp.csv')\n", - "\n", - "# Display basic statistics\n", - "print(\"\\n📊 Dataset Statistics:\")\n", - "print(f\" Total samples: {len(df)}\")\n", - "print(f\" Unique topics: {df['topic'].nunique()}\")\n", - "print(f\" Average argument length: {df['argument'].str.len().mean():.0f} characters\")\n", - "\n", - "print(\"\\n📊 Stance Distribution:\")\n", - "stance_counts = df['stance'].value_counts()\n", - "for stance, count in stance_counts.items():\n", - " percentage = (count / len(df)) * 100\n", - " print(f\" {stance.capitalize()}: {count} ({percentage:.1f}%)\")\n", - "\n", - "print(\"\\n📊 Top 5 Topics:\")\n", - "print(df['topic'].value_counts().head())\n", - "\n", - "# Display sample data\n", - "print(\"\\n📋 Sample Data:\")\n", - "display(df.head())\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "19562a17", - "metadata": { - "papermill": { - "duration": 0.03176, - "end_time": "2025-12-11T04:07:44.156596", - "exception": false, - "start_time": "2025-12-11T04:07:44.124836", - "status": "completed" - }, - "tags": [] - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "220c9b00", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:07:44.222264Z", - "iopub.status.busy": "2025-12-11T04:07:44.221645Z", - "iopub.status.idle": "2025-12-11T04:07:44.845490Z", - "shell.execute_reply": "2025-12-11T04:07:44.844519Z" - }, - "papermill": { - "duration": 0.658442, - "end_time": "2025-12-11T04:07:44.846871", - "exception": false, - "start_time": "2025-12-11T04:07:44.188429", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "🔄 Balancing dataset with data augmentation...\n", - " Majority class (positive): 18816\n", - " Minority class (negative): 15910\n", - " Target minority count: 16934\n", - " Generating 1024 augmented samples...\n", - "✅ Balanced dataset created with 35750 samples\n", - "📊 New stance distribution:\n", - " Positive: 18816 (52.6%)\n", - " Negative: 16934 (47.4%)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ50lEQVR4nO3dd3gVZf7+8fuENFoakKYRIiC9SwlIL6EsiuJKLwpYFgRhQRZXMcAqCgKygiJfkYCCIhZEYIEQRVpEWkBQsghBVAhIPYYSIMzvD36ZzZAEEkjmpLxf13WuKzPPMzPPTE6YD/eZM+MwDMMQAAAAAAAAYCM3Vw8AAAAAAAAARQ+hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFFCILVq0SI0aNVKpUqXkcDjkcDhUt25dVw8LyNT69evN96nD4dDhw4ddPSQAQBFAvYT8LDo62lIfAYUNoRRggxv/s532KlasmHx9fVWnTh0NGzZM//3vf3Ntm2vWrFHfvn21bds2nT9/PtfW62opKSkqU6aM5Tjef//9rh5WodGqVSvzuA4cODDX1kvgBACwQ82aNS3nm5CQEF29ejXL/reqlwpKIJCUlCQPDw/LWB999FFXD6vQqFChgnlco6Kicm29BeX9BeQld1cPACjKrl27JqfTqT179mjPnj2aP3++1q9fr4YNG97xuj/++GPz54CAAA0bNkylS5dWYGDgHa/blZYvX67Tp09b5u3YsUN79+5VzZo1XTQq5IaKFStq6tSp5nRAQIALRwMAKGi2bdumffv2WeYlJSVp9erV+stf/pLpMoWlXvrggw8yhG9fffWVTp8+zfm0gGvYsKGlPgIKG0IpwAV69Oih+++/X1evXtX333+vL774QpJ04cIFvfLKK1q2bNkdb+OXX34xf+7cubMmTJhwx+u8FafTKR8fnzzdRnR0dJbz33jjjTzdNvJWWFiYRo8e7ephAAAKqJvVCFmFUq6ol7IjpzXVggULMsy7fPmyFi9erGHDhuXm0GCzGjVqqEaNGq4eBpB3DAB57ptvvjEkma/58+db2mvWrGm2ValSJcPyqampxsKFC4327dsb5cqVMzw8PIyyZcsanTt3NlauXGnp+/LLL1u2dePr5ZdfNvteuHDBmD59utG0aVPDz8/P8PDwMAIDA41OnToZS5YsueV+HDhwwJg6dapRtWpVw9PT03jooYdua8zZdfToUaNYsWLm9u+77z7z56CgIOPKlSsZlkl/PMqXL29pS0xMtOzPN998Y2k/efKk8fTTTxtBQUGGt7e30aBBA+OTTz7JcBwSExPNZQYMGGDOb9mypZGQkGB069bN8PHxMfz9/Y1evXoZSUlJhmEYxrp164wHHnjAKF68uFG2bFnjiSeeME6fPp3pvm/YsMHo0aOHERYWZnh6ehqlS5c2mjRpYsyaNcu4fPlyhv43vt/Wrl1rtGrVyihZsqRRqlQpo2PHjsbevXszPU5ZvdL285tvvjGeeOIJo169ekZwcLDh6elpFC9e3KhYsaIxcOBAY8+ePVmOJbPXgAEDzPVmdVwNwzCuXr1qzJs3z2jTpo1RpkwZw93d3QgICDBatWplzJ07N8PvP7Pf70cffWQ0atTIKF68uOHn52c8+uijxpEjRzI95gCAguPSpUuGv79/pjWCp6encfLkSUv/W5330p/Ps1NTGcadn6uXLVtmREREGCVLljR8fX2zve/ff/+9ZV3p971BgwaZLnNjvZLerc7Hhw8fNnr16mUEBAQYJUuWNJo3b27ExsYa8+fPtyyXXsuWLS3HduvWrUbbtm2NkiVLGoGBgcbf/vY3488//zQMwzCWLFli1K9f3/D29jZCQ0ONUaNGGZcuXcp0P5YvX248+OCDRnBwsOHh4WH4+fkZrVu3Nj788EPj2rVrlr63Uxdk532Q5vPPPzf69u1r1KpVywgMDDQ8PDyMkiVLGtWqVTOGDh1qOY43juVm76+bHVfDuPN6/uDBg8bs2bONWrVqGV5eXka5cuWMQYMGZVmTArmNUAqwQVah1NWrV424uDjDx8cny8LgwoULRrt27W560ho1apTZP7uh1LFjx4waNWrctG/37t0t/9G/cT+aN29umU4LpXI65ux6/fXXzeW9vb2NTZs2Wda5fPnyDMvcbih15swZo2rVqpmOvWvXrlkWa+mLl/DwcEuBnPaqUqWKsXDhQsPNzS1DW4sWLTLswwsvvHDTY9m8eXMjOTnZskz69mbNmhkOhyPDcmXKlDFOnDiR4Thl9Urbz7///e837efp6WnExMRkOpbMXtkJpZKTk40WLVrcdD0PPPCAWdBm9vt94IEHMl2ucuXKxsWLF2/21gMA5HNLliyx/NseFxdneHh4mNP//ve/Lf1zO5S603P1jTVVTkKpZ555xlzu7rvvNpYtW2ZZ140fFhnG7YdSiYmJRnBwcIb9c3NzM7p06WKZl176UKpGjRqGl5dXhnW0atXKeOONNzI9fv369bOsLzU11ejXr99Nj/lf//pX4+rVq5ax57QuyEko1b1795v28/HxMX8XuRVK5UY9n9VxyKwmBfICX98DXODxxx/X448/nmG+m5ubxowZY5k3cuRIrVu3TpLk6empnj17qnLlyvrhhx+0dOlSGYah6dOnq0GDBurdu7c6dOigUqVK6Z133tGhQ4ckSffff7969OghSWratKkkqU+fPpb7Ljz66KOqXr26YmJiFBcXJ0n67LPP9Oqrr2r8+PGZ7sfGjRtVo0YNde3aVYZhqFixYrc15uxKf2l6586d1axZM1WrVk0//fSTpOuX53ft2jXb67uZF198Ufv37zenH3jgAbVu3VobN27UV199la11JCYmqkyZMnr++ed16NAhffrpp5KkhIQE9e/fX8HBwRo4cKC2bdum2NhYSdKGDRv03XffqUmTJpKu3+vi1VdfNdcZGRmpZs2a6fjx41qwYIGSk5O1ceNGjRw5UnPnzs10HJs3b1bVqlX1yCOPKD4+XqtWrZIknTp1SvPmzdM//vGPW75vpP/d46lkyZJq2bKlatWqpYCAABUvXlynTp3SypUr9dNPP+ny5csaPny4fvzxR0nS1KlTdfDgQc2ZM8dc1wsvvCB/f39Jyta9wIYPH64NGzaY0x06dFBERIS+++47rVmzRpK0adMmDR8+XO+//36m69i0aZMaNmyoyMhIffPNN9q8ebMk6cCBA1q2bJl69ux5y3EAAPKn9F/dq1+/vpo0aaJ27drpP//5j9n+7LPPmn1udd5r1KiRatasqe3bt2vJkiXmcunv7ZNWU+XGuXrjxo0qW7asevbsqTJlymS4N1ZWUlJSLPfFeuyxx9SpUyf5+fnp7Nmz5r5PmzYtW+u7lWHDhikpKcmc7ty5sxo0aKCVK1dq5cqV2VrHvn37VL58efXp00fff/+9WTOuX79e69evV6VKldSjRw+tWbNG27dvl3T9CYmvvfaaQkNDJUlTpkzRBx98IElyOBzq3r276tSpo8TERH3wwQe6cuWKli5dqrp16+qFF17IdBzZqQt69uypmjVr6tVXX9WZM2ckSe3bt1eHDh0yrM/Pz08dOnRQtWrV5O/vL09PTx0/flxffPGFjhw5IqfTqbFjx2rVqlUKCAjQ1KlTs/X+upncqOc3bdqktm3bqmnTplq2bJl++OEHSRlrUiDPuDgUA4qEGz+RyOr16quvWpY7deqU4e7ubra///77lva//e1vZlu9evUsbTdeJp3erl27LNt9/vnnzbarV68aERERZltAQICRmpqa6X40adIkwxUmdzLmm9m6datl20uXLjUMwzAmTpxozrvV5fnZvVLqypUrRqlSpcz5TZs2NT9pS01NNVq3bp3lJ4g3fqK2adMmsy00NNTStm3bNsMwDMPpdGb5aW69evXM+f3797eM/5NPPjHb3N3djVOnTplt6bcTFhZmOJ3OTNf5yCOPWNZ5s/dNeqmpqcbWrVuN6Oho48033zSmTp1qjBo1yrLd9Je/3+qrADfrc/LkScvXNh977DHLco899pjZVqxYMfM9cOPvt1GjRubXJy5fvmwEBgaabbdz5R4AIH+48ev9U6dONQzDMBYuXGg5D2R2xdCtznu3+uqUYeTOudrHx8f45ZdfcrzvN14hllZbPPHEE+a8zG5xcDtXSh09etRy5XWPHj3MZS5dumRUqVIly2OV/jh7eHiY6zx//rylbvT09DR+//13wzAMY//+/Zb1pV0Rn5qaapQtW9acP378eMu2pkyZYraVKVPGrGPvpC4oX7682Xbj1zbTu3z5srFhwwZj3rx5xowZM4ypU6cajz/+uLmsl5eX5auc2Xl/ZdUnt+r5hx9+2Pyq46lTpyx/SzdeYQjkBTcBsF2PHj00depUvfbaa+rXr5/c3a9ftPjCCy9o4sSJZr+tW7danqTyxBNPWB4b+/bbb5tt8fHxunDhQra2n/bJSZoBAwaYPxcrVkx9+/Y1p0+fPq2EhIRM1zN69Gh5e3tb5uXVmNN/Alq6dGl16dJFkixXt1y+fFmLFi3K1vpuZv/+/UpOTjan+/TpY14F5ubmZjleN1OhQgU1a9bMnC5fvrz5c3h4uO6//35JyvCUn7RP4i5cuKD4+Hhz/sKFCy3H8rHHHjPb0m6an5l+/fqpdOnS5vR9992XYVs5ERMTo/DwcDVu3FgDBw7Uc889pzFjxmj69OmWfr/99luO152Z77//Xqmpqeb0jcc//XRqamqWx2Hw4MHy8PCQJHl4eCg8PNxsu53jAADIHz744APzPOFwOMyrnbp162apU+bPn5/r286tc3X//v11zz335Hj76eujSpUqmbVF+vro+PHj5lXSd2LHjh0yDMOc7t+/v/mzl5eXevXqla31NGvWTBUqVJAklShRQuXKlbO0pV0NVbFiRctyaefqhIQEnTx50pw/ceJEyzF//vnnzbZTp07pv//9b6bjyO26YNGiRQoNDVWLFi00aNAgjRw5UmPGjLG871JSUixjvxO5Vc8/88wzcjgckq5fFV+2bFmzjfoIdiCUAlygY8eOGj16tMaOHauFCxfqn//8p9k2adIk/f7775Kun0CyyzAMnTp1Klt9b1xvUFDQTaezOiFVrVr1luu+meyOOSUlRR999JE5/eCDD6p48eKSpMqVK6tBgwZmW1ZP3knb3o3rzUza5e5pgoODbzqdlbSiKo2np2eWbWnBpCRdu3ZN0vXjfuOYb+aPP/7IdH5a4ZfGy8srw7ay6+jRo+rWrZuOHDlyy75ZHd+cyq33a24eBwBA/pH+3N+0aVOFhYVJsn6IJV0PDdJ/cJYbcutcnVlNdStHjx7V2rVrzen0X7lv06aN5QOvglgfpa+NpP+dq3NSa0r21Ec7d+5U//79sxU4UR8BVtxTCsgHGjVqZP589epVbdu2TXfddZd5D580I0eOzHAiT8/X1zdb27txvcePH1eZMmUs0+ml3fvnRiVLlrzlunNjzMuWLbMUQosWLcryiqhdu3bphx9+UK1atSRdv7IpzcWLFy19Dxw4kOk6/Pz8LNMnTpywTKe/l8LNpH36lpkbC63sjOPBBx9U8+bNs+xfv379bI0j7dOw2/HVV19Zrm6bNm2aBg0aJF9fX/3444958sjizN6vN5vO6v2am8cBAJA/bN261by3pHT9PopZ/ft+4sQJrVq1Sg8++GCubT+3ztWZ1VS3kv4KMUl65ZVX9Morr2Tad+XKlTp16pRZ7xXk+ujGumDAgAE3vT/ljaFLVuO4k7pg6dKlZoDjcDi0ePFide3aVSVLltSqVass4Whuya16nvoIrkYoBeQD27Zts0ynFRiNGzdWsWLFzGkPDw+NHj06w/KHDx9WQkKCfHx8srW9G2+cuGDBAr3++uvmtj/88EOzLSAgQFWqVMn2vuTFmG/26V5m5s+fb36VLH0B9ccff+jgwYOqWLGiUlJS9MYbb2S6fNWqVVWqVCnzK3xLlizRU089JYfDIcMwLDdcz0slS5ZU3bp1za8FnDp1SiNGjMhQPJw7d07/+c9/ciUQSr/uzL5aeeOVbY8//rgZLH7yySfZWm9W685Ko0aNLO+pBQsWqHPnzmZ7+t9HsWLFLCEvAKBwy2mNEB0dnaNQKrPzV4kSJcxpV5yr0+Rk39NucTB8+HBJ1vooISFBZ8+elZ+fn86dO6fZs2dnuo4GDRqYtZAkffTRR+rYsaOkjFe156UqVaqoTJkyZk1y8eLFTGvNEydOaPPmzeaVc3ciJ/WRr6+vHnvsMTP4y2l9lP79dTN5Wc8DdiKUAlxg9erVOnnypFJTU/Xjjz9q8eLFZluxYsXUuHFjSddPIE888YT+7//+T9L1J41s375dTZs2lbe3t37//Xd999132rVrlwYMGKDIyMhsbb9OnTpq27at+cS3KVOm6NChQ6pRo4bWrl1r+Y76iBEjLJ+m3Upuj/n333+3XJpes2bNTAu67777Tr/88ouk61dSTZkyRe7u7mrYsKGlX7NmzdSyZUvt3LlTP//8c6bbdHd318CBAzVr1ixJ158G06ZNG7Vo0UIbNmzQ+vXrs3087tSYMWPUp08fSdc//a1du7a6du0qf39/nTp1Srt27dKmTZsUEhKSK0+Pu+uuu8yfV65cqX/84x8qW7asypYtq4EDB2YoaLp06aJOnTppz5495tMFb7VeSRo6dKgiIyPl7u6uBx980HKfqxuVKVNGAwcO1Lx58yRdL+7Onj2b4el70vX7W6T/lBAAUHhdunTJ8uS58PDwTD+Y+OGHH8wnwq5YsUInT5603DfnZm48f/Xu3VtNmzaVm5ub+vXrp6CgINvP1dL1uif9U4IbN26c6RVBsbGx5lfK5s+fb4ZS6esjp9OpevXqqVGjRtq8ebN5G4kbhYSEqEuXLlqxYoWk6/fPOnfunOrUqaMVK1Zkec+i3Obm5qZRo0aZt7/45JNPdOjQIbVv316lS5dWUlKStm/frq1bt+qBBx7Qww8/fMfbvOuuu8y6MTo6WsWLF1fp0qVVsWJFPfzww5b66OzZs+rSpYuaNm2qTZs2WerYzNabXmbvr6zkZT0P2Mplt1gHipDsPn1PkjFhwgTLsufPnzfatWt3y+VufGLMrZ4mc+zYMaN69eo3XWf37t0tT2vJzhPU7mTMmZk8ebJlmfRPs0tv3rx5ln7Lli0z25o3b57p9jt37myZTnv6nmEYxpkzZ4yqVatmulynTp0s0+mflnOzp9mk/53c2Hazp7qMGzfulsfyxicLpm+bP3++pe1mY/zyyy8zXX+NGjUMw7j+VJlatWpl+fvM6ngahvXpROlfaU9SvNn7Kzk52WjRosVNj0GzZs2MP//801wmq6crZvb7yM57EQCQv3z00UeWf+c//PDDTPvFxsZa+r355ptm263OBZcuXTJCQkIyPe+kPenOMHL/XH0rTz31lLmsm5tblk/ue+mllyzb2b17t2EYhnHx4kWjcuXK2aqP0p+PExMTjeDg4AzLOBwOo2PHjpbp9G52nNPXQDe2ZXWMUlNTjX79+t3ymKevc+6kLpg5c2am6+/SpYthGNefWnfjU5azqo/SH8/svL9u9oS+vKjns/ukQSC3EJcCLubl5aXy5cvr0Ucf1erVqzV+/HhLe4kSJbRmzRotXrxYnTt3VlBQkNzd3VW8eHFVrFhRjz76qObOnZvhyWe3EhwcrG3btmnatGmKiIiQr6+v3N3dVa5cOXXs2FEff/yxPv3002x9t/9GuTnm9F/NqlKliuVpduk99thjlvsxpL+kffny5Ro8eLDKlSsnLy8v1a5dW++99555JVRm/Pz8tHHjRj311FMKDAyUl5eX6tSpo4ULF1qeNpPWNy+9+uqr2rx5s/r27avw8HB5eXnJw8NDd911lzp06KBXX33V/JTsTj344IOaNWuWqlWrZrnxaBoPDw99/fXXGjhwoMqUKSMvLy/VrFlTc+fOVVRU1E3X/fnnn+vhhx9WQEBAju9XULJkScXGxuq9995T69atFRAQIHd3d/n7+6tly5Z69913tX79epUqVSpH6wUAFFzpz/W+vr565JFHMu3XunVry1VEOfnam5eXl1atWqUOHTrc9JYDdp6rL126pCVLlpjT7dq1y/LJfQMHDrScc9OeBOft7a3Y2Fg99thj8vPzk7e3txo3bqwvvvhCY8aMyXLbFSpU0HfffaeePXvKz89PxYsXV0REhFauXKmWLVua/fK6NnJzc9PChQu1cuVKde/eXXfffbc8PT3Nurpr16568803c+0rhUOHDlVUVJTuvffeTGvjgIAAbdq0SY888oh8fHxUvHhxNWzYUJ9//rkGDhyY5Xqz+/7KSl7W84BdHIaRg8dFAEARcvHiRfMpf+k9+uij+uyzzyRdf/pfVo8aBgAAKEyuXbumq1evZvjgKjU1VU2bNtX3338vSWrfvv1Nv7YGAGmITAEgC1WqVFFkZKQaNWqk0NBQnThxQp9++qlWrVpl9km7NwMAAEBh53Q6VblyZfXu3Vt169ZVYGCgfv/9d0VHR5uBlER9BCD7uFIKALKQ9hSarAwZMkTvvvsuj84FAABFwtmzZ+Xv759lu8Ph0IQJE/TSSy/ZOCoABRlXSgFAFsaNG6fVq1dr//79On36tNzc3BQSEqImTZpo0KBBatu2rauHCAAAYJsSJUpo3Lhx+uabb3To0CGdOXNGHh4eCgsL0wMPPKCnnnoqw5OPAeBmuFIKAAAAAAAAtuPpewAAAAAAALAdoRQAAAAAAABsxz2lcsm1a9d09OhRlS5dmpseAwBQiBiGoT///FOhoaFyc+PzvNxGDQUAQOGT3fqJUCqXHD16VGFhYa4eBgAAyCO//vqr7r77blcPo9ChhgIAoPC6Vf1EKJVLSpcuLen6Affx8XHxaAAAQG5xOp0KCwszz/XIXdRQAAAUPtmtnwilckna5eY+Pj4UVAAAFEJ8tSxvUEMBAFB43ap+4sYIAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsJ27qweAQmLYMFePAK4wa5arRwAAQMFGDVU0UUMBgCSulAIAAAAAAIALEEoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbuTSU2rBhg7p27arQ0FA5HA4tW7bM0u5wODJ9TZ061exToUKFDO2vvfaaZT179uxR8+bN5e3trbCwME2ZMiXDWJYuXaqqVavK29tbtWrV0qpVq/JknwEAAO4UNRQAACgMXBpKnT9/XnXq1NHs2bMzbT927Jjl9f7778vhcKh79+6WfhMnTrT0e/bZZ802p9OpDh06qHz58tqxY4emTp2qqKgozZ071+yzZcsW9erVS4MGDdKuXbvUrVs3devWTXv37s2bHQcAALgD1FAAAKAwcHflxjt16qROnTpl2R4cHGyZ/vLLL9W6dWvde++9lvmlS5fO0DfNokWLdPnyZb3//vvy9PRUjRo1FB8fr+nTp+vJJ5+UJM2cOVMdO3bUmDFjJEmTJk1STEyMZs2apTlz5tzJLgIAAOQ6aigAAFAYFJh7Sh0/flwrV67UoEGDMrS99tprKlOmjOrVq6epU6fq6tWrZltcXJxatGghT09Pc15kZKQSEhJ05swZs0+7du0s64yMjFRcXFyW40lJSZHT6bS8AAAA8htqKAAAkF+59EqpnFiwYIFKly6tRx55xDJ/+PDhql+/vgICArRlyxaNGzdOx44d0/Tp0yVJSUlJCg8PtywTFBRktvn7+yspKcmcl75PUlJSluOZPHmyJkyYkBu7BgAAkGeooQAAQH5VYEKp999/X3369JG3t7dl/qhRo8yfa9euLU9PTz311FOaPHmyvLy88mw848aNs2zb6XQqLCwsz7YHAABwO6ihAABAflUgQqmNGzcqISFBS5YsuWXfxo0b6+rVqzp8+LCqVKmi4OBgHT9+3NInbTrtHgpZ9cnqHguS5OXllacFGwAAwJ2ihgIAAPlZgbin1Lx589SgQQPVqVPnln3j4+Pl5uamwMBASVJERIQ2bNigK1eumH1iYmJUpUoV+fv7m31iY2Mt64mJiVFEREQu7gUAAIC9qKEAAEB+5tJQKjk5WfHx8YqPj5ckJSYmKj4+XkeOHDH7OJ1OLV26VIMHD86wfFxcnN58803t3r1bhw4d0qJFizRy5Ej17dvXLJZ69+4tT09PDRo0SPv27dOSJUs0c+ZMy2XjI0aM0OrVqzVt2jTt379fUVFR2r59u4YNG5a3BwAAAOA2UEMBAIDCwKVf39u+fbtat25tTqcVOQMGDFB0dLQk6eOPP5ZhGOrVq1eG5b28vPTxxx8rKipKKSkpCg8P18iRIy3Fkq+vr9auXauhQ4eqQYMGKlu2rMaPH28+yliSmjZtqsWLF+vFF1/UCy+8oMqVK2vZsmWqWbNmHu05AADA7aOGAgAAhYHDMAzD1YMoDJxOp3x9fXXu3Dn5+Pi4ejj24xPRomnWLFePAADyXJE/x+exIn98qaGKJmooAIVcds/vBeKeUgAAAAAAAChcCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDt3F09AAAAAAAACruHdm529RDgAl/Wb+bqIeRrXCkFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABs5+7qAQAACpaHdm529RDgAl/Wb+bqIQAAAKCQ4UopAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2M6lodSGDRvUtWtXhYaGyuFwaNmyZZb2gQMHyuFwWF4dO3a09Dl9+rT69OkjHx8f+fn5adCgQUpOTrb02bNnj5o3by5vb2+FhYVpypQpGcaydOlSVa1aVd7e3qpVq5ZWrVqV6/sLAACQG6ihAABAYeDSUOr8+fOqU6eOZs+enWWfjh076tixY+bro48+srT36dNH+/btU0xMjFasWKENGzboySefNNudTqc6dOig8uXLa8eOHZo6daqioqI0d+5cs8+WLVvUq1cvDRo0SLt27VK3bt3UrVs37d27N/d3GgAA4A5RQwEAgMLA3ZUb79Spkzp16nTTPl5eXgoODs607aefftLq1au1bds23X///ZKkt956S507d9Ybb7yh0NBQLVq0SJcvX9b7778vT09P1ahRQ/Hx8Zo+fbpZeM2cOVMdO3bUmDFjJEmTJk1STEyMZs2apTlz5uTiHgMAANw5aigAAFAY5Pt7Sq1fv16BgYGqUqWKnnnmGZ06dcpsi4uLk5+fn1lMSVK7du3k5uamrVu3mn1atGghT09Ps09kZKQSEhJ05swZs0+7du0s242MjFRcXFyW40pJSZHT6bS8AAAA8gtqKAAAkN/l61CqY8eOWrhwoWJjY/X666/r22+/VadOnZSamipJSkpKUmBgoGUZd3d3BQQEKCkpyewTFBRk6ZM2fas+ae2ZmTx5snx9fc1XWFjYne0sAABALqGGAgAABYFLv753Kz179jR/rlWrlmrXrq2KFStq/fr1atu2rQtHJo0bN06jRo0yp51OJ0UVAADIF6ihAABAQZCvr5S60b333quyZcvq559/liQFBwfrxIkTlj5Xr17V6dOnzXsoBAcH6/jx45Y+adO36pPVfRik6/dp8PHxsbwAAADyI2ooAACQHxWoUOq3337TqVOnFBISIkmKiIjQ2bNntWPHDrPP119/rWvXrqlx48Zmnw0bNujKlStmn5iYGFWpUkX+/v5mn9jYWMu2YmJiFBERkde7BAAAkOeooQAAQH7k0lAqOTlZ8fHxio+PlyQlJiYqPj5eR44cUXJyssaMGaPvvvtOhw8fVmxsrB566CFVqlRJkZGRkqRq1aqpY8eOGjJkiL7//ntt3rxZw4YNU8+ePRUaGipJ6t27tzw9PTVo0CDt27dPS5Ys0cyZMy2XjY8YMUKrV6/WtGnTtH//fkVFRWn79u0aNmyY7ccEAADgVqihAABAYeDSUGr79u2qV6+e6tWrJ0kaNWqU6tWrp/Hjx6tYsWLas2ePHnzwQd13330aNGiQGjRooI0bN8rLy8tcx6JFi1S1alW1bdtWnTt31gMPPKC5c+ea7b6+vlq7dq0SExPVoEED/f3vf9f48ePNRxlLUtOmTbV48WLNnTtXderU0aeffqply5apZs2a9h0MAACAbKKGAgAAhYHDMAzD1YMoDJxOp3x9fXXu3LmieW8EPhEtmmbNcvUI4AIP7dzs6iHABb6s38zVQ3CZIn+Oz2NF/vhSQxVN1FBFEjVU0VRUa6jsnt8L1D2lAAAAAAAAUDgQSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbOfSUGrDhg3q2rWrQkND5XA4tGzZMrPtypUrGjt2rGrVqqWSJUsqNDRU/fv319GjRy3rqFChghwOh+X12muvWfrs2bNHzZs3l7e3t8LCwjRlypQMY1m6dKmqVq0qb29v1apVS6tWrcqTfQYAALhT1FAAAKAwcGkodf78edWpU0ezZ8/O0HbhwgXt3LlTL730knbu3KnPP/9cCQkJevDBBzP0nThxoo4dO2a+nn32WbPN6XSqQ4cOKl++vHbs2KGpU6cqKipKc+fONfts2bJFvXr10qBBg7Rr1y5169ZN3bp10969e/NmxwEAAO4ANRQAACgM3F258U6dOqlTp06Ztvn6+iomJsYyb9asWWrUqJGOHDmie+65x5xfunRpBQcHZ7qeRYsW6fLly3r//ffl6empGjVqKD4+XtOnT9eTTz4pSZo5c6Y6duyoMWPGSJImTZqkmJgYzZo1S3PmzMmNXQUAAMg11FAAAKAwKFD3lDp37pwcDof8/Pws81977TWVKVNG9erV09SpU3X16lWzLS4uTi1atJCnp6c5LzIyUgkJCTpz5ozZp127dpZ1RkZGKi4uLu92BgAAwCbUUAAAID9y6ZVSOXHp0iWNHTtWvXr1ko+Pjzl/+PDhql+/vgICArRlyxaNGzdOx44d0/Tp0yVJSUlJCg8Pt6wrKCjIbPP391dSUpI5L32fpKSkLMeTkpKilJQUc9rpdN7xPgIAAOQ2aigAAJBfFYhQ6sqVK3rsscdkGIbeeecdS9uoUaPMn2vXri1PT0899dRTmjx5sry8vPJsTJMnT9aECRPybP0AAAB3ihoKAADkZ/n+63tpxdQvv/yimJgYyyd8mWncuLGuXr2qw4cPS5KCg4N1/PhxS5+06bR7KGTVJ6t7LEjSuHHjdO7cOfP166+/5nTXAAAA8gw1FAAAyO/ydSiVVkwdOHBA69atU5kyZW65THx8vNzc3BQYGChJioiI0IYNG3TlyhWzT0xMjKpUqSJ/f3+zT2xsrGU9MTExioiIyHI7Xl5e8vHxsbwAAADyA2ooAABQELj063vJycn6+eefzenExETFx8crICBAISEhevTRR7Vz506tWLFCqamp5v0JAgIC5Onpqbi4OG3dulWtW7dW6dKlFRcXp5EjR6pv375msdS7d29NmDBBgwYN0tixY7V3717NnDlTM2bMMLc7YsQItWzZUtOmTVOXLl308ccfa/v27ZZHHgMAAOQX1FAAAKAwcGkotX37drVu3dqcTru3wYABAxQVFaXly5dLkurWrWtZ7ptvvlGrVq3k5eWljz/+WFFRUUpJSVF4eLhGjhxpuUeCr6+v1q5dq6FDh6pBgwYqW7asxo8fbz7KWJKaNm2qxYsX68UXX9QLL7ygypUra9myZapZs2Ye7j0AAMDtoYYCAACFgcMwDMPVgygMnE6nfH19de7cuaJ5GfqwYa4eAVxh1ixXjwAu8NDOza4eAlzgy/rNXD0Elyny5/g8VuSPLzVU0UQNVSRRQxVNRbWGyu75PV/fUwoAAAAAAACFE6EUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACwHaEUAAAAAAAAbEcoBQAAAAAAANsRSgEAAAAAAMB2hFIAAAAAAACw3W2FUvfee69OnTqVYf7Zs2d177333vGgAAAAChvqJwAAAKvbCqUOHz6s1NTUDPNTUlL0+++/3/GgAAAAChvqJwAAACv3nHRevny5+fOaNWvk6+trTqempio2NlYVKlTItcEBAAAUdNRPAAAAmctRKNWtWzdJksPh0IABAyxtHh4eqlChgqZNm5ZrgwMAACjoqJ8AAAAyl6NQ6tq1a5Kk8PBwbdu2TWXLls2TQQEAABQW1E8AAACZy1EolSYxMTG3xwEAAFCoUT8BAABY3VYoJUmxsbGKjY3ViRMnzE8A07z//vt3PDAAAIDChvoJAADgf24rlJowYYImTpyo+++/XyEhIXI4HLk9LgAAgEKF+gkAAMDqtkKpOXPmKDo6Wv369cvt8QAAABRK1E8AAABWbrez0OXLl9W0adPcHgsAAEChRf0EAABgdVuh1ODBg7V48eLcHgsAAEChRf0EAABgdVuh1KVLlzR9+nS1bNlSzz77rEaNGmV5ZdeGDRvUtWtXhYaGyuFwaNmyZZZ2wzA0fvx4hYSEqHjx4mrXrp0OHDhg6XP69Gn16dNHPj4+8vPz06BBg5ScnGzps2fPHjVv3lze3t4KCwvTlClTMoxl6dKlqlq1qry9vVWrVi2tWrUq+wcEAADgFnKrfpKooQAAQOFwW6HUnj17VLduXbm5uWnv3r3atWuX+YqPj8/2es6fP686depo9uzZmbZPmTJF//73vzVnzhxt3bpVJUuWVGRkpC5dumT26dOnj/bt26eYmBitWLFCGzZs0JNPPmm2O51OdejQQeXLl9eOHTs0depURUVFae7cuWafLVu2qFevXho0aJB27dqlbt26qVu3btq7d2/ODw4AAEAmcqt+kqihAABA4eAwDMNw9SAkyeFw6IsvvlC3bt0kXf+ELzQ0VH//+981evRoSdK5c+cUFBSk6Oho9ezZUz/99JOqV6+ubdu26f7775ckrV69Wp07d9Zvv/2m0NBQvfPOO/rnP/+ppKQkeXp6SpL+8Y9/aNmyZdq/f78kqUePHjp//rxWrFhhjqdJkyaqW7eu5syZk63xO51O+fr66ty5c/Lx8cmtw1JwDBvm6hHAFWbNcvUI4AIP7dzs6iHABb6s38zVQ3CZ/H6Op4Yq4KihiiZqqCKJGqpoKqo1VHbP77d1pZQdEhMTlZSUpHbt2pnzfH191bhxY8XFxUmS4uLi5OfnZxZTktSuXTu5ublp69atZp8WLVqYxZQkRUZGKiEhQWfOnDH7pN9OWp+07QAAABQU1FAAAKCgcL+dhVq3bi2Hw5Fl+9dff33bA0qTlJQkSQoKCrLMDwoKMtuSkpIUGBhoaXd3d1dAQIClT3h4eIZ1pLX5+/srKSnpptvJTEpKilJSUsxpp9OZk90DAABFjB31k0QNBQAACo7bCqXq1q1rmb5y5Yri4+O1d+9eDRgwIDfGle9NnjxZEyZMcPUwAABAAUH9dB01FAAASHNbodSMGTMynR8VFZXhqS23Kzg4WJJ0/PhxhYSEmPOPHz9uFnXBwcE6ceKEZbmrV6/q9OnT5vLBwcE6fvy4pU/a9K36pLVnZty4cZYn5TidToWFheVkFwEAQBFiR/0kUUMBAICCI1fvKdW3b1+9//77ubKu8PBwBQcHKzY21pzndDq1detWRURESJIiIiJ09uxZ7dixw+zz9ddf69q1a2rcuLHZZ8OGDbpy5YrZJyYmRlWqVJG/v7/ZJ/120vqkbSczXl5e8vHxsbwAAAByKjfrJ4kaCgAAFBy5GkrFxcXJ29s72/2Tk5MVHx9vPgY5MTFR8fHxOnLkiBwOh5577jn961//0vLly/XDDz+of//+Cg0NNZ8uU61aNXXs2FFDhgzR999/r82bN2vYsGHq2bOnQkNDJUm9e/eWp6enBg0apH379mnJkiWaOXOm5RO6ESNGaPXq1Zo2bZr279+vqKgobd++XcN4GgoAAMhjOa2fJGooAABQONzW1/ceeeQRy7RhGDp27Ji2b9+ul156Kdvr2b59u1q3bm1OpxU5AwYMUHR0tJ5//nmdP39eTz75pM6ePasHHnhAq1evthRuixYt0rBhw9S2bVu5ubmpe/fu+ve//222+/r6au3atRo6dKgaNGigsmXLavz48XryySfNPk2bNtXixYv14osv6oUXXlDlypW1bNky1axZM8fHBgAAIDO5VT9J1FAAAKBwcBiGYeR0occff9wy7ebmpnLlyqlNmzbq0KFDrg2uIHE6nfL19dW5c+eK5mXofCJaNM2a5eoRwAUe2rnZ1UOAC3xZv5mrh+AyuXWOp37KHDUUNVSRRA1VJFFDFU1FtYbK7vn9tq6Umj9//m0PDAAAoCiifgIAALC6rVAqzY4dO/TTTz9JkmrUqKF69erlyqAAAAAKK+onAACA624rlDpx4oR69uyp9evXy8/PT5J09uxZtW7dWh9//LHKlSuXm2MEAAAo8KifAAAArG7r6XvPPvus/vzzT+3bt0+nT5/W6dOntXfvXjmdTg0fPjy3xwgAAFDgUT8BAABY3daVUqtXr9a6detUrVo1c1716tU1e/bsIn2jTgAAgKxQPwEAAFjd1pVS165dk4eHR4b5Hh4eunbt2h0PCgAAoLChfgIAALC6rVCqTZs2GjFihI4ePWrO+/333zVy5Ei1bds21wYHAABQWFA/AQAAWN1WKDVr1iw5nU5VqFBBFStWVMWKFRUeHi6n06m33nort8cIAABQ4FE/AQAAWN3WPaXCwsK0c+dOrVu3Tvv375ckVatWTe3atcvVwQEAABQW1E8AAABWObpS6uuvv1b16tXldDrlcDjUvn17Pfvss3r22WfVsGFD1ahRQxs3bsyrsQIAABQ41E8AAACZy1Eo9eabb2rIkCHy8fHJ0Obr66unnnpK06dPz7XBAQAAFHTUTwAAAJnLUSi1e/dudezYMcv2Dh06aMeOHXc8KAAAgMKC+gkAACBzOQqljh8/numjjNO4u7vrjz/+uONBAQAAFBbUTwAAAJnLUSh11113ae/evVm279mzRyEhIXc8KAAAgMKC+gkAACBzOQqlOnfurJdeekmXLl3K0Hbx4kW9/PLL+stf/pJrgwMAACjoqJ8AAAAy556Tzi+++KI+//xz3XfffRo2bJiqVKkiSdq/f79mz56t1NRU/fOf/8yTgQIAABRE1E8AAACZy1EoFRQUpC1btuiZZ57RuHHjZBiGJMnhcCgyMlKzZ89WUFBQngwUAACgIKJ+AgAAyFyOQilJKl++vFatWqUzZ87o559/lmEYqly5svz9/fNifAAAAAUe9RMAAEBGOQ6l0vj7+6thw4a5ORYAAIBCjfoJAADgf3J0o3MAAAAAAAAgNxBKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2+X7UKpChQpyOBwZXkOHDpUktWrVKkPb008/bVnHkSNH1KVLF5UoUUKBgYEaM2aMrl69aumzfv161a9fX15eXqpUqZKio6Pt2kUAAIBcRf0EAAAKAndXD+BWtm3bptTUVHN67969at++vf7617+a84YMGaKJEyea0yVKlDB/Tk1NVZcuXRQcHKwtW7bo2LFj6t+/vzw8PPTqq69KkhITE9WlSxc9/fTTWrRokWJjYzV48GCFhIQoMjLShr0EAADIPdRPAACgIMj3oVS5cuUs06+99poqVqyoli1bmvNKlCih4ODgTJdfu3atfvzxR61bt05BQUGqW7euJk2apLFjxyoqKkqenp6aM2eOwsPDNW3aNElStWrVtGnTJs2YMYOiCgAAFDjUTwAAoCDI91/fS+/y5cv68MMP9cQTT8jhcJjzFy1apLJly6pmzZoaN26cLly4YLbFxcWpVq1aCgoKMudFRkbK6XRq3759Zp927dpZthUZGam4uLg83iMAAIC8Rf0EAADyq3x/pVR6y5Yt09mzZzVw4EBzXu/evVW+fHmFhoZqz549Gjt2rBISEvT5559LkpKSkiwFlSRzOikp6aZ9nE6nLl68qOLFi2cYS0pKilJSUsxpp9OZK/sIAACQm/JT/SRRQwEAgP8pUKHUvHnz1KlTJ4WGhprznnzySfPnWrVqKSQkRG3bttXBgwdVsWLFPBvL5MmTNWHChDxbPwAAQG7IT/WTRA0FAAD+p8B8fe+XX37RunXrNHjw4Jv2a9y4sSTp559/liQFBwfr+PHjlj5p02n3Uciqj4+PT5af8o0bN07nzp0zX7/++mvOdwoAACAP5bf6SaKGAgAA/1NgQqn58+crMDBQXbp0uWm/+Ph4SVJISIgkKSIiQj/88INOnDhh9omJiZGPj4+qV69u9omNjbWsJyYmRhEREVlux8vLSz4+PpYXAABAfpLf6ieJGgoAAPxPgQilrl27pvnz52vAgAFyd//fNw4PHjyoSZMmaceOHTp8+LCWL1+u/v37q0WLFqpdu7YkqUOHDqpevbr69eun3bt3a82aNXrxxRc1dOhQeXl5SZKefvppHTp0SM8//7z279+vt99+W5988olGjhzpkv0FAAC4U9RPAAAgvysQodS6det05MgRPfHEE5b5np6eWrdunTp06KCqVavq73//u7p3766vvvrK7FOsWDGtWLFCxYoVU0REhPr27av+/ftr4sSJZp/w8HCtXLlSMTExqlOnjqZNm6b33nuPxxkDAIACi/oJAADkdwXiRucdOnSQYRgZ5oeFhenbb7+95fLly5fXqlWrbtqnVatW2rVr122PEQAAID+hfgIAAPldgbhSCgAAAAAAAIULoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHaEUgAAAAAAALAdoRQAAAAAAABsRygFAAAAAAAA2xFKAQAAAAAAwHb5OpSKioqSw+GwvKpWrWq2X7p0SUOHDlWZMmVUqlQpde/eXcePH7es48iRI+rSpYtKlCihwMBAjRkzRlevXrX0Wb9+verXry8vLy9VqlRJ0dHRduweAABAnqCGAgAABUG+DqUkqUaNGjp27Jj52rRpk9k2cuRIffXVV1q6dKm+/fZbHT16VI888ojZnpqaqi5duujy5cvasmWLFixYoOjoaI0fP97sk5iYqC5duqh169aKj4/Xc889p8GDB2vNmjW27icAAEBuooYCAAD5nburB3Ar7u7uCg4OzjD/3LlzmjdvnhYvXqw2bdpIkubPn69q1arpu+++U5MmTbR27Vr9+OOPWrdunYKCglS3bl1NmjRJY8eOVVRUlDw9PTVnzhyFh4dr2rRpkqRq1app06ZNmjFjhiIjI23dVwAAgNxCDQUAAPK7fH+l1IEDBxQaGqp7771Xffr00ZEjRyRJO3bs0JUrV9SuXTuzb9WqVXXPPfcoLi5OkhQXF6datWopKCjI7BMZGSmn06l9+/aZfdKvI61P2joAAAAKImooAACQ3+XrK6UaN26s6OhoValSRceOHdOECRPUvHlz7d27V0lJSfL09JSfn59lmaCgICUlJUmSkpKSLMVUWnta2836OJ1OXbx4UcWLF890bCkpKUpJSTGnnU7nHe0rAABAbqGGAgAABUG+DqU6depk/ly7dm01btxY5cuX1yeffJJloWOXyZMna8KECS4dAwAAQGaooQAAQEGQ77++l56fn5/uu+8+/fzzzwoODtbly5d19uxZS5/jx4+b908IDg7O8CSZtOlb9fHx8blp0TZu3DidO3fOfP366693unsAAAB5ghoKAADkRwUqlEpOTtbBgwcVEhKiBg0ayMPDQ7GxsWZ7QkKCjhw5ooiICElSRESEfvjhB504ccLsExMTIx8fH1WvXt3sk34daX3S1pEVLy8v+fj4WF4AAAD5ETUUAADIj/J1KDV69Gh9++23Onz4sLZs2aKHH35YxYoVU69eveTr66tBgwZp1KhR+uabb7Rjxw49/vjjioiIUJMmTSRJHTp0UPXq1dWvXz/t3r1ba9as0YsvvqihQ4fKy8tLkvT000/r0KFDev7557V//369/fbb+uSTTzRy5EhX7joAAMBto4YCAAAFQb6+p9Rvv/2mXr166dSpUypXrpweeOABfffddypXrpwkacaMGXJzc1P37t2VkpKiyMhIvf322+byxYoV04oVK/TMM88oIiJCJUuW1IABAzRx4kSzT3h4uFauXKmRI0dq5syZuvvuu/Xee+/xKGMAAFBgUUMBAICCwGEYhuHqQRQGTqdTvr6+OnfuXNG8DH3YMFePAK4wa5arRwAXeGjnZlcPAS7wZf1mrh6CyxT5c3weK/LHlxqqaKKGKpKooYqmolpDZff8nq+/vgcAAAAAAIDCiVAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGA7QikAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0IpQAAAAAAAGC7fB1KTZ48WQ0bNlTp0qUVGBiobt26KSEhwdKnVatWcjgcltfTTz9t6XPkyBF16dJFJUqUUGBgoMaMGaOrV69a+qxfv17169eXl5eXKlWqpOjo6LzePQAAgDxBDQUAAAqCfB1Kffvttxo6dKi+++47xcTE6MqVK+rQoYPOnz9v6TdkyBAdO3bMfE2ZMsVsS01NVZcuXXT58mVt2bJFCxYsUHR0tMaPH2/2SUxMVJcuXdS6dWvFx8frueee0+DBg7VmzRrb9hUAACC3UEMBAICCwN3VA7iZ1atXW6ajo6MVGBioHTt2qEWLFub8EiVKKDg4ONN1rF27Vj/++KPWrVunoKAg1a1bV5MmTdLYsWMVFRUlT09PzZkzR+Hh4Zo2bZokqVq1atq0aZNmzJihyMjIvNtBAACAPEANBQAACoJ8faXUjc6dOydJCggIsMxftGiRypYtq5o1a2rcuHG6cOGC2RYXF6datWopKCjInBcZGSmn06l9+/aZfdq1a2dZZ2RkpOLi4vJqVwAAAGxDDQUAAPKjfH2lVHrXrl3Tc889p2bNmqlmzZrm/N69e6t8+fIKDQ3Vnj17NHbsWCUkJOjzzz+XJCUlJVmKKUnmdFJS0k37OJ1OXbx4UcWLF88wnpSUFKWkpJjTTqczd3YUAAAgF1FDAQCA/KrAhFJDhw7V3r17tWnTJsv8J5980vy5Vq1aCgkJUdu2bXXw4EFVrFgxz8YzefJkTZgwIc/WDwAAkBuooQAAQH5VIL6+N2zYMK1YsULffPON7r777pv2bdy4sSTp559/liQFBwfr+PHjlj5p02n3UMiqj4+PT6af8EnSuHHjdO7cOfP166+/5nzHAAAA8hA1FAAAyM/ydShlGIaGDRumL774Ql9//bXCw8NvuUx8fLwkKSQkRJIUERGhH374QSdOnDD7xMTEyMfHR9WrVzf7xMbGWtYTExOjiIiILLfj5eUlHx8fywsAACA/oIYCAAAFQb4OpYYOHaoPP/xQixcvVunSpZWUlKSkpCRdvHhRknTw4EFNmjRJO3bs0OHDh7V8+XL1799fLVq0UO3atSVJHTp0UPXq1dWvXz/t3r1ba9as0YsvvqihQ4fKy8tLkvT000/r0KFDev7557V//369/fbb+uSTTzRy5EiX7TsAAMDtooYCAAAFQb4Opd555x2dO3dOrVq1UkhIiPlasmSJJMnT01Pr1q1Thw4dVLVqVf39739X9+7d9dVXX5nrKFasmFasWKFixYopIiJCffv2Vf/+/TVx4kSzT3h4uFauXKmYmBjVqVNH06ZN03vvvcejjAEAQIFEDQUAAAqCfH2jc8MwbtoeFhamb7/99pbrKV++vFatWnXTPq1atdKuXbtyND4AAID8iBoKAAAUBPn6SikAAAAAAAAUToRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUrdYPbs2apQoYK8vb3VuHFjff/9964eEgAAQL5G/QQAAG4HoVQ6S5Ys0ahRo/Tyyy9r586dqlOnjiIjI3XixAlXDw0AACBfon4CAAC3i1AqnenTp2vIkCF6/PHHVb16dc2ZM0clSpTQ+++/7+qhAQAA5EvUTwAA4HYRSv1/ly9f1o4dO9SuXTtznpubm9q1a6e4uDgXjgwAACB/on4CAAB3wt3VA8gvTp48qdTUVAUFBVnmBwUFaf/+/Rn6p6SkKCUlxZw+d+6cJMnpdObtQPOry5ddPQK4QlF9vxdxV5LPu3oIcIEie37T//bdMAwXjyT/yWn9JFFDZUANVTQV1fd7EUcNVTQV1fNbdusnQqnbNHnyZE2YMCHD/LCwMBeMBnCR//s/V48AgE18XT2AfODPP/+Ury9H4k5RQwGihgKKkKJeOdyqfiKU+v/Kli2rYsWK6fjx45b5x48fV3BwcIb+48aN06hRo8zpa9eu6fTp0ypTpowcDkeejxf5g9PpVFhYmH799Vf5+Pi4ejgA8hB/70WXYRj6888/FRoa6uqh5Ds5rZ8kaihcx7+pQNHB33vRlN36iVDq//P09FSDBg0UGxurbt26SbpeJMXGxmrYsGEZ+nt5ecnLy8syz8/Pz4aRIj/y8fHhH1igiODvvWjiCqnM5bR+kqihYMW/qUDRwd970ZOd+olQKp1Ro0ZpwIABuv/++9WoUSO9+eabOn/+vB5//HFXDw0AACBfon4CAAC3i1AqnR49euiPP/7Q+PHjlZSUpLp162r16tUZbt4JAACA66ifAADA7SKUusGwYcOyvNwcuJGXl5defvnlDF9DAFD48PcOZI36CTnFv6lA0cHfO27GYfB8YwAAAAAAANjMzdUDAAAAAAAAQNFDKAUAAAAAAADbEUoBt2H9+vVyOBw6e/bsTftVqFBBb775pi1jApB/REVFqW7duq4eBgDkO9RQAG6GGqro4Z5SwG24fPmyTp8+raCgIDkcDkVHR+u5557LUGD98ccfKlmypEqUKOGagQLIcw6HQ1988YW6detmzktOTlZKSorKlCnjuoEBQD5EDQUgDTUUJJ6+B9wWT09PBQcH37JfuXLlbBgNgPymVKlSKlWqlKuHAQD5DjUUgJuhhip6+PoeCq1WrVqZj6j29fVV2bJl9dJLLynt4sAzZ86of//+8vf3V4kSJdSpUycdOHDAXP6XX35R165d5e/vr5IlS6pGjRpatWqVJOul5+vXr9fjjz+uc+fOyeFwyOFwKCoqSpL10vPevXurR48eljFeuXJFZcuW1cKFCyVJ165d0+TJkxUeHq7ixYurTp06+vTTT/P4SAEFU6tWrTR8+HA9//zzCggIUHBwsPm3J0lnz57V4MGDVa5cOfn4+KhNmzbavXu3ZR3/+te/FBgYqNKlS2vw4MH6xz/+YblkfNu2bWrfvr3Kli0rX19ftWzZUjt37jTbK1SoIEl6+OGH5XA4zOn0l56vXbtW3t7eGa4CGDFihNq0aWNOb9q0Sc2bN1fx4sUVFham4cOH6/z583d8nAAgp6ihgMKNGgr5CaEUCrUFCxbI3d1d33//vWbOnKnp06frvffekyQNHDhQ27dv1/LlyxUXFyfDMNS5c2dduXJFkjR06FClpKRow4YN+uGHH/T6669nmto3bdpUb775pnx8fHTs2DEdO3ZMo0ePztCvT58++uqrr5ScnGzOW7NmjS5cuKCHH35YkjR58mQtXLhQc+bM0b59+zRy5Ej17dtX3377bV4cHqDAW7BggUqWLKmtW7dqypQpmjhxomJiYiRJf/3rX3XixAn95z//0Y4dO1S/fn21bdtWp0+fliQtWrRIr7zyil5//XXt2LFD99xzj9555x3L+v/8808NGDBAmzZt0nfffafKlSurc+fO+vPPPyVdL7gkaf78+Tp27Jg5nV7btm3l5+enzz77zJyXmpqqJUuWqE+fPpKkgwcPqmPHjurevbv27NmjJUuWaNOmTRo2bFjuHzQAyAZqKKBwo4ZCvmEAhVTLli2NatWqGdeuXTPnjR071qhWrZrx3//+15BkbN682Ww7efKkUbx4ceOTTz4xDMMwatWqZURFRWW67m+++caQZJw5c8YwDMOYP3++4evrm6Ff+fLljRkzZhiGYRhXrlwxypYtayxcuNBs79Wrl9GjRw/DMAzj0qVLRokSJYwtW7ZY1jFo0CCjV69eOd5/oLBr2bKl8cADD1jmNWzY0Bg7dqyxceNGw8fHx7h06ZKlvWLFisa7775rGIZhNG7c2Bg6dKilvVmzZkadOnWy3GZqaqpRunRp46uvvjLnSTK++OILS7+XX37Zsp4RI0YYbdq0MafXrFljeHl5mf+GDBo0yHjyySct69i4caPh5uZmXLx4McvxAEBeoIYCCjdqKOQnXCmFQq1JkyZyOBzmdEREhA4cOKAff/xR7u7uaty4sdlWpkwZValSRT/99JMkafjw4frXv/6lZs2a6eWXX9aePXvuaCzu7u567LHHtGjRIknS+fPn9eWXX5op/88//6wLFy6offv25nepS5UqpYULF+rgwYN3tG2gsKpdu7ZlOiQkRCdOnNDu3buVnJysMmXKWP6eEhMTzb+nhIQENWrUyLL8jdPHjx/XkCFDVLlyZfn6+srHx0fJyck6cuRIjsbZp08frV+/XkePHpV0/RPGLl26yM/PT5K0e/duRUdHW8YaGRmpa9euKTExMUfbAoDcQA0FFG7UUMgvuNE5kIXBgwcrMjJSK1eu1Nq1azV58mRNmzZNzz777G2vs0+fPmrZsqVOnDihmJgYFS9eXB07dpQk85L0lStX6q677rIs5+Xldfs7AhRiHh4elmmHw6Fr164pOTlZISEhWr9+fYZl0oqY7BgwYIBOnTqlmTNnqnz58vLy8lJERIQuX76co3E2bNhQFStW1Mcff6xnnnlGX3zxhaKjo8325ORkPfXUUxo+fHiGZe+5554cbQsAXI0aCsj/qKGQXxBKoVDbunWrZTrt+8zVq1fX1atXtXXrVjVt2lSSdOrUKSUkJKh69epm/7CwMD399NN6+umnNW7cOP3f//1fpgWVp6enUlNTbzmepk2bKiwsTEuWLNF//vMf/fWvfzVPCNWrV5eXl5eOHDmili1b3sluA0Ve/fr1lZSUJHd3d/PGmTeqUqWKtm3bpv79+5vzbryfwebNm/X222+rc+fOkqRff/1VJ0+etPTx8PDI1t9/nz59tGjRIt19991yc3NTly5dLOP98ccfValSpezuIgDkKWoooGiihoLd+PoeCrUjR45o1KhRSkhI0EcffaS33npLI0aMUOXKlfXQQw9pyJAh2rRpk3bv3q2+ffvqrrvu0kMPPSRJeu6557RmzRolJiZq586d+uabb1StWrVMt1OhQgUlJycrNjZWJ0+e1IULF7IcU+/evTVnzhzFxMSYl51LUunSpTV69GiNHDlSCxYs0MGDB7Vz50699dZbWrBgQe4eGKCQa9eunSIiItStWzetXbtWhw8f1pYtW/TPf/5T27dvlyQ9++yzmjdvnhYsWKADBw7oX//6l/bs2WP5ukrlypX1wQcf6KefftLWrVvVp08fFS9e3LKtChUqKDY2VklJSTpz5kyWY+rTp4927typV155RY8++qjl0/uxY8dqy5YtGjZsmOLj43XgwAF9+eWX3KQTgMtQQwFFEzUU7EYohUKtf//+unjxoho1aqShQ4dqxIgRevLJJyVdf9JDgwYN9Je//EUREREyDEOrVq0yP3VLTU3V0KFDVa1aNXXs2FH33Xef3n777Uy307RpUz399NPq0aOHypUrpylTpmQ5pj59+ujHH3/UXXfdpWbNmlnaJk2apJdeekmTJ082t7ty5UqFh4fn0hEBigaHw6FVq1apRYsWevzxx3XfffepZ8+e+uWXXxQUFCTp+t/iuHHjNHr0aNWvX1+JiYkaOHCgvL29zfXMmzdPZ86cUf369dWvXz8NHz5cgYGBlm1NmzZNMTExCgsLU7169bIcU6VKldSoUSPt2bPH8p8p6fp9Hb799lv997//VfPmzVWvXj2NHz9eoaGhuXhUACD7qKGAookaCnZzGIZhuHoQQF5o1aqV6tatqzfffNPVQwFQQLRv317BwcH64IMPXD0UAHAZaigAOUUNhdvFPaUAAEXShQsXNGfOHEVGRqpYsWL66KOPtG7dOsXExLh6aAAAAPkWNRRyE6EUAKBISrs8/ZVXXtGlS5dUpUoVffbZZ2rXrp2rhwYAAJBvUUMhN/H1PQAAAAAAANiOG50DAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFIBC7Y8//tAzzzyje+65R15eXgoODlZkZKQ2b94sSXI4HFq2bJlrBwkAAJDPUEMBsIO7qwcAAHmpe/fuunz5shYsWKB7771Xx48fV2xsrE6dOuXqoQEAAORb1FAA7MCVUgAKrbNnz2rjxo16/fXX1bp1a5UvX16NGjXSuHHj9OCDD6pChQqSpIcfflgOh8OcPnjwoB566CEFBQWpVKlSatiwodatW2dZd4UKFfTqq6/qiSeeUOnSpXXPPfdo7ty5lj6//fabevXqpYCAAJUsWVL333+/tm7darZ/+eWXql+/vry9vXXvvfdqwoQJunr1ap4eEwAAgFuhhgJgF0IpAIVWqVKlVKpUKS1btkwpKSkZ2rdt2yZJmj9/vo4dO2ZOJycnq3PnzoqNjdWuXbvUsWNHde3aVUeOHLEsP23aNN1///3atWuX/va3v+mZZ55RQkKCuY6WLVvq999/1/Lly7V79249//zzunbtmiRp48aN6t+/v0aMGKEff/xR7777rqKjo/XKK6/k5SEBAAC4JWooALYxAKAQ+/TTTw1/f3/D29vbaNq0qTFu3Dhj9+7dZrsk44svvrjlemrUqGG89dZb5nT58uWNvn37mtPXrl0zAgMDjXfeeccwDMN49913jdKlSxunTp3KdH1t27Y1Xn31Vcu8Dz74wAgJCcnJ7gEAAOQJaigAduBKKQCFWvfu3XX06FEtX75cHTt21Pr161W/fn1FR0dnuUxycrJGjx6tatWqyc/PT6VKldJPP/2U4VO+2rVrmz87HA4FBwfrxIkTkqT4+HjVq1dPAQEBmW5j9+7dmjhxovlJZKlSpTRkyBAdO3ZMFy5cuPMdBwAAuAPUUADswI3OARR63t7eat++vdq3b6+XXnpJgwcP1ssvv6yBAwdm2n/06NGKiYnRG2+8oUqVKql48eJ69NFHdfnyZUs/Dw8Py7TD4TAvLS9evPhNx5ScnKwJEybokUceyXS8AAAArkYNBSCvEUoBKHKqV69uPsLYw8NDqamplvbNmzdr4MCBevjhhyVdL34OHz6co23Url1b7733nk6fPp3pJ33169dXQkKCKlWqdFv7AAAAYDdqKAC5ja/vASi0Tp06pTZt2ujDDz/Unj17lJiYqKVLl2rKlCl66KGHJF1/AkxsbKySkpJ05swZSVLlypX1+eefKz4+Xrt371bv3r3NT++yq1evXgoODla3bt20efNmHTp0SJ999pni4uIkSePHj9fChQs1YcIE7du3Tz/99JM+/vhjvfjii7l7EAAAAHKIGgqAXQilABRapUqVUuPGjTVjxgy1aNFCNWvW1EsvvaQhQ4Zo1qxZkq4//SUmJkZhYWGqV6+eJGn69Ony9/dX06ZN1bVrV0VGRqp+/fo52ranp6fWrl2rwMBAde7cWbVq1dJrr72mYsWKSZIiIyO1YsUKrV27Vg0bNlSTJk00Y8YMlS9fPncPAgAAQA5RQwGwi8MwDMPVgwAAAAAAAEDRwpVSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdv8PRBw9iXVpaDAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 5: DATA AUGMENTATION\n", - "# ============================================================================\n", - "\n", - "def augment_minority_class(df, target_ratio=0.9):\n", - " \"\"\"\n", - " Balance dataset by augmenting the minority stance class\n", - " Uses advanced paraphrasing techniques and back-translation style augmentation\n", - " \"\"\"\n", - " print(\"\\n🔄 Balancing dataset with data augmentation...\")\n", - " \n", - " # Count samples per stance\n", - " stance_counts = df['stance'].value_counts()\n", - " majority_class = stance_counts.idxmax()\n", - " minority_class = stance_counts.idxmin()\n", - " \n", - " majority_count = stance_counts[majority_class]\n", - " minority_count = stance_counts[minority_class]\n", - " \n", - " # Calculate how many samples to generate\n", - " target_minority_count = int(majority_count * target_ratio)\n", - " samples_to_generate = max(0, target_minority_count - minority_count)\n", - " \n", - " print(f\" Majority class ({majority_class}): {majority_count}\")\n", - " print(f\" Minority class ({minority_class}): {minority_count}\")\n", - " print(f\" Target minority count: {target_minority_count}\")\n", - " print(f\" Generating {samples_to_generate} augmented samples...\")\n", - " \n", - " if samples_to_generate == 0:\n", - " print(\" ✅ Dataset already balanced!\")\n", - " return df\n", - " \n", - " # Get minority class samples\n", - " minority_df = df[df['stance'] == minority_class].copy()\n", - " \n", - " # More sophisticated augmentation patterns\n", - " def augment_text(text):\n", - " \"\"\"Apply multiple augmentation techniques\"\"\"\n", - " \n", - " # Pattern 1: Synonym replacement\n", - " synonyms = {\n", - " 'should': ['must', 'ought to', 'needs to'],\n", - " 'can': ['could', 'may', 'might'],\n", - " 'people': ['individuals', 'persons', 'citizens'],\n", - " 'because': ['since', 'as', 'due to the fact that'],\n", - " 'many': ['numerous', 'several', 'a lot of'],\n", - " 'important': ['crucial', 'essential', 'vital', 'significant'],\n", - " 'good': ['beneficial', 'positive', 'advantageous'],\n", - " 'bad': ['harmful', 'negative', 'detrimental', 'adverse'],\n", - " 'make': ['create', 'produce', 'generate'],\n", - " 'use': ['utilize', 'employ', 'apply'],\n", - " 'help': ['assist', 'aid', 'support'],\n", - " 'need': ['require', 'necessitate'],\n", - " 'want': ['desire', 'wish', 'seek'],\n", - " 'think': ['believe', 'consider', 'feel'],\n", - " 'know': ['understand', 'recognize', 'realize'],\n", - " 'get': ['obtain', 'acquire', 'receive'],\n", - " 'give': ['provide', 'offer', 'supply'],\n", - " }\n", - " \n", - " words = text.split()\n", - " for i, word in enumerate(words):\n", - " word_lower = word.lower().strip('.,!?;:')\n", - " if word_lower in synonyms and random.random() < 0.3: # 30% chance\n", - " replacement = random.choice(synonyms[word_lower])\n", - " # Preserve capitalization\n", - " if word[0].isupper():\n", - " replacement = replacement.capitalize()\n", - " words[i] = word.replace(word_lower, replacement)\n", - " \n", - " augmented = ' '.join(words)\n", - " \n", - " # Pattern 2: Sentence restructuring (simple reordering)\n", - " if 'because' in augmented.lower() and random.random() < 0.3:\n", - " parts = augmented.split(' because ')\n", - " if len(parts) == 2:\n", - " augmented = f\"Because {parts[1].strip()}, {parts[0].lower().strip()}\"\n", - " \n", - " return augmented\n", - " \n", - " augmented_samples = []\n", - " \n", - " # Generate augmented samples with variety\n", - " for i in range(samples_to_generate):\n", - " # Select a sample from minority class (cycle through)\n", - " sample = minority_df.iloc[i % len(minority_df)].copy()\n", - " \n", - " # Apply augmentation 1-2 times\n", - " augmented_text = sample['argument']\n", - " for _ in range(random.randint(1, 2)):\n", - " augmented_text = augment_text(augmented_text)\n", - " \n", - " sample['argument'] = augmented_text\n", - " augmented_samples.append(sample)\n", - " \n", - " # Create augmented dataframe\n", - " augmented_df = pd.DataFrame(augmented_samples)\n", - " \n", - " # Combine original and augmented data\n", - " balanced_df = pd.concat([df, augmented_df], ignore_index=True)\n", - " \n", - " # Shuffle the dataset\n", - " balanced_df = balanced_df.sample(frac=1, random_state=42).reset_index(drop=True)\n", - " \n", - " print(f\"✅ Balanced dataset created with {len(balanced_df)} samples\")\n", - " print(f\"📊 New stance distribution:\")\n", - " new_counts = balanced_df['stance'].value_counts()\n", - " for stance, count in new_counts.items():\n", - " percentage = (count / len(balanced_df)) * 100\n", - " print(f\" {stance.capitalize()}: {count} ({percentage:.1f}%)\")\n", - " \n", - " return balanced_df\n", - "\n", - "# Apply data augmentation\n", - "balanced_df = augment_minority_class(df, target_ratio=config.AUGMENTATION_RATIO)\n", - "\n", - "# Visualize before/after augmentation\n", - "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))\n", - "\n", - "# Before augmentation\n", - "df['stance'].value_counts().plot(kind='bar', ax=ax1, color=['#FF6B6B', '#4ECDC4'])\n", - "ax1.set_title('Before Augmentation', fontsize=14, fontweight='bold')\n", - "ax1.set_xlabel('Stance')\n", - "ax1.set_ylabel('Count')\n", - "ax1.tick_params(axis='x', rotation=0)\n", - "\n", - "# After augmentation\n", - "balanced_df['stance'].value_counts().plot(kind='bar', ax=ax2, color=['#FF6B6B', '#4ECDC4'])\n", - "ax2.set_title('After Augmentation', fontsize=14, fontweight='bold')\n", - "ax2.set_xlabel('Stance')\n", - "ax2.set_ylabel('Count')\n", - "ax2.tick_params(axis='x', rotation=0)\n", - "\n", - "plt.tight_layout()\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "a46aa2da", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:07:44.913226Z", - "iopub.status.busy": "2025-12-11T04:07:44.912303Z", - "iopub.status.idle": "2025-12-11T04:07:44.985179Z", - "shell.execute_reply": "2025-12-11T04:07:44.984025Z" - }, - "papermill": { - "duration": 0.107449, - "end_time": "2025-12-11T04:07:44.986725", - "exception": false, - "start_time": "2025-12-11T04:07:44.879276", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "✂️ Splitting dataset into train/val/test sets...\n", - " Training samples: 26812 (75.0%)\n", - " Validation samples: 5363 (15.0%)\n", - " Test samples: 3575 (10.0%)\n", - "\n", - "📊 Stance distribution across splits:\n", - " Train: Positive=14111, Negative=12701\n", - " Val: Positive=2823, Negative=2540\n", - " Test: Positive=1882, Negative=1693\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 6: TRAIN/VAL/TEST SPLIT\n", - "# ============================================================================\n", - "\n", - "print(\"\\n✂️ Splitting dataset into train/val/test sets...\")\n", - "\n", - "# First split: separate test set\n", - "train_val_df, test_df = train_test_split(\n", - " balanced_df,\n", - " test_size=config.TEST_SPLIT,\n", - " random_state=42,\n", - " stratify=balanced_df['stance']\n", - ")\n", - "\n", - "# Second split: separate train and validation\n", - "train_df, val_df = train_test_split(\n", - " train_val_df,\n", - " test_size=config.VAL_SPLIT / (1 - config.TEST_SPLIT), # Adjust for already removed test set\n", - " random_state=42,\n", - " stratify=train_val_df['stance']\n", - ")\n", - "\n", - "print(f\" Training samples: {len(train_df)} ({len(train_df)/len(balanced_df)*100:.1f}%)\")\n", - "print(f\" Validation samples: {len(val_df)} ({len(val_df)/len(balanced_df)*100:.1f}%)\")\n", - "print(f\" Test samples: {len(test_df)} ({len(test_df)/len(balanced_df)*100:.1f}%)\")\n", - "\n", - "print(\"\\n📊 Stance distribution across splits:\")\n", - "for name, split_df in [(\"Train\", train_df), (\"Val\", val_df), (\"Test\", test_df)]:\n", - " counts = split_df['stance'].value_counts()\n", - " print(f\" {name}: Positive={counts.get('positive', 0)}, Negative={counts.get('negative', 0)}\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "1a6c62a9", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:07:45.061315Z", - "iopub.status.busy": "2025-12-11T04:07:45.060523Z", - "iopub.status.idle": "2025-12-11T04:07:45.069063Z", - "shell.execute_reply": "2025-12-11T04:07:45.068277Z" - }, - "papermill": { - "duration": 0.046444, - "end_time": "2025-12-11T04:07:45.070257", - "exception": false, - "start_time": "2025-12-11T04:07:45.023813", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "✅ Dataset class defined successfully!\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 7: DATASET CLASS\n", - "# ============================================================================\n", - "\n", - "class ArgumentDataset(Dataset):\n", - " \"\"\"\n", - " Custom Dataset for argument generation\n", - " Input format: \"generate argument: topic: [TOPIC] | stance: [STANCE]\"\n", - " Output format: \"[ARGUMENT]\"\n", - " \"\"\"\n", - " def __init__(self, dataframe, tokenizer, max_input_length=128, max_target_length=256):\n", - " self.data = dataframe.reset_index(drop=True)\n", - " self.tokenizer = tokenizer\n", - " self.max_input_length = max_input_length\n", - " self.max_target_length = max_target_length\n", - " \n", - " def __len__(self):\n", - " return len(self.data)\n", - " \n", - " def __getitem__(self, idx):\n", - " row = self.data.iloc[idx]\n", - " \n", - " # Create input text with stronger stance conditioning\n", - " stance_instruction = \"support\" if row['stance'] == 'positive' else \"oppose\"\n", - " input_text = f\"Task: {stance_instruction} the following position with a logical argument. Topic: {row['topic']} | Generate argument:\"\n", - " target_text = row['argument']\n", - " \n", - " # Tokenize input\n", - " input_encoding = self.tokenizer(\n", - " input_text,\n", - " max_length=self.max_input_length,\n", - " padding='max_length',\n", - " truncation=True,\n", - " return_tensors='pt'\n", - " )\n", - " \n", - " # Tokenize target\n", - " target_encoding = self.tokenizer(\n", - " target_text,\n", - " max_length=self.max_target_length,\n", - " padding='max_length',\n", - " truncation=True,\n", - " return_tensors='pt'\n", - " )\n", - " \n", - " # Get input_ids and attention_mask, remove batch dimension\n", - " input_ids = input_encoding['input_ids'].squeeze()\n", - " attention_mask = input_encoding['attention_mask'].squeeze()\n", - " labels = target_encoding['input_ids'].squeeze()\n", - " \n", - " # Replace padding token ids in labels with -100 (ignored by loss function)\n", - " labels[labels == self.tokenizer.pad_token_id] = -100\n", - " \n", - " return {\n", - " 'input_ids': input_ids,\n", - " 'attention_mask': attention_mask,\n", - " 'labels': labels\n", - " }\n", - "\n", - "print(\"✅ Dataset class defined successfully!\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "0f83500f", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T04:07:45.137378Z", - "iopub.status.busy": "2025-12-11T04:07:45.136643Z", - "iopub.status.idle": "2025-12-11T04:07:51.183408Z", - "shell.execute_reply": "2025-12-11T04:07:51.182319Z" - }, - "papermill": { - "duration": 6.081922, - "end_time": "2025-12-11T04:07:51.184951", - "exception": false, - "start_time": "2025-12-11T04:07:45.103029", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "🤖 Loading model and tokenizer...\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "336d4cddc1004f71bfb6bff7d3d53646", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "spiece.model: 0%| | 0.00/792k [00:00. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565\n", - "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c1f11116bda948079e6274f4025592e1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "model.safetensors: 0%| | 0.00/892M [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 11: TRAIN THE MODEL\n", - "# ============================================================================\n", - "\n", - "model, history = train_model(\n", - " model, \n", - " train_loader, \n", - " val_loader, \n", - " device, \n", - " epochs=config.EPOCHS,\n", - " learning_rate=config.LEARNING_RATE\n", - ")\n", - "\n", - "# Plot training history\n", - "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))\n", - "\n", - "# Loss curves\n", - "epochs_range = range(1, config.EPOCHS + 1)\n", - "ax1.plot(epochs_range, history['train_loss'], 'b-o', label='Train Loss', linewidth=2)\n", - "ax1.plot(epochs_range, history['val_loss'], 'r-o', label='Val Loss', linewidth=2)\n", - "ax1.set_xlabel('Epoch', fontsize=12)\n", - "ax1.set_ylabel('Loss', fontsize=12)\n", - "ax1.set_title('Training and Validation Loss', fontsize=14, fontweight='bold')\n", - "ax1.legend()\n", - "ax1.grid(True, alpha=0.3)\n", - "\n", - "# Learning rate\n", - "ax2.plot(epochs_range, history['learning_rate'], 'g-o', linewidth=2)\n", - "ax2.set_xlabel('Epoch', fontsize=12)\n", - "ax2.set_ylabel('Learning Rate', fontsize=12)\n", - "ax2.set_title('Learning Rate Schedule', fontsize=14, fontweight='bold')\n", - "ax2.grid(True, alpha=0.3)\n", - "ax2.ticklabel_format(style='scientific', axis='y', scilimits=(0,0))\n", - "\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "aa36a444", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:17:21.791124Z", - "iopub.status.busy": "2025-12-11T06:17:21.790888Z", - "iopub.status.idle": "2025-12-11T06:17:21.797719Z", - "shell.execute_reply": "2025-12-11T06:17:21.797094Z" - }, - "papermill": { - "duration": 0.03889, - "end_time": "2025-12-11T06:17:21.798773", - "exception": false, - "start_time": "2025-12-11T06:17:21.759883", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "✅ Inference function defined!\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 12: INFERENCE FUNCTION\n", - "# ============================================================================\n", - "\n", - "def generate_argument(model, tokenizer, topic, stance, device, max_length=256, num_beams=8, temperature=0.85):\n", - " \"\"\"\n", - " Generate an argument for a given topic and stance with improved parameters\n", - " \n", - " Args:\n", - " model: Fine-tuned T5 model\n", - " tokenizer: T5 tokenizer\n", - " topic: Topic string\n", - " stance: 'positive' or 'negative'\n", - " device: torch device\n", - " max_length: Maximum length of generated text\n", - " num_beams: Number of beams for beam search (higher = better quality)\n", - " temperature: Sampling temperature (lower = more focused)\n", - " \n", - " Returns:\n", - " Generated argument text\n", - " \"\"\"\n", - " model.eval()\n", - " \n", - " # Create input text - matching training format with stronger stance conditioning\n", - " stance_instruction = \"support\" if stance == 'positive' else \"oppose\"\n", - " input_text = f\"Task: {stance_instruction} the following position with a logical argument. Topic: {topic} | Generate argument:\"\n", - " \n", - " # Tokenize\n", - " input_ids = tokenizer(\n", - " input_text,\n", - " return_tensors='pt',\n", - " max_length=config.MAX_INPUT_LENGTH,\n", - " truncation=True\n", - " ).input_ids.to(device)\n", - " \n", - " # Generate with improved parameters for coherence\n", - " with torch.no_grad():\n", - " outputs = model.generate(\n", - " input_ids=input_ids,\n", - " max_length=max_length,\n", - " min_length=35, # Minimum length for substance\n", - " num_beams=num_beams, # More beams for better quality\n", - " temperature=temperature, # Lower temperature for more coherent output\n", - " top_k=40, # Reduced top-k for better focus\n", - " top_p=0.92, # Slightly lower nucleus sampling\n", - " do_sample=True, # Enable sampling for diversity\n", - " early_stopping=True,\n", - " no_repeat_ngram_size=4, # Prevent 4-gram repetition (stricter)\n", - " length_penalty=1.5, # Stronger encouragement for longer outputs\n", - " repetition_penalty=2.0, # Very strong repetition penalty\n", - " encoder_repetition_penalty=1.5, # Also penalize input repetition\n", - " )\n", - " \n", - " # Decode\n", - " generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)\n", - " \n", - " return generated_text\n", - "\n", - "print(\"✅ Inference function defined!\")" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "db3c5d44", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:17:21.860731Z", - "iopub.status.busy": "2025-12-11T06:17:21.860537Z", - "iopub.status.idle": "2025-12-11T06:17:21.874293Z", - "shell.execute_reply": "2025-12-11T06:17:21.873580Z" - }, - "papermill": { - "duration": 0.045825, - "end_time": "2025-12-11T06:17:21.875405", - "exception": false, - "start_time": "2025-12-11T06:17:21.829580", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "✅ Evaluator initialized!\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 13: EVALUATION METRICS\n", - "# ============================================================================\n", - "\n", - "class ArgumentEvaluator:\n", - " \"\"\"Comprehensive evaluation metrics for generated arguments\"\"\"\n", - " \n", - " def __init__(self):\n", - " if ROUGE_AVAILABLE:\n", - " self.rouge_scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)\n", - " \n", - " def calculate_rouge(self, reference, generated):\n", - " \"\"\"Calculate ROUGE scores\"\"\"\n", - " if not ROUGE_AVAILABLE:\n", - " return None\n", - " scores = self.rouge_scorer.score(reference, generated)\n", - " return {\n", - " 'rouge1': scores['rouge1'].fmeasure,\n", - " 'rouge2': scores['rouge2'].fmeasure,\n", - " 'rougeL': scores['rougeL'].fmeasure\n", - " }\n", - " \n", - " def calculate_bert_score(self, references, generated_list):\n", - " \"\"\"Calculate BERTScore (batch processing for efficiency)\"\"\"\n", - " if not BERT_SCORE_AVAILABLE:\n", - " return None\n", - " P, R, F1 = bert_score(generated_list, references, lang='en', verbose=False)\n", - " return {\n", - " 'precision': P.mean().item(),\n", - " 'recall': R.mean().item(),\n", - " 'f1': F1.mean().item()\n", - " }\n", - " \n", - " def calculate_diversity(self, generated_text):\n", - " \"\"\"Calculate lexical diversity metrics\"\"\"\n", - " words = generated_text.lower().split()\n", - " if len(words) == 0:\n", - " return 0.0\n", - " unique_words = set(words)\n", - " return len(unique_words) / len(words)\n", - " \n", - " def calculate_length_similarity(self, reference, generated):\n", - " \"\"\"Calculate how similar the lengths are\"\"\"\n", - " ref_len = len(reference.split())\n", - " gen_len = len(generated.split())\n", - " return 1 - abs(ref_len - gen_len) / max(ref_len, gen_len)\n", - " \n", - " def check_creativity(self, reference, generated):\n", - " \"\"\"\n", - " Check if generated text is creative (not just copying reference)\n", - " Returns similarity score (lower = more creative)\n", - " \"\"\"\n", - " ref_words = set(reference.lower().split())\n", - " gen_words = set(generated.lower().split())\n", - " \n", - " if len(gen_words) == 0:\n", - " return 0.0\n", - " \n", - " # Calculate word overlap\n", - " overlap = len(ref_words & gen_words) / len(gen_words)\n", - " return 1 - overlap # Return creativity score (higher = more creative)\n", - " \n", - " def evaluate_test_set(self, model, tokenizer, test_df, device, sample_size=None):\n", - " \"\"\"Evaluate model on test set with comprehensive metrics\"\"\"\n", - " print(\"\\n📊 Evaluating model on test set...\")\n", - " \n", - " if sample_size:\n", - " test_sample = test_df.sample(n=min(sample_size, len(test_df)), random_state=42)\n", - " else:\n", - " test_sample = test_df\n", - " \n", - " results = []\n", - " references = []\n", - " generated_list = []\n", - " \n", - " for idx, row in tqdm(test_sample.iterrows(), total=len(test_sample), desc=\"Evaluating\"):\n", - " # Generate argument\n", - " generated = generate_argument(\n", - " model, tokenizer, row['topic'], row['stance'], device\n", - " )\n", - " \n", - " reference = row['argument']\n", - " \n", - " # Calculate metrics\n", - " rouge_scores = self.calculate_rouge(reference, generated)\n", - " diversity = self.calculate_diversity(generated)\n", - " length_sim = self.calculate_length_similarity(reference, generated)\n", - " creativity = self.check_creativity(reference, generated)\n", - " \n", - " results.append({\n", - " 'topic': row['topic'],\n", - " 'stance': row['stance'],\n", - " 'reference': reference,\n", - " 'generated': generated,\n", - " 'rouge1': rouge_scores['rouge1'] if rouge_scores else None,\n", - " 'rouge2': rouge_scores['rouge2'] if rouge_scores else None,\n", - " 'rougeL': rouge_scores['rougeL'] if rouge_scores else None,\n", - " 'diversity': diversity,\n", - " 'length_similarity': length_sim,\n", - " 'creativity': creativity\n", - " })\n", - " \n", - " references.append(reference)\n", - " generated_list.append(generated)\n", - " \n", - " # Calculate BERTScore for all samples at once (more efficient)\n", - " if BERT_SCORE_AVAILABLE:\n", - " bert_scores = self.calculate_bert_score(references, generated_list)\n", - " print(f\"\\n📈 BERTScore (Overall):\")\n", - " print(f\" Precision: {bert_scores['precision']:.4f}\")\n", - " print(f\" Recall: {bert_scores['recall']:.4f}\")\n", - " print(f\" F1: {bert_scores['f1']:.4f}\")\n", - " \n", - " results_df = pd.DataFrame(results)\n", - " \n", - " # Print summary statistics\n", - " print(f\"\\n📈 Evaluation Metrics Summary:\")\n", - " if ROUGE_AVAILABLE:\n", - " print(f\" ROUGE-1: {results_df['rouge1'].mean():.4f} ± {results_df['rouge1'].std():.4f}\")\n", - " print(f\" ROUGE-2: {results_df['rouge2'].mean():.4f} ± {results_df['rouge2'].std():.4f}\")\n", - " print(f\" ROUGE-L: {results_df['rougeL'].mean():.4f} ± {results_df['rougeL'].std():.4f}\")\n", - " print(f\" Diversity: {results_df['diversity'].mean():.4f} ± {results_df['diversity'].std():.4f}\")\n", - " print(f\" Length Similarity: {results_df['length_similarity'].mean():.4f} ± {results_df['length_similarity'].std():.4f}\")\n", - " print(f\" Creativity Score: {results_df['creativity'].mean():.4f} ± {results_df['creativity'].std():.4f}\")\n", - " \n", - " return results_df\n", - "\n", - "evaluator = ArgumentEvaluator()\n", - "print(\"✅ Evaluator initialized!\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "4ad7cc5a", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:17:21.936242Z", - "iopub.status.busy": "2025-12-11T06:17:21.935647Z", - "iopub.status.idle": "2025-12-11T06:18:41.994531Z", - "shell.execute_reply": "2025-12-11T06:18:41.993721Z" - }, - "papermill": { - "duration": 80.090603, - "end_time": "2025-12-11T06:18:41.995801", - "exception": false, - "start_time": "2025-12-11T06:17:21.905198", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "📊 Evaluating model on test set...\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e8ad7a9f1aaa4d29bcb7e7b3d69707a1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Evaluating: 0%| | 0/100 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
topicstancereferencegeneratedrouge1diversitycreativity
0Social media platforms should be regulated by ...negativePeople should be able to express themselves fr...Social media platforms should not be regulated...0.2916670.8518520.695652
1We should end racial profilingpositiveracial profiling does no one any good. it shou...racial profiling is discriminatory and should ...0.3243240.9615380.760000
2We should adopt atheismnegativePeople should be allowed to choose how to beli...we should not adopt atheism because it is a fo...0.4477610.8965520.615385
3Homeschooling should be bannednegativeabsolutely wrong to ban homeschooling because ...homeschooling should not be banned because it ...0.2745100.8611110.838710
4We should subsidize space explorationpositivewe should subsidize space exploration for rese...space exploration should be subsidized because...0.4000001.0000000.766667
5We should ban cosmetic surgerynegativewe should not ban cosmetic surgery because peo...cosmetic surgery can help people who have a se...0.3076920.9677420.733333
6We should prohibit flag burningnegativeburning the flag is freedom of speech and it w...flag burning is a free speech right and should...0.4230770.8000000.642857
7We should end racial profilingpositiveracial profiling has been used to target minor...racial profiling is discriminatory and should ...0.3478260.9642860.703704
8We should legalize cannabispositivelaw enforcement are unable to effectively prev...we should legalize cannabis because it is a na...0.3188410.9743590.736842
9We should introduce compulsory votingpositiveeveryone should be required to vote to make su...compulsory voting would ensure that all voters...0.3076920.8181820.777778
\n", - "" - ], - "text/plain": [ - " topic stance \\\n", - "0 Social media platforms should be regulated by ... negative \n", - "1 We should end racial profiling positive \n", - "2 We should adopt atheism negative \n", - "3 Homeschooling should be banned negative \n", - "4 We should subsidize space exploration positive \n", - "5 We should ban cosmetic surgery negative \n", - "6 We should prohibit flag burning negative \n", - "7 We should end racial profiling positive \n", - "8 We should legalize cannabis positive \n", - "9 We should introduce compulsory voting positive \n", - "\n", - " reference \\\n", - "0 People should be able to express themselves fr... \n", - "1 racial profiling does no one any good. it shou... \n", - "2 People should be allowed to choose how to beli... \n", - "3 absolutely wrong to ban homeschooling because ... \n", - "4 we should subsidize space exploration for rese... \n", - "5 we should not ban cosmetic surgery because peo... \n", - "6 burning the flag is freedom of speech and it w... \n", - "7 racial profiling has been used to target minor... \n", - "8 law enforcement are unable to effectively prev... \n", - "9 everyone should be required to vote to make su... \n", - "\n", - " generated rouge1 diversity \\\n", - "0 Social media platforms should not be regulated... 0.291667 0.851852 \n", - "1 racial profiling is discriminatory and should ... 0.324324 0.961538 \n", - "2 we should not adopt atheism because it is a fo... 0.447761 0.896552 \n", - "3 homeschooling should not be banned because it ... 0.274510 0.861111 \n", - "4 space exploration should be subsidized because... 0.400000 1.000000 \n", - "5 cosmetic surgery can help people who have a se... 0.307692 0.967742 \n", - "6 flag burning is a free speech right and should... 0.423077 0.800000 \n", - "7 racial profiling is discriminatory and should ... 0.347826 0.964286 \n", - "8 we should legalize cannabis because it is a na... 0.318841 0.974359 \n", - "9 compulsory voting would ensure that all voters... 0.307692 0.818182 \n", - "\n", - " creativity \n", - "0 0.695652 \n", - "1 0.760000 \n", - "2 0.615385 \n", - "3 0.838710 \n", - "4 0.766667 \n", - "5 0.733333 \n", - "6 0.642857 \n", - "7 0.703704 \n", - "8 0.736842 \n", - "9 0.777778 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 14: RUN TEST SET EVALUATION\n", - "# ============================================================================\n", - "\n", - "# Evaluate on test set (use sample_size=50 for faster evaluation)\n", - "test_results = evaluator.evaluate_test_set(\n", - " model, \n", - " tokenizer, \n", - " test_df, \n", - " device,\n", - " sample_size=100 # Adjust based on your needs\n", - ")\n", - "\n", - "# Display sample results\n", - "print(\"\\n📋 Sample Evaluation Results:\")\n", - "display(test_results[['topic', 'stance', 'reference', 'generated', 'rouge1', 'diversity', 'creativity']].head(10))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "5798664b", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:18:42.059176Z", - "iopub.status.busy": "2025-12-11T06:18:42.058941Z", - "iopub.status.idle": "2025-12-11T06:18:43.060165Z", - "shell.execute_reply": "2025-12-11T06:18:43.059452Z" - }, - "papermill": { - "duration": 1.036006, - "end_time": "2025-12-11T06:18:43.063635", - "exception": false, - "start_time": "2025-12-11T06:18:42.027629", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAPeCAYAAADEZ225AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyNdf/H8feZ7cxizTAMYydrtiRLUURIyF0qNGizVShFkiRESHeKu8VWCt1F7rTLVmSLkH0dJcvJMs1itnP9/vCbqzmzmeWYa+ac1/PxOA/X8v1e53MW5/rM9bmu72UzDMMQAAAAAAAAAAAAgCLNx+oAAAAAAAAAAAAAAOQfhT8AAAAAAAAAAADAA1D4AwAAAAAAAAAAADwAhT8AAAAAAAAAAADAA1D4AwAAAAAAAAAAADwAhT8AAAAAAAAAAADAA1D4AwAAAAAAAAAAADwAhT8AAAAAAAAAAADAA1D4AwAAAAAAAAAAADwAhT8AKCQWLFggm81mPgqDtWvXusR0/Phxc13//v3N5e3atbMsxrReeuklM6aqVataHQ4AeKzs9g9FWWHcF8O9qlatan6+L730ktXhSJLatWtnxtS/f39z+fHjx12+j2vXrrUsxrTSxrRgwQKrwwEAXEPu/Bu7sO7X4D5F7ThRUcoLgdyi8IciLf1Bp9SHr6+vSpUqpaZNm+q5557T6dOns93Or7/+qiFDhqhhw4YqVaqUAgICFBYWpttvv13Tp0/XpUuXMu2XdoeW1cGhtOuz+sF2Op1asWKF+vTpo9q1a6tkyZLy9/dXqVKldMMNN+ihhx7SokWL9Pfff7v0S7szyO6Rm4Nxv//+u4YPH6769esrJCREdrtd5cuXV8OGDdW7d29NmTJFFy5cyPH2vEn6g4U2m00BAQEqXbq0atWqpS5dumj69OlyOBzXPJbCmLzkF0U9AHCfzHKogIAAlSxZUtWrV1eHDh00YcIEnTx50upQCw2rioLkZq7S5jg2m01+fn4KDg5WhQoV1Lx5cz366KNas2bNNY/DU4vEFPUAIOfOnDmjiRMnqm3btgoLC1NAQIBCQkJUv359Pfzww/rqq69kGIbVYWapMP2NbVVRMD4+XtOmTdPNN9+sUqVKyd/fX6Ghobr++uvVtWtXjR07Vr/99luBxFIYpD/O6ePjo8DAQJUtW1YNGzbUfffdp8WLFyshIeGaxuGpRWKKeihIflYHAFwLTqdTly5d0o4dO7Rjxw4tWrRIW7ZsUUREhEu75ORkPf300/r3v/+dYRtnz57V2bNntWbNGk2dOlWLFy9Wx44d3R7r3r179eCDD+rXX3/NsO7SpUvavXu3du/erQ8++ECnTp3S6NGj3R5Dql9++UW33357hkLnmTNndObMGe3Zs0fLli1T586dVbp06WsWhydJSkrSxYsXdfHiRR0+fFhfffWVXnzxRb3++ut6/PHHXdo2b95cr732mkWRZq5GjRouMV133XUWRnN1HTt2VLFixSRJJUuWtDgaAChakpKSlJSUpOjoaB07dkyrV6/WxIkTNW7cOI0bN04+Pv+cM1jU9g85Vdj2xeRmV5eSkqL4+HjFx8fr9OnT2rZtm9577z3deuutWrx4sSpVquTSfuzYseb72apVKytCzmDw4MG66667JEkNGjSwOJqrS/t/pHnz5hZGAgDWefvtt/X000/r8uXLLsuTkpK0d+9e7d27V/PmzdOxY8csL6rlhzv/xr7uuutc9iE1atTI1/by6+LFi7r11lu1e/dul+V//fWX/vrrLx08eFBffvmlypYtq/r161sUpbUMw1BCQoISEhLkcDi0Z88effLJJxozZow++ugjtWnTxqX9/fffb+Yy6Y/BWqWoHScqankhCi8Kf/AovXv31o033qjo6GitWLHC3HmfPn1ar7/+umbOnOnS/oknntDcuXPN+fDwcN13330KDQ3V7t279d///lcpKSlyOBzq1q2bfvjhB7Vu3dpt8e7fv1+33nqr/vrrL3NZtWrV1KVLF1WsWFGXL1/WwYMHtWHDBv3xxx/Zbqt06dJ6/vnnM12X04NxQ4YMMQ+EhISEqHfv3qpevbqSkpJ06NAhbdiwoVCe+Z+YmCjDMGS3260OxcWgQYNUvXp1nT9/Xps3b9batWtlGIbi4+M1aNAgXbhwwaWQW79+/UKTTMbGxiooKEgRERF65plnrA4nx1q1alVoDuIBQFGSmkNdunRJv/zyi7755hulpKQoJSVFL730kk6fPq05c+aY7YvC/uHvv/9W8eLFc9WnMO2LJXKzq6levboGDx6shIQEHTt2TF988YXOnDkjSVq/fr3atGmjzZs3KywszOzz6KOPXtOYciM6OlolSpRQ7969rQ4lVwr7/30AuNamTZum5557zpz39fVV165d1axZM9lsNh0+fFjffPONuU/KidR9QmHjzr+xS5QoUaj2Ia+++qpL0a979+5q3Lix/P39FRUVpZ9//lm7du2yMMKs5SXPzYvXXntNycnJOn36tL7//nvz6seTJ0+qffv2+u6773Trrbea7e+8807deeed1zyunEj9P1XUjhMVtbwQhZgBFGFr1qwxJJmP+fPnm+suXrxoBAQEmOs6derk0venn35y6du0aVPj0qVLLm1Wr15t+Pj4mG3q169vpKSkmOsjIyNdtpGZtOsjIyNd1rVq1cpl/dixY43k5OQM23A6ncbatWuN7777zmV527Ztzb5VqlTJwTuWtUuXLrnEsmDBgkzbbdmyxTh37lyG5TExMcbrr79u3HrrrcZ1111n+Pv7G2FhYcatt95qzJ49O0P7bdu2Gf369TOqVq1q2O12IyQkxKhfv74xcuRI4+TJkxnap32tkZGRxu7du43u3bsb1113nSHJ2LFjh9n2yJEjxhNPPGHUqVPHCA4ONgIDA426desazz33XKaxnzt3znj66aeNevXqGcHBwWbszZs3N4YOHWps2rQpR+/h/PnzXd7DNWvWuKz/8ccfjTJlypjrfXx8jD179mTZPy8xpv9OZvZIVaVKFXPZ+PHjjQ0bNhjt27c3SpQoYUgyLly4kOH/2LFjx8z+aZ+rbdu2xpkzZ4yHH37YCAsLM+x2u9GkSRPj448/zvA+pX/etMaPH5/hO50+hsweqf/3M+uf1vnz540JEyYYzZo1M0qUKGH4+/sb4eHhRs+ePY1vv/32qp/p5cuXjVdeecWoVauWERAQYFSsWNF4+umnjcuXL2foCwCFWXY5lGEYxt69e41q1aq5tPnqq6+y7J+6f2jTpk2WeY9hGMbbb79tri9RooQRFxdnrrt06ZIxefJk46abbjJ/oyMiIozIyEiX/WWq9L/5DofDGDJkiFGxYkXDx8fHeP311w3DMIzjx48bjz32mFGzZk0jMDDQsNvtRnh4uNGqVStjxIgRxt69e81tZrYvPnbs2FX3Q+PHjzdefPFFc75SpUouOaNhGMaePXtc+vz888/ZfkbenJtlJ20e0bZtW5d18fHxRv/+/V3et969e2fZP30e8vnnnxudOnUyypUrZ/j5+RnFixc3qlevbnTv3t2YPHmykZKSkuPvg2Fk/D7FxsYazz//vFGtWjXDz8/PeOqppzJ9L1Olf641a9YYS5YsMZo1a2YEBQUZZcuWNQYMGGCcPn3a5XVkl1MahuvfJ6n/99PGkNkjbV6V3W+HYRjG999/b/Tq1cuoWLGiERAQYBQvXtxo0qSJ8eKLLxp//fVXtp/p+PHjjW3bthldu3Y1SpYsaQQFBRlt2rQxNmzYkKEfAFjht99+M3x9fc3frXLlyhm//PJLhnaJiYnGO++8Y5w5c8Zclv73c8WKFUbLli2NkJAQo2TJki79169fb/Tu3duIiIgwf0tvvvlmY/bs2UZiYmKG53v//feNe++916hTp45RpkwZcz/WqFEj49lnn3XZ3+b3b+xLly4ZwcHB2e4L7rvvPnN9hw4dDMPIfL9mGK77gcwebdu2NX744QeXZQcOHHB5vpSUFCMsLMxc/+qrr17tozSaNGlitu/fv3+mbY4fP55pHup0Oo1PPvnE6NatmxEeHm4EBAQYpUuXNho3bmyMGDHCSEhIcGn/+++/G88884zRoEEDIyQkxLDb7UaVKlWMPn36GJs3b86w/ZzmuYaR+xw6O1c7zjlnzhzDZrOZ6ytXruxyPCT9caK0du3aZfTp08eoUqWKERAQYAQGBhoRERHGbbfdZowePdr4/fffDcPI2ffBMDL/Pr333ntGkyZNjMDAQKNRo0aZvpdppc9Btm/fbtx5551GiRIljGLFihkdO3Y0tm3b5tInq+9xqszyurQxZPVI/Xsqq7ww1YEDB4xBgwYZtWvXNoKCgoygoCCjVq1axmOPPWbs27cv28+0bdu2xqlTp4xHH33UKF++vBEQEGDUqVPHeOeddzL0Q9FH4Q9F2tUOWqUeeJBk9OnTx2Vd+p3Z999/n+lzPPDAAy7t1q5dm+U2MpN2fdof7J9//tllXdeuXXP9+t1Z+Pvrr79c4nnmmWcyLUJm5siRI0atWrWy3Hml7mxTvf766y4F1fSPkiVLZrvjbNKkiRESEuLSJ/Xg0ooVK1wS0PSPihUruhzgi4+PN66//vpsd77PPfdcjt6HqxX+DMMwPvnkE5c2jz32WJb98xJjXgt/LVu2dPnjRcpd4a9evXpG1apVM32+GTNmuLwHVhX+9u7da1SqVCnb7aQegMvqM0l7QDvto1+/ftl8MwCg8LlaDmUYVwpKadt07Ngxy/6p+4f333/fXFaiRAkjPj7eZZu33HJLpvvAgwcPZrkfkWTY7XZj2bJlLttK+5sfGhpq1KlTx6XP66+/bpw5c8YoW7Zstr/9c+bMMbeZn8LfqVOnDH9/f3PZqlWrXOJNWxisV6/eVT8jb83Nria7wp9hGEZycrLRqFEjs43NZjMPJKXvnzYPSf/ZZ/aIj4/PV+Ev7fc/bd6R08Jf165dM32+6tWrG2fPns3ytaSX2f99dxX+Ro4cme12KlasmOEgZNrP5KabbnL5f5T2NyA33xMAuFYGDRrk8vv06aef5rhvdvuEtIW/559/Ptvf0ltuucWIiYlx2XazZs2u+vv7xx9/GIbhnr+x+/XrZy5PmyMahmH8/fffRlBQkLn+o48+Mgwjf4U/wzCMBg0amMtGjRrl8pxpC4O+vr7GqVOnrvp5NGzY0OU50l8MkJX4+Pgs98mpjwsXLpjt161bZ5QuXTrLtj4+PhmOm+QkzzWMvOXQ2cnJcc6hQ4e6tEn9fNP3T5un/fbbb9nmg9I/JxnmtfCX/v9Ubgt/7du3N+x2e4bnCwoKcjkBycrC37Jly4zAwMBsP+/0J+Cn/UyqV69uVKhQIdO+77//fhbfChRVDPUJjxQdHa0FCxbo/Pnz5rL77rvPpc2GDRvM6dKlS6t9+/aZbqt37976+OOPXfq1bds23zGuXr3aZf6RRx7J1/aio6M1ffr0DMsjIiJydJn4ddddpypVqujEiROSpOnTp2v+/Plq3bq1mjRpopYtW6pdu3YZhmxKSUlRjx49dOjQIXNZ8+bN1b59e6WkpGjz5s2Kjo42161fv14jR440b3BduXJlPfDAA4qJidH8+fMVFxenS5cuqVevXjp8+HCm96vZsWOH/Pz81K9fP9WqVUv79+9XYGCgjh07pgceeEDx8fGSrgzX1bNnTzmdTi1evFgnTpzQH3/8oV69emn37t3y9fXVmjVrdODAAUlSYGCgHn74YVWsWFGnT5/W4cOHtW7duqu+d7lxzz33qHTp0rpw4YIkac2aNVftk5sYU8dTnzx5svkcd9xxx1XvT7lp0yYFBwerb9++qlixonbs2CFfX98cv669e/eqZMmSGjFihGw2m+bNm6eLFy9KkkaPHq27775bNWvWzPH20kq9j9S3336r7777TlLGoW2vdn+Z5ORk9ezZU7///rukK0Ox9OvXT5UqVdKKFSu0Z88eSdIbb7yhpk2b6qGHHsp0Oz/++KN69uypevXqafHixTp+/LgkafHixXr11VcVHh6ep9cIAIVR8+bN1ahRI/M+xOvXr1dKSkq2+4f77rtPTz75pGJjYxUdHa1Vq1apV69ekq4MCfTjjz+abQcMGCDpSi7Rs2dP8ze1bNmyevDBB3Xdddfpm2++0caNG5WQkKCHHnpIzZo1U/Xq1TM8r8PhkMPhUIcOHdS6dWudO3dOYWFh+vTTT3Xu3DlJV/YdAwYMUJkyZXTq1Cnt37/fJR/MSur9aLZt26alS5eay9Peo6ZVq1aqUKGCevXqpSVLlkiS3nvvPXXp0sVs88knn2R47Vd7Xm/MzfLL19dX/fv314gRIyRJhmFo3bp1evDBB7Ptl3Yo2+bNm+uuu+5ScnKyTp48qc2bN2vfvn2Scv59yMyGDRvUokUL3XHHHYqNjVXlypVz9dpWrVql2267Tbfccot++ukn8++Jo0eP6rnnntO8efNytb20Uu8nM2rUKHNZ6hDAUs7uifPBBx+43Foh9fM+deqUFi5cqJSUFP3xxx+655579Ntvv8nPL+PhiC1btqhSpUrq06ePTp48qY8++kiSlJCQoDfeeMPlNg0AYIW0x3JKly6tHj165Gk7GzZsUGhoqO6//36VKVPGHEJxyZIlmjx5stmuU6dOat26tc6cOaOFCxcqJiZGGzZs0IgRI/TOO++Y7cqVK6du3bqpRo0auu666+Tr66s//vhDS5cu1V9//aU//vhDr7zyit5++223/I09YMAAffDBB+Z7cvbsWZUrV06StGLFCnPfX6pUKfXs2TPbbY0dO1bHjx93ed2DBg0y7wGYeq+4YcOGadCgQZKkRYsWadKkSfL395fkmmfdeeedqlChQrbPKUlNmzY1h/pct26dypcvrxYtWqhZs2a66aabdPvttys0NDRDv6efflqrVq0y5yMiItSzZ0+VLFlSv/32m7744gtz3cWLF3XPPfeYx2eCgoI0YMAAlShRQh9//LFOnDghp9OpZ555Rs2aNcv0eGNWea47cui8eOSRR/TWW2+Z82vWrNEDDzyQbZ+FCxcqLi5OklSpUiX17dtXISEh+v3337Vnzx79/PPPZtucfh/S27Bhg6pUqaJevXopODhYZ8+ezdXrWr16tWrXrq17771Xv//+uz744AM5nU7Fx8drwIAB2r9/f55z1dT7DM6ZM0dHjx6VJN14440ux2uvdpumw4cPq1+/fkpISJAklSlTRpGRkbLZbFq4cKEcDocSEhIUGRmpZs2aqVatWhm2cfToUQUGBmrw4MEKCgrSnDlzzP+r06ZN08CBA/P0+lBIWVx4BPIlJ2cpBQcHG6+99lqGvmnPPmrcuHGWz7Fjxw6X7Q0ZMsRcl58r/oYMGeKyLv0ZrC1atMj09aR1tTNzpczPhM7KZ5995nLJfvpHyZIljQkTJricbb5y5UqXNo899pjhdDpdtnvkyBFzunv37mbb4sWLuwx78eWXX2Z6BlNmr3XFihUZ4h8xYoS5vnbt2i5XGZw6dcrlirbPP//cfM2py9IPB2sYhnH58mWXs8Szk5Mr/gzDMG666SaX72dW/VPlJcbsrqrLrI2vr6+xffv2DG1yesWfJOOnn34y16UfSnfs2LE5ii27M7GuNoxndm2WL1/uEs/bb79trouLi3OJKe1VEOk/k+HDh5vrdu7c6bJu5cqVmcYEAIVRTq74MwzXYZokmVcVZbd/SDvUYq9evczl06ZNM5fXrVvXXP7555+77I8OHjxorktOTnY5G3vEiBHmuvRnzqb9jU41c+ZMc/3jjz+eYX1MTIzLMInZXSl1tauoDMN1/+fv729ue/fu3eZyPz+/DEMzZsUbc7OrudoVf5nFPW3atEz7p81DbrjhBnN5ZsO8Hzt2zGX41px8H9K3ueeeezIMAWsYOb/ir2PHjuZn6XQ6jY4dO5rrAgICjNjY2BzFlt3//Zz8LmTVJu2VllWrVnUZyjftML+SjOXLl5vr0n4mISEh5hUphmEYPXr0MNc1bdo003gAoCClvWqpRYsWueqb9newRIkSxokTJzK0STv85EMPPeSybtmyZS75RPrhk2NjY43vv//eeOedd4yZM2car732mst+vnr16i7t8/M3ttPpdBkW/s033zTXdenSxVw+ePBgc3l2V0pd7Soqw7iSt5UqVcpsk3q1ZXJyssswnzm9CvP48eMu20v/8PPzM/r27Ws4HA6zz/nz5w0/Pz+zTZMmTYy///7bZbtRUVHmcKyvv/66yza//PJLs92ZM2eMYsWKmeu6d++e6fueVZ6b1xw6Ozk5zhkXF+fSpkuXLpn2T5unPfnkk+byKVOmZNjm+fPnjfPnz5vzOfk+pG9TrVo1lystU+X0ir/Q0FDj4sWL5rpJkya5bD/19kt5ueIvJ+uu1uapp54yl/v4+Bi7d+821+3evdtl9I60o1ml/0zT5uyzZs1yWRcdHZ1pTCiafAR4uJ49e5pnBBVmNpvN6hDUs2dP/fDDD7r99tvl45Px5+HSpUsaP368Jk6caC5Le+a+JE2cODHDa0l7VtGmTZvM6TvvvNM8I0ySOnfurLJly2baNq0GDRqoe/fuGZb/9NNP5vTBgwcVFBQkm80mm82m8PBwpaSkmOs3btwo6cpZbKlnyn/zzTeqX7++HnjgAY0fP14rVqxQYmKiKlasmGkceWX8/xn1OVUQMXbu3FlNmzbNc//q1au7nN3eqlUrVatWzZzfvn17vuLLr/TfpbRX9AUFBblcEbxr1y7zTLT0hgwZYk5ff/31LutSz+ADAE+S232W5Ho126pVq/T3339LkssICmnbpN1/p6SkqHbt2ub+28/PzzwTW/pn/52ZF154IcOy1q1bm3nJf/7zHzVr1kz9+vXTK6+8oq+//lp+fn4KCwvL9WvMSqtWrcz9aVJSkhYsWCDJ9Sz0Ll265Pg5vTE3c4e8fG9vueUWczp1tIShQ4fqrbfe0u7du1W1atVMP4PceP755/O1jb59+5qfpc1mU58+fcx1iYmJLv9XClpcXJx27dplzt97770KCgoy59OPppDVd6l79+4uIyikzbfItQB4koceeijDld9xcXHauXOnOb9o0SJzv2mz2Vz+bk1OTtaWLVvM+ZkzZyosLEwdOnTQY489ppEjR2rUqFH6/PPPzTapI+C4g81mU//+/c351Dzvr7/+Mq8ilHI2ykFOhYSEuFyR9O6770q6MnrBmTNnJEmhoaHq1q1bjrZXpUoVbd++XX379lVwcHCG9cnJyfrwww917733mrnFzz//rOTkZLPN6NGjVaxYMZd+ERER5pWIafd3ZcuWVefOnc35cuXKucxntW+UMs9z3ZVD51Z+86wXXnhBrVq10sCBAzV16lStXbtWJUqUyHRUidwYOnSoSpUqlef+d999t8sIB3379nVZX5iOazVr1kwNGjQw5xs0aKBmzZpl2jat8PBwl5yd41qejcIfPErv3r01efJk3XXXXeayxYsXq3v37hl2TGkv+4+Kispym6nDK2XWL3VHnury5csu86mXS6cKCAgwp9MXalKHckz15JNP6rXXXsvxsKJVqlSRceW+nS6PtWvX5qh/qnbt2mn16tU6f/68vvrqK7300kvmED+pXn/9dXM67XCqwcHBLgeLMpO2fWYHvdIuy2qHU6dOnatu+2pSh/2qVKmSFixYYA7fsHfvXi1ZskQvv/yyevbsqfDwcHPILndwOp06fPiwOZ+Tgl1BxJjVe5pTmX3uaT/L1GE/00v//zJ1yAJ3S/vdKFasmEJCQlzWp43VMIws461atao5nX5oNafTmf9AAaCQOXjwoDkdGBioMmXKXLXPrbfeag7vfPnyZX322Wfav3+/duzYIUny8/NzKQLkZf+dXmhoaKax3XTTTZo5c6Z5QOaXX37Rhx9+qHHjxqlz586qVKlSrnOlq3nyySfN6ffff1+Sa+Evt0PoeFtu5g5pv7dSzvKtyZMnmwffYmJi9N133+ntt9/WsGHDdMMNN6hdu3aKjY3NV1zuzrfSf145ybeuVa514cIFl+dJH1tISIjLgdGsvktpcy3JNd8i1wJQGKTdpxw8eDBPRRAp831C+t/Sq0ndd65YsUJPP/20YmJism2fmJiYuyCvon///uYJLZs2bdLx48f1ySefKCkpSdKVYsTVhgzNrWHDhpnP+e233+rkyZNatmyZub5v374ZjtVlp3r16vrggw904cIFbdy4Ua+//rq6du3qcqLOmjVrzDw2fW6T9oTnzLgjz8oqzy1Keda//vUvPfPMM7Lb7UpJSdGmTZs0f/58jR49Wrfddptq1KhhDnebV4Uhz5IK5rhWXr9L2eVZErmWp+Eef/Aod955p3nG0aBBg/Sf//xHkvTDDz/oww8/VL9+/cy2t9xyizmu8vnz582zqdNLm0Ck9kuV9gxoSTp27Jjq1q1rzqduP7P27du319ixY835BQsWuJx1kXofktOnT7v9PnM5UbJkSd1555268847NX78eD388MPmfUOio6N15swZhYWFuYxBHRcX5zKue2auu+46c5zt1DOy0kq7LKuzfdIXbdJuO1X9+vVdzj5LL+2ZMffff7969eqlLVu2aPfu3Tp06JCZ2MXExOjhhx/WXXfdleEsrrxYvny5yw44s+9cZq51jFm9pzmV2djpaT/LtGddpU2g0xfH096PyJ3SfjdiYmIUGxvr8prTxmqz2bI8SyztHxCF4SpdALiWtm3bZt7fT5Latm2b46uV+vfvb56Z/PHHH7vkRJ07d3b5wzTtb3RgYKDL1WvpZXWfsez2Y8OHD9djjz2mn3/+Wb/99psOHTqkr7/+WocOHZLD4VBkZGSGE73y4/7779eoUaN07tw5HTp0SLNnzzbvD1euXDl17do1T9v1ptwsP1JSUswrLaUr++t27dpdtV+JEiX05Zdf6vfff9fPP/+sgwcPau/evVq+fLni4uK0bt06TZs2TRMmTMhzbO7Ot9J/Xqn5S/r/p/Hx8eaVDNcq1ypdurRsNpt58Ct9bLGxsS4HpLP6LqU/WEu+BaCwad++vflbeuHCBX3++ed5us9fZvuE9H+H3n333S7HoNJLHWUg7T1nixUrps8++0y33HKLAgMD9fbbb2vo0KG5ji8nKleurNtvv13ff/+9DMPQkiVL9NVXX5nr3Xm1X6pq1aqpa9eu+t///ien06l3331Xn332Wb6fMyAgQC1btlTLli01fPhwffDBBy4nqh06dEhNmzbNcB+2Y8eOZVvcTNv+WuZZec2h8yL1xLZUOT2u9dprr+mFF17Qxo0btX//fh08eFArV67UqVOndOLECQ0ZMiRfxz+tzLNSOZ1OHTlyJF9xZMUd3yXyLO/CFX/wWK+++qrLju3ll192GU7osccec2n/3HPPmUNRpVq7dq1LAlWvXj2XpKtFixYu7adOnWo+R3JysqZMmeKyPm37Fi1a6OabbzbnV6xYoalTp+b5bDF3iIyMzPLS9bQFJR8fHxUvXlyS1KZNG5d248ePz/Aa0h5MSzsc5Ndff+2yY/3qq69czkJK2zYn0rb/888/9cADD+iZZ55xeQwfPlw1atQwP4vz58/rxIkT8vf3V+vWrTVo0CDNmDHD5YbdcXFxGa7IzIuff/7ZZdhZHx8fl6sCspKXGNPuzLMattKdjh496jJ0xMaNG3Xs2DFzPu2QA2n/mNmyZYv5fdm9e7f+97//Zfkc+XlN6b9LixYtMqfj4+NdCvyNGjXKdJgPAPAmBw4c0P333++ybOTIkTnuHxkZaf5RvHr1as2fP99cl/6Kt7S/0ZcvX1b9+vUz7L+feeYZ3XLLLbk+a/zUqVM6c+aMgoODdfvtt+uJJ57Qv//9b5f8LioqSn/99ddVt5X+D+Ws9kV2u12PPvqoOT9q1Chzul+/fvLzy/m5l96Ym+VHQkKCHn/8cZeC9f333+8ydGRW9uzZo6SkJFWqVEn/+te/9Pzzz+vDDz/UI488Yrb55ZdfzOmcfh/c6cMPPzQ/S8MwtHjxYnNdQECAGjZsKCnjgeOff/5Z0pWDUen/Pkkv7fczN68pODhYjRo1Muc/+eQTlwNhaXMvKfffJQAoLIYNGyZfX19zfvDgwS77nVRJSUl67733Mj1JNishISFq3LixOf/XX3/pqaeeyrDvfPTRR1WpUiXVr1/fbJeqevXquuOOOxQYGCin06n//ve/WT6fO44bpM3r5s6dqw0bNpjbTnvy/dXkZr/6xBNPmNOvvfaa+R43a9ZMN9xwQ46f84UXXtAXX3zhMnRnqvQnVafuW2+++WaXfeXUqVMzxHrq1Cnzqse0+7tz5865FEbPnj3rMp+fPMvdOXRW3n33Xb311lvmfJUqVXTPPfdctd+xY8d08eJFlSxZUp07d9aIESM0Z84czZ4922xjdZ61cuVKRUdHm/Mffvihy/rU41pZ5VnSlfcnu6sr3XVca/v27S5XSO7Zs8flbwbyLEhc8QcPVqpUKQ0dOlSTJ0+WJB0+fFhLly41r6Rr1aqVHn/8cfOqwG3btqlu3bq67777FBoaqt27d+u///2vWcgLCAjQO++843JmR5cuXVS1alUdP35ckrRw4UJ9//33ql69uo4cOaJTp06ZbatWreoydrd05SyZ1q1bm5eLjx49Wh988IE6deqksmXL6vz581qxYkWOXm90dLSmT5+e6brOnTubCWF2Fi1apEWLFqlGjRpq06aNqlevLpvNpl9//dXlDKpbb73VLIx06dJFDRs2NMcOnzt3rnbs2KHbb79dhmHol19+0dmzZ81hEUaMGKHPP/9chmHo77//VvPmzfXggw8qJibGPGtdunImS2RkZI5ee6onnnhCc+fO1eXLl3X+/Hk1btxY9957ryIiIhQTE6O9e/dq7dq1unjxoo4dO6bSpUvr4MGDatmypZo3b65GjRopPDxcfn5++vrrr122nZdxwpcuXaqtW7fqwoUL2rx5s9asWeNy4G3q1KmqV6/eVbeTlxgrVqxoDim6YMECBQUFqXjx4qpRo4Z69uyZ69eSE126dNHAgQNls9lcPks/Pz+XM/ybN29ufh/WrVunm2++WeHh4fr++++zHXok7fAR586d04ABA1SvXj3ZbDYNHTrU5T4y6XXt2lXXX3+9WRx94okntHXrVlWsWFErVqxwOQA6YsSIXL92ACjqvv76azkcDkVHR2vHjh36+uuvXQ6CDB06VB07dszx9ipVqqQ77rhD33zzjZKTk3Xy5ElJmV/x1rVrV9WtW9e8Kq5Hjx665557VK9ePfOs2fXr1+vEiROaP3++ywGxq1m/fr369OmjNm3aqG7duuZ95dLmNQEBATk64SP9MEYPPvigWrVqJR8fH/Xr18/lKsbBgwdr2rRpSk5OdhkKPrdnoXtjbpYbJ0+e1PTp05WYmKhjx47piy++0OnTp8311apV0xtvvJGjbT3zzDPasmWL2rdvr4iICJUtW1anTp1yKVqnz7XSyu774C7ffvut2rdvr1tvvVU//vijy0lgDz74oPkdaNasmcvVd/fcc486duyoAwcOuNyHLzMVK1Y086IZM2bor7/+UlBQkJo0aaL27dtn2/fpp582D/IeP35czZs3V8+ePXXq1CktXLjQbFe7du08X/kKAFarX7++Jk6cqOeff17SlVGabrzxRt11111q0qSJbDabDh8+rG+++UZnzpxRhw4dcrX9UaNGmfdw/emnn3TDDTeoW7duKl26tP766y/t2LFDP/74oypUqGCepHX99deb99XbtWuXHnjgAdWtW1dfffWVS1Eivfz8jZ2qZ8+eKlWqlC5evOjyd3XXrl0zjJKVnbJly8rf398smI0dO1a//vqr/P391a5dO5dhzjt06KA6depo//79+cqzfvzxR02aNEllypRR27ZtVbduXYWEhOjYsWMut1MpUaKEWUgpXbq0HnvsMb399tuSrhSr6tWrpx49eqhUqVI6ePCgli9frj///FOlSpVSZGSkJk6caBZne/XqpYEDB6pEiRL66KOPzKvhbTabhg8fnqv4r2UOnWr69OlKSUnR6dOn9f3332vPnj3mOrvdrsWLF7vc1igrS5cu1fjx49WuXTvVqlVLFSpUUGxsrMs9wNPmWbn5PriLw+FQ8+bNde+99+r333/XBx98YK6rUaOGbrvtNklXvg+1a9c2hzydNGmSduzYofj4eP3www/ZPkfa/3OrVq3S6NGjFRoaqtDQ0GxHxpCu/D02Z84cJSQkyOl0qm3btoqMjJTNZtPChQvNYToDAgKu2VW+KGIMoAhbs2aNIcl8zJ8/32X92bNnjeDgYHN9/fr1DafTaa5PSkoyhg0b5rKNzB5lypQxvvnmm0xj2Lp1qxEaGppt/9DQUGPr1q2Z9t+5c6dRp06dq8Ygybjuuutc+rZt2zZH/dK/L1nJaQy7d+926XfkyBGjZs2aWfZp1KiRS/vXX3/d8PHxybJ9yZIljTVr1mT5WiMjI7N8DcuXLzdCQkKu+jqOHTtmGIZhbNq06apt77nnnhy9f/Pnz8/RexgcHGy8++67V+2fKi8xvvHGG5m269q1q9mmSpUq5vLx48dn+prS/x9Lfd8MwzAiIyPN5bVq1TLCw8Mzfc6pU6e6bPO3334z7HZ7hnZBQUFGu3btzPkqVaq49Pvzzz9d/j+nfZw7d84wDMMYP358lv337t1rVKpUKdv38cknn8zRZ5IqL//PAKAwSP/7ntXDz8/PmDhxopGSkpJt/7T7h1RLly7NsL2RI0dmGs+BAweMqlWr5iqnye43P9XHH3981W2mjSm73/3Lly8bFSpUyHQbmeV5//rXv1zaNG/ePItPI2s5+Yw8LTe7mrT5S3aPdu3aGX/88Ue2/dPmP506dcp2e4GBgcaWLVvM9jn5Plwtj7jae3ns2LEMrymz56tatapx5swZl2327ds307ZdunTJNn8ZMWJEpv2GDh1qtsmu/8iRI7N9H8PDw409e/bk6DMxjJz9PwcAK7zxxhuZ/l2b3f4tu9/PtMaMGXPV7ab9TTx06JBRvHjxDG38/PyMPn36ZLkvyu/f2KkGDx6cof/KlSsztEu/X0ufW/Ts2TPTWF577bUM25o9e7ZLG7vdbpw/fz7L9zQzOTmm5uPjY3zwwQcu/eLj4zPsT9M/Lly4YLZft26dUapUqWyfY/r06S7PkdP9X15y6OykPc5zte/fxo0bs+3ftm1bc/mUKVOuus1///vfLtu62vfhat+nnLyXaXOQVq1aGf7+/hmeLzAw0Fi3bp1Lv/feey/T2KpXr+5yjDd9jvz5559n2q9+/fpmm+xy7GXLlhmBgYFZvod2u934+OOPc/SZGEbO/qZD0cVQn/BoZcuWdRme57ffftPy5cvNeT8/P7355pvasWOHBg8erHr16ql48eLy8/NT2bJl1a5dO02bNk1HjhzJ8iz3G2+8Ubt379bYsWPVrFkzlShRQr6+vipRooRuvPFGvfDCC9qzZ0+WZ6M0atRIu3bt0uLFi9WrVy9VqVJFQUFB8vf3V5kyZdS8eXMNGjRIn332mcsVhNfCL7/8otdee808a6hMmTLy9fVV8eLF1aRJEz377LP67bffMtyDpXr16tq5c6dmzpypNm3aqHTp0vLz81NoaKhat27t8hlIV+61s3nzZvXr109VqlRRQECAgoKCVLduXY0YMUK7d+/O0b1YMtOjRw/t2bNHI0eOVMOGDVWsWDH5+vqqTJkyatmypUaNGqWffvrJvKHt9ddfrxkzZuiee+5R7dq1VbJkSfn6+qp06dJq3bq13njjDZczvXLLz89PJUuWVM2aNdW5c2fNmDFDUVFRGd6T7OQlxqFDh+qll15S9erVczWkWF6Fh4dry5YtioyMVNmyZWW329W4cWMtXrxYzz77rEvbevXq6fvvv9ctt9yioKAglShRQt26ddPmzZvVtm3bLJ+jfPny+t///qfWrVvnaez2unXr6tdff9VLL72kpk2bqlixYvLz81OFChXUs2dPffPNNzm+KgAAPFHqPr9atWpq3769JkyYoOPHj+uFF17I8b390urevXuG+6BkdSZ27dq1tWvXLk2bNk2tWrVS6dKlzXhuuOEGPfLII1q+fLk5ckNOtWnTRpMmTVLXrl1Vo0YNlzyvffv2WrBggWbMmJGjbdntdn355Zfq2LGjSpQocdX26YfzTj/EaU54Y26WWzabTYGBgSpfvrxuvPFGPfLII1q7dq3WrFmToyE+U40aNUpPPfWUbr75ZlWsWFEBAQGy2+2qXr26IiMjtWXLFpdhsnL7fXCH8ePHa+HChWrSpIkCAwNVpkwZRUZGauPGjRnu4/jee+/pmWeeMV9L7dq1NW3aNH3++efZPsekSZP01FNPqVKlSi5D2eXUjBkz9N1336lXr14KDw+Xv7+/ihUrpsaNG2vcuHHatWtXjkYiAYDC7sknn9SxY8f00ksvqU2bNipbtqz8/PwUHBysunXravDgwVq7dq2qVKmS621PnjxZP/30k/r27atq1arJbrfL399fFStWVMeOHTV58mSXq75r1qyp9evXq2PHjgoODlaxYsXUtm1brV69OtsrDvP7N3aq9PldWFhYhhGvcuLdd99VZGSkwsLCrpp7RkZGuux/e/TokeuRAxYtWqT33ntPDz74oBo1aqQKFSrI399fQUFBqlWrlvr376+tW7eqb9++Lv0CAwP1xRdfaNmyZbrrrrtUvnx5+fv7q0SJEmrYsKGeeuopl9Ekbr31Vu3Zs0dPP/206tevr+DgYAUEBKhy5crq06ePNm7cqKeffjpXsae6Vjl0KpvNpoCAAJUpU0b169fXvffeq8WLF5sjU+VUjx499OKLL6pDhw6qWrWqgoODzeMxXbt21cqVK12GcJVy931whzvuuEPr16/XHXfcoeLFiyskJMRcduutt7q0ffjhh/Xuu++qbt26CggIUPny5TV48GBt2bIl21Ef7r77bs2ePdvsl1v33nuvdu7cqUGDBqlmzZoKDAxUYGCgatSooUcffVQ7duzIcLsGeC+bYVh4QzEAAAAA8EB//vmnKlasKMMwFBQUpFOnTuVp6HAAAABkVLduXe3fv1/SlWHrO3XqZHFEAFB4cI8/AAAAAHCTtWvXKjY2Vm+88YZ5j7U+ffpQ9AMAAMinnTt36ty5c1q1apVZ9Ktdu3au7kUNAN6AK/4AAAAAwE1sNpvLfOnSpbVr1y5VqlTJoogAAAA8Q7t27bRu3Tpz3maz6X//+5+6du1qYVQAUPhwjz8AAAAAcLPSpUurS5cuWrduHUU/AAAANwoODtaNN96o5cuXU/QDgExYWvhbv369unXrpvDwcNlsNq1YseKqfdauXaumTZvKbrerZs2aWrBgwTWPEwAAAABywjAMGYah8+fPa9WqVWrYsKHVIQEAAHiEtWvXyjAMxcbGauvWrerevbvVIQFAoWRp4S82NlaNGjXSW2+9laP2x44dU9euXXXbbbdp586dGj58uB555BF988031zhSAAAAAAAAAAAAoHArNPf4s9lsWr58uXr06JFlm+eee06rVq3Snj17zGX333+/Ll68qK+//roAogQAAAAAAAAAAAAKJz+rA8iNTZs2qUOHDi7LOnXqpOHDh2fZJyEhQQkJCea80+nU+fPnVaZMGdlstmsVKgAAKKIMw9Dff/+t8PBw+fhwO+TsOJ1OnTp1SsWLFyevAgAAGZBX5Rx5FQAAyE5u8qoiVfg7ffq0wsLCXJaFhYUpOjpa8fHxCgoKytBnypQpmjBhQkGFCAAAPMTJkydVqVIlq8Mo1E6dOqWIiAirwwAAAIUcedXVkVcBAICcyEleVaQKf3kxZswYjRw50py/dOmSKleurJMnT6pEiRIWRgYAAAqj6OhoRUREqHjx4laHUuilvkfkVQDyLDZWCg+/Mn3qlBQSYm08ANyKvCrnyKsAL0Y+BCAHcpNXFanCX/ny5XXmzBmXZWfOnFGJEiUyvdpPkux2u+x2e4blJUqUIJECAABZYoilq0t9j8irAORZYKA0bdqV6TJlpIAAa+MBcE2QV10deRXgxciHAORCTvKqIlX4a9mypb788kuXZd99951atmxpUUQAAAAAgDwLCJBGjbI6CgAAAOuQDwFwM0vvrBwTE6OdO3dq586dkqRjx45p586dioqKknRlmM6HHnrIbD9o0CAdPXpUzz77rPbv36+3335by5Yt04gRI6wIHwAAAAAAAAAAACg0LL3ib9u2bbrtttvM+dR78UVGRmrBggX6888/zSKgJFWrVk2rVq3SiBEj9MYbb6hSpUp677331KlTpwKPHQAAAACQTykp0i+/XJlu2lTy9bU2HgAAgIJGPgTAzSwt/LVr106GYWS5fsGCBZn22bFjxzWMCgAAAABQIC5flm666cp0TIwUEmJtPMiW0+lUYmKi1WGgEPH395cvB6gBIH/Ih7wSeRXSc2deVaTu8QcAAAAAAApeYmKijh07JqfTaXUoKGRKlSql8uXLy2azWR0KAABFAnkVsuKuvIrCHwAAAAAAyJJhGPrzzz/l6+uriIgI+fj4WB0SCgHDMBQXF6ezZ89KkipUqGBxRAAAFH7kVciMu/MqCn8AAAAAACBLycnJiouLU3h4uIKDg60OB4VIUFCQJOns2bMqV64cw34CAHAV5FXIijvzKsrJAAAAAAAgSykpKZKkgIAAiyNBYZR60DIpKcniSAAAKPzIq5Add+VVFP4AAAAAAMBVcQ83ZIbvBQAAucf+E5lx1/eCwh8AAAAAAAAAAADgAbjHHwAAAADAGv7+0vjx/0wDAAB4G/IhAG7GFX8AAAAAAGsEBEgvvXTlwX1O4Gb9+/eXzWbToEGDMqwbOnSobDab+vfvX/CB5YBhGHrxxRdVoUIFBQUFqUOHDjp06FC2fVJSUjRu3DhVq1ZNQUFBqlGjhiZOnCjDMMw2MTExGjZsmCpVqqSgoCDVq1dPc+fOzbCtTZs26fbbb1dISIhKlCihW2+9VfHx8W5/nQAAkQ+hSPC2vKpq1aqy2WwZHkOHDjXbnD59Wv369VP58uUVEhKipk2b6tNPP810ewkJCWrcuLFsNpt27tzpzpeXKQp/AAAAAADAI0VERGjJkiUuRavLly/ro48+UuXKlS2MLHvTpk3Tv//9b82dO1ebN29WSEiIOnXqpMuXL2fZZ+rUqZozZ45mz56tffv2aerUqZo2bZrefPNNs83IkSP19ddf68MPP9S+ffs0fPhwDRs2TCtXrjTbbNq0SXfeeac6duyoLVu2aOvWrRo2bJh8fLz3ENL69evVrVs3hYeHy2azacWKFS7r83JAEQCAosab8qqtW7fqzz//NB/fffedJOnee+812zz00EM6cOCAVq5cqd27d+uee+7Rfffdpx07dmTY3rPPPqvw8HD3v7gseG/WBgAAAACwltMp/fbblYfTaXU08EBNmzZVRESEPvvsM3PZZ599psqVK6tJkyYubZ1Op6ZMmWJeMdeoUSP997//NdenpKTo4YcfNtdff/31euONN1y20b9/f/Xo0UPTp09XhQoVVKZMGQ0dOlRJSUk5jtkwDM2aNUsvvPCCunfvrhtuuEGLFi3SqVOnMhSc0tq4caO6d++url27qmrVqvrXv/5lFu/StomMjFS7du1UtWpVPfbYY2rUqJFLmxEjRujJJ5/U6NGjVb9+fV1//fW67777ZLfbc/waPE1sbKwaNWqkt956K9P1eTmgCAAm8iEUEd6UV5UtW1bly5c3H1988YVq1Kihtm3bmm02btyoJ554QjfddJOqV6+uF154QaVKldL27dtdtvXVV1/p22+/1fTp03Mcd35R+AMAAAAAWCM+XmrQ4MqDYQSLntjYrB/pCx7ZtU3/2WfVLo8GDhyo+fPnm/Pz5s3TgAEDMrSbMmWKFi1apLlz5+q3337TiBEj1LdvX61bt07SlQNYlSpV0ieffKK9e/fqxRdf1PPPP69ly5a5bGfNmjU6cuSI1qxZo4ULF2rBggVasGCBuf6ll15S1apVs4z32LFjOn36tDp06GAuK1mypFq0aKFNmzZl2a9Vq1ZavXq1Dh48KEn69ddf9eOPP6pz584ubVauXKk//vhDhmFozZo1OnjwoDp27ChJOnv2rDZv3qxy5cqpVatWCgsLU9u2bfXjjz9m+bzeoHPnznrllVfUs2fPDOvyekARAEzkQ5DIqwpZXpVWYmKiPvzwQw0cOFA2m81c3qpVKy1dulTnz5+X0+nUkiVLdPnyZbVr185sc+bMGT366KP64IMPFBwcnKPncwe/AnsmAAAAAADgOYoVy3pdly7SqlX/zJcrJ8XFZd62bVtp7dp/5qtWlRyOjO3S3KsuN/r27asxY8boxIkTkqSffvpJS5Ys0do0z5mQkKDJkyfr+++/V8uWLSVJ1atX148//qj//Oc/atu2rfz9/TVhwgSzT7Vq1bRp0yYtW7ZM9913n7m8dOnSmj17tnx9fVWnTh117dpVq1ev1qOPPipJCg0NVY0aNbKM9/Tp05KksLAwl+VhYWHmusyMHj1a0dHRqlOnjnx9fZWSkqJJkyapT58+Zps333xTjz32mCpVqiQ/Pz/5+Pjo3Xff1a233ipJOnr0qKQrB9GmT5+uxo0ba9GiRWrfvr327NmjWrVqZf1Ge6mrHVC8//77LYwOAFBkkFcVqrwqrRUrVujixYsZ7mG4bNky9e7dW2XKlJGfn5+Cg4O1fPly1axZU9KVk4P69++vQYMG6cYbb9Tx48dz9HzuQOEPAAAAAOARoqKi5MjswEYOhYaGFur7k1yNt7/+rJQtW1Zdu3bVggULZBiGunbtqtDQUJc2hw8fVlxcnO644w6X5YmJiS5DV7311luaN2+eoqKiFB8fr8TERDVu3NilT/369eXr62vOV6hQQbt37zbnhw0bpmHDhrnxFV6xbNkyLV68WB999JHq16+vnTt3avjw4QoPD1dkZKSkK4W/n3/+WStXrlSVKlW0fv16DR06VOHh4erQoYOc/z/E3OOPP26evd+kSROtXr1a8+bN05QpU9wed1GX1wOKCQkJSkhIMOejo6OvTYAAvBZ5Aa4Fb8mr0nr//ffVuXPnDPfoGzdunC5evKjvv/9eoaGhWrFihe677z5t2LBBDRs21Jtvvqm///5bY8aMuabxZYbCHwAAAACgyIuKilKdunUVn9XZzzkQFBys/fv2FcmDXJa8/piYrNelOUAjSTp7Nuu2PunuQnINzoYeOHCgeVAos/u0xfz/a1m1apUqVqzosi713nZLlizRM888oxkzZqhly5YqXry4XnvtNW3evNmlvb+/v8u8zWYzC2o5Ub58eUlXhoaqUKGCufzMmTMZDoalNWrUKI0ePdq8wqxhw4Y6ceKEpkyZosjISMXHx+v555/X8uXL1bVrV0nSDTfcoJ07d2r69Onq0KGD+Xz16tVz2XbdunUVFRWV49eAq5syZYrLlQ4A4E5RUVGqW6eO4vIxdGhwUJD27d9fJPOiIom8qlDlValOnDih77//3uW+hpJ05MgRzZ49W3v27FH9+vUlSY0aNdKGDRv01ltvae7cufrhhx+0adOmDPdJvvHGG9WnTx8tXLgwx68jtyj8AQAAAACKPIfDofi4OEXOmqLyNavnuv/pw0e1cPgYORyOInmAy5LXHxKS8ye4Vm1z6M4771RiYqJsNps6deqUYX29evVkt9sVFRWltm3bZrqNn376Sa1atdKQIUPMZUeOHHF7rNWqVVP58uW1evVq84BUdHS0Nm/erMGDB2fZLy4uTj7pDvb5+vqaB8eSkpKUlJSUbZuqVasqPDxcBw4ccGlz8OBBl3sF4h95PaA4ZswYjRw50pyPjo5WRETENYsTgHdxOByKi4/Xe7166fp0V2PlxAGHQ498+mmRzYuKJPKqQpVXpZo/f77KlStnnjSVKu7/T7bLLq/697//rVdeecVcd+rUKXXq1ElLly5VixYt8vOyrorCHwAAAADAY5SvWV2VG9a7ekMP5e2vPyu+vr7at2+fOZ1e8eLF9cwzz2jEiBFyOp1q06aNLl26pJ9++kklSpRQZGSkatWqpUWLFumbb75RtWrV9MEHH2jr1q2qVq1armKZPXu2li9frtWrV2e63mazafjw4XrllVdUq1YtVatWTePGjVN4eLh69Ohhtmvfvr169uxpnnHfrVs3TZo0SZUrV1b9+vW1Y8cOzZw5UwMHDpQklShRQm3bttWoUaMUFBSkKlWqaN26dVq0aJFmzpxpPveoUaM0fvx4NWrUSI0bN9bChQu1f/9+/fe//83V6/QWeT2gaLfbM1wBAADudn1oqBqnG54QyC9vyKskyel0av78+YqMjJSfn2sprU6dOqpZs6Yef/xxTZ8+XWXKlNGKFSv03Xff6YsvvpCkDEXzYv9/H8caNWqoUqVKuXqduUXhDwAAAAAAeLwSJUpku37ixIkqW7aspkyZoqNHj6pUqVJq2rSpnn/+eUlX7nu3Y8cO9e7dWzabTQ888ICGDBmir776KldxOByOq57R/uyzzyo2NlaPPfaYLl68qDZt2ujrr79WYGCg2ebIkSMu92568803NW7cOA0ZMkRnz55VeHi4Hn/8cb344otmmyVLlmjMmDHq06ePzp8/rypVqmjSpEkaNGiQ2Wb48OG6fPmyRowYofPnz6tRo0b67rvvVKNGjVy9Tk8SExOjw4cPm/PHjh3Tzp07dd1116ly5co5OqAIAIAn8fS8SpK+//57RUVFmSdRpeXv768vv/xSo0ePVrdu3RQTE6OaNWtq4cKF6tKlS65ew7VgMwzDsDqIghQdHa2SJUvq0qVLV/1yAgAA70OukHO8VwDyLTFRGjv2yvSkSVJAQJ439csvv6hZs2Z67oulebriLWr3Xk29q7e2b9+upk2b5jkOq1zL13/58mUdO3ZM1apVczlAAkjZfz88JVdYu3atbrvttgzLIyMjtWDBAhmGofHjx+udd94xDyi+/fbbql27do6fw1PeKwB54MZ8KFVqXrDh8cfzdMXfzlOndMt//lNk86LCjLwK2XFXXsUVfwAAAAAAawQESK+9ZnUUAJCtdu3aKbvz5m02m15++WW9/PLLBRgVAI9BPgTAzXyu3gQAAAAAAAAAAABAYccVfwAAAAAAazidUlTUlenKlSUfzk0FAABehnwIgJtR+AMAAAAAWCM+XqpW7cp0TIwUEmJtPAAAAAWNfAiAm3H6AAAAAAAAAAAAAOABKPwBAAAAAICrMgzD6hBQCDmdTqtDAACgyCGvQmbclVcx1CcAAAAAAMiSv7+/bDabzp07p7Jly8pms1kdEgoBwzCUmJioc+fOycfHRwEBAVaHBABAoUdehcy4O6+i8AcAAAAAALLk6+urSpUq6ffff9fx48etDgeFTHBwsCpXriwfHwaVAgDgasirkB135VUU/gAAAAAAQLaKFSumWrVqKSkpyepQUIj4+vrKz8+PqxUAAMgF8ipkxp15FYU/AAAAAABwVb6+vvL19bU6DAAAgCKPvArXEoU/AAAAAIA1/PykIUP+mQYAAPA25EMA3IxfEgAAAACANex26a23rI4CAADAOuRDANyMOy8DAAAAAAAAAAAAHoAr/gAAAAAA1jAMyeG4Mh0aKrnhRvYAAABFCvkQADej8AcAAAAAsEZcnFSu3JXpmBgpJMTaeAAAAAoa+RAAN2OoTwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPICf1QEAAAAAALyUn58UGfnPNAAAgLchHwLgZvySAAAAAACsYbdLCxZYHQUAAIB1yIcAuBlDfQIAAAAAAAAAAAAegCv+AAAAAADWMAwpLu7KdHCwZLNZGw8AAEBBIx8C4GZc8QcAAAAAsEZcnFSs2JVH6gEvAAAAb0I+BMDNKPwBAAB4oPXr16tbt24KDw+XzWbTihUrXNYbhqEXX3xRFSpUUFBQkDp06KBDhw5ZEywAAAAAAADcgsIfAACAB4qNjVWjRo301ltvZbp+2rRp+ve//625c+dq8+bNCgkJUadOnXT58uUCjhQAAAAAAADuwj3+AAAAPFDnzp3VuXPnTNcZhqFZs2bphRdeUPfu3SVJixYtUlhYmFasWKH777+/IEMFAAAAAACAm3DFHwAAgJc5duyYTp8+rQ4dOpjLSpYsqRYtWmjTpk1Z9ktISFB0dLTLAwAAAAAAAIUHhT8AAAAvc/r0aUlSWFiYy/KwsDBzXWamTJmikiVLmo+IiIhrGicAAAAAAAByh8IfAAAAcmTMmDG6dOmS+Th58qTVIQEAAAAAACAN7vEHAADgZcqXLy9JOnPmjCpUqGAuP3PmjBo3bpxlP7vdLrvdfq3DA+BNfH2lf/3rn2kAAABvQz4EwM0o/AEAAHiZatWqqXz58lq9erVZ6IuOjtbmzZs1ePBga4MD4F0CA6VPPrE6CgAAgGsiKipKDofj6g3HjLny7969LotDQ0NVuXLlaxAZAE9G4Q8AAMADxcTE6PDhw+b8sWPHtHPnTl133XWqXLmyhg8frldeeUW1atVStWrVNG7cOIWHh6tHjx7WBQ0AAAAAHiIqKkp169RRXHx8nrcRHBSkffv3U/wDkCsU/gAAADzQtm3bdNttt5nzI0eOlCRFRkZqwYIFevbZZxUbG6vHHntMFy9eVJs2bfT1118rMDDQqpABAAAAwGM4HA7FxcfrvV69dH1oaK77H3A49Minn8rhcFD4A5ArFP4AAAA8ULt27WQYRpbrbTabXn75Zb388ssFGBUApBMbKxUrdmU6JkYKCbE2HgAAADe7PjRUjcPDs26QmKhikyZJkmLGjpUCAgooMgCeysfqAAAAAAAAAAAAAADkH4U/AAAAAAAAAAAAwANQ+AMAAAAAAAAAAAA8AIU/AAAAAAAAAAAAwANQ+AMAAAAAAAAAAAA8AIU/AAAAAAAAAAAAwAP4WR0AAAAAAMBL+fpKXbr8Mw0AAOBtbDYl16plTgNAflH4AwAAAABYIzBQWrXK6igAAACs4++vy337Wh0FAA/CUJ8AAAAAAAAAAACAB6DwBwAAAAAAAAAAAHgACn8AAAAAAGvExkohIVcesbFWRwMAAFDwEhMV8sorCnnlFSkx0epoAHgA7vEHAAAAALBOXJzVEQAAAFjKlpRkdQgAPAhX/AEAAAAAAAAAAAAegMIfAAAAAAAAAAAA4AEo/AEAAAAAAAAAAAAegMIfAAAAAAAAAAAA4AEsL/y99dZbqlq1qgIDA9WiRQtt2bIl2/azZs3S9ddfr6CgIEVERGjEiBG6fPlyAUULAAAAAAAAAAAAFE5+Vj750qVLNXLkSM2dO1ctWrTQrFmz1KlTJx04cEDlypXL0P6jjz7S6NGjNW/ePLVq1UoHDx5U//79ZbPZNHPmTAteAQAAAAAgz3x8pLZt/5kGAADwNjabUqpWNacBIL8sLfzNnDlTjz76qAYMGCBJmjt3rlatWqV58+Zp9OjRGdpv3LhRrVu31oMPPihJqlq1qh544AFt3ry5QOMGAAAAALhBUJC0dq3VUQAAAFjH31/x/398HADcwbJTKhMTE7V9+3Z16NDhn2B8fNShQwdt2rQp0z6tWrXS9u3bzeFAjx49qi+//FJdunQpkJgBAAAAAAAAAACAwsqyK/4cDodSUlIUFhbmsjwsLEz79+/PtM+DDz4oh8OhNm3ayDAMJScna9CgQXr++eezfJ6EhAQlJCSY89HR0e55AQAAAAAAAAAAAEAhUqRuorB27VpNnjxZb7/9tn755Rd99tlnWrVqlSZOnJhlnylTpqhkyZLmIyIiogAjBgAAAABkKTZWKlv2yiM21upoAAAACl5iokKmTlXI1KlSYqLV0QDwAJZd8RcaGipfX1+dOXPGZfmZM2dUvnz5TPuMGzdO/fr10yOPPCJJatiwoWJjY/XYY49p7Nix8snkZvBjxozRyJEjzfno6GiKfwAAAABQWDgcVkcAAABgKVtcnNUhAPAgll3xFxAQoGbNmmn16tXmMqfTqdWrV6tly5aZ9omLi8tQ3PP19ZUkGYaRaR+73a4SJUq4PAAAAAAAAAAAAABPY9kVf5I0cuRIRUZG6sYbb9RNN92kWbNmKTY2VgMGDJAkPfTQQ6pYsaKmTJkiSerWrZtmzpypJk2aqEWLFjp8+LDGjRunbt26mQVAAAAAAAAAAAAAwBtZWvjr3bu3zp07pxdffFGnT59W48aN9fXXXyssLEySFBUV5XKF3wsvvCCbzaYXXnhBf/zxh8qWLatu3bpp0qRJVr0EAAAAAAAAAAAAoFCwtPAnScOGDdOwYcMyXbd27VqXeT8/P40fP17jx48vgMgAAAAAAAAAAACAosOye/wBAAAAAAAAAAAAcB/Lr/gDAAAAAHgpHx/pxhv/mfZyUVFRcjgceeq7b98+N0cDAAAKhM2mlPBwcxoA8ovCHwAAAADAGkFB0tatVkdRKERFRalO3bqKj4uzOhQAAFCQ/P0V//jjVkcBwINQ+AMAAAAAwGIOh0PxcXGKnDVF5WtWz3X/39Zs0BczZl+DyAAAAAAUJRT+AAAAAAAoJMrXrK7KDevlut/pw0evQTQAAAAAihpuogAAAAAAsEZcnFS16pUHQ1wCKMJSUlI0btw4VatWTUFBQapRo4YmTpwowzCsDg1AYZeYqODXX1fw669LiYlWRwPAA3DFHwAAAADAGoYhnTjxzzQAFFFTp07VnDlztHDhQtWvX1/btm3TgAEDVLJkST355JNWhwegkPO5eNHqEAB4EAp/AAAAAAAAQD5s3LhR3bt3V9euXSVJVatW1ccff6wtW7ZYHBkAAPA2DPUJAAAAAAAA5EOrVq20evVqHTx4UJL066+/6scff1Tnzp0zbZ+QkKDo6GiXBwAAgDtwxR8AAAAAAACQD6NHj1Z0dLTq1KkjX19fpaSkaNKkSerTp0+m7adMmaIJEyYUcJQAAMAbcMUfAAAAAAAAkA/Lli3T4sWL9dFHH+mXX37RwoULNX36dC1cuDDT9mPGjNGlS5fMx8mTJws4YgAA4Km44g8AAAAAAADIh1GjRmn06NG6//77JUkNGzbUiRMnNGXKFEVGRmZob7fbZbfbCzpMAADgBSj8AQAAAACsYbNJ9er9Mw0ARVRcXJx8fFwH1vL19ZXT6bQoIgBFSUrZslaHAMCDUPgDAAAAAFgjOFj67TerowCAfOvWrZsmTZqkypUrq379+tqxY4dmzpypgQMHWh0agMIuIEDxw4ZZHQUAD0LhDwAAAAAAAMiHN998U+PGjdOQIUN09uxZhYeH6/HHH9eLL75odWgAAMDLUPgDAAAAAAAA8qF48eKaNWuWZs2aZXUoAADAy/lcvQkAAAAAANdAXJxUv/6VR1yc1dEAAAAUvMREBc2eraDZs6XERKujAeABuOIPAAAAAGANw5D27v1nGgAAwAv5njtndQgAPAhX/AEAAAAAAAAAAAAegMIfAAAAAAAAAAAA4AEo/AEAAAAAAAAAAAAegMIfAAAAAAAAAAAA4AEo/AEAAAAAAAAAAAAewM/qAAAAAAAAXspmk6pU+WcaAADACzlLlbI6BAAehMIfAAAAAMAawcHS8eNWRwEAAGCdgADFjRhhdRQAPAhDfQIAAAAAAAAAAAAegMIfAAAAAAAAAAAA4AEo/AEAAAAArBEfLzVvfuURH291NAAAAAUvKUlB//mPgv7zHykpyepoAHgA7vEHAAAAALCG0ylt2/bPNAAAgLcxDPmeOmVOA0B+ccUfAAAAAAAAAAAA4AEo/AEAAAAAAAAAAAAegMIfAAAAAAAAAAAA4AEo/AEAAAAAAAAAAAAegMIfAACAl0pJSdG4ceNUrVo1BQUFqUaNGpo4caIMbigPAAAAAABQJPlZHQAAAACsMXXqVM2ZM0cLFy5U/fr1tW3bNg0YMEAlS5bUk08+aXV4ALxFaKjVEQAAAFjKCA62OgQAHoTCHwAAgJfauHGjunfvrq5du0qSqlatqo8//lhbtmyxODIAXiMkRDp3zuooAAAArBMQoNjnnrM6CgAehKE+AQAAvFSrVq20evVqHTx4UJL066+/6scff1Tnzp0tjgwAAAAAAAB5wRV/AAAAXmr06NGKjo5WnTp15Ovrq5SUFE2aNEl9+vTJtH1CQoISEhLM+ejo6IIKFQCAbEVFRcnhcOS5f2hoqCpXruzGiAAAAABrUPgDAADwUsuWLdPixYv10UcfqX79+tq5c6eGDx+u8PBwRUZGZmg/ZcoUTZgwwYJIAXis+Hgp9Srjr76SgoKsjQdFUlRUlOrUrav4uLg8byMoOFj79+2j+AcAKHhJSQr68ENJUnzfvpK/v8UBASjqKPwBAAB4qVGjRmn06NG6//77JUkNGzbUiRMnNGXKlEwLf2PGjNHIkSPN+ejoaEVERBRYvAA8kNMprVv3zzSQBw6HQ/FxcYqcNUXla1bPdf/Th49q4fAxcjgcFP4AAAXPMOR7/Lg5DQD5ReEPAADAS8XFxcnHx/WWz76+vnJmcfDdbrfLbrcXRGgAAORa+ZrVVblhPavDAAAAACxF4Q8AAMBLdevWTZMmTVLlypVVv3597dixQzNnztTAgQOtDg0AAAAAAAB5QOEPAADAS7355psaN26chgwZorNnzyo8PFyPP/64XnzxRatDAwAAAAAAQB5Q+AMAAPBSxYsX16xZszRr1iyrQwEAAAAAAIAb+Fy9CQAAAAAAAAAAAIDCjiv+AAAAAADWCQ62OgIAAABLGf7+VocAwINQ+AMAAAAAWCMkRIqNtToKAAAA6wQEKPaFF6yOAoAHofAHAAAAAAAAAIVUVFSUHA5HnvuHhoaqcuXKbowIAFCYUfgDAAAAAAAAgEIoKipKdevUUVx8fJ63ERwUpH3791P8AwAvQeEPAAAAAGCNy5elXr2uTH/6qRQYaG08AAAUMg6HQ3Hx8XqvVy9dHxqa6/4HHA498umncjgcFP4Kq6QkBS5dKkm63Lu3xP3+AOQThT8AAAAAgDVSUqQvv/xnGgAAZOr60FA1Dg+3OgxcC4Yhv0OHzGkAyC8fqwMAAAAAAAAAAAAAkH8U/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAP4Gd1AAAAAAAALxUSIhmG1VEAAABYJyBAMRMmWB0FAA/CFX8AAAAAAAAAAACAB6DwBwAAAAAAAAAAAHgACn8AAAAAAGtcvizde++Vx+XLVkcDAABQ8JKSFLh0qQKXLpWSkqyOBoAHoPAHAAAAALBGSor03/9eeaSkWB0NAABAwTMM+e3dK7+9e7n3MQC3oPAHAAAAAAAAAAAAeAAKfwAAAAAAAAAAAIAHoPAHAAAAAAAAAAAAeAAKfwAAAAAAAAAAAIAHoPAHAAAAAAAAAAAAeAAKfwAAAAAAAAAAAIAH8LM6AAAAAACAlwoOlmJi/pkGAADwNv7+ihk71pwGgPyi8AcAAAAAsIbNJoWEWB0FAACAdWw2KSDA6igAeBCG+gQAAAAAAAAAAAA8gOWFv7feektVq1ZVYGCgWrRooS1btmTb/uLFixo6dKgqVKggu92u2rVr68svvyygaAEAAAAAbpOQIPXvf+WRkGB1NAAAAAUvOVn25ctlX75cSk62OhoAHsDSoT6XLl2qkSNHau7cuWrRooVmzZqlTp066cCBAypXrlyG9omJibrjjjtUrlw5/fe//1XFihV14sQJlSpVquCDBwAAAFBoRUVFyeFw5KlvaGioKleu7OaIci4/sUvWx58rycnSwoVXpt96S7LbrY0HAACgoDmd8t+5U5KU0LWrtbEA8AiWFv5mzpypRx99VAMGDJAkzZ07V6tWrdK8efM0evToDO3nzZun8+fPa+PGjfL//xudVq1atSBDBgAAAFDIRUVFqU7duoqPi8tT/6DgYO3ft8+S4ll+Y5esjR8AAAAAYC3LCn+JiYnavn27xowZYy7z8fFRhw4dtGnTpkz7rFy5Ui1bttTQoUP1+eefq2zZsnrwwQf13HPPydfXt6BCBwAAAFCIORwOxcfFKXLWFJWvWT1XfU8fPqqFw8fI4XBYUjjLT+yS9fEDAAAAAKxlWeHP4XAoJSVFYWFhLsvDwsK0f//+TPscPXpUP/zwg/r06aMvv/xShw8f1pAhQ5SUlKTx48dn2ichIUEJae4VER0d7b4XAQAAAKDQKl+zuio3rGd1GHlSlGMHAAAAAFjHx+oAcsPpdKpcuXJ655131KxZM/Xu3Vtjx47V3Llzs+wzZcoUlSxZ0nxEREQUYMQAAAAAAAAAAABAwbCs8BcaGipfX1+dOXPGZfmZM2dUvnz5TPtUqFBBtWvXdhnWs27dujp9+rQSExMz7TNmzBhdunTJfJw8edJ9LwIAAAAAAAAAAAAoJCwr/AUEBKhZs2ZavXq1uczpdGr16tVq2bJlpn1at26tw4cPy+l0mssOHjyoChUqKCAgINM+drtdJUqUcHkAAAAAAAAAAAAAnsbSoT5Hjhypd999VwsXLtS+ffs0ePBgxcbGasCAAZKkhx56SGPGjDHbDx48WOfPn9dTTz2lgwcPatWqVZo8ebKGDh1q1UsAAAAAAORVcLB09uyVR3Cw1dEAAAAUPH9/xTz7rGKefVby97c6GgAewM/KJ+/du7fOnTunF198UadPn1bjxo319ddfKywsTJIUFRUlH59/apMRERH65ptvNGLECN1www2qWLGinnrqKT333HNWvQQAAAAAQF7ZbFLZslZHAQAAYB2bTQoJsToKAB7E0sKfJA0bNkzDhg3LdN3atWszLGvZsqV+/vnnaxwVAAAAAAAAAAAAULRYOtQnAAAAAMCLJSRIQ4deeSQkWB0NAABAwUtOVsAXXyjgiy+k5GSrowHgASj8AQAAAACskZwsvf32lQcHugAUcX/88Yf69u2rMmXKKCgoSA0bNtS2bdusDgtAYed0KmDrVgVs3So5nVZHA8ADUPgDAAAoZI4ePWp1CAAAAB6hoPKqCxcuqHXr1vL399dXX32lvXv3asaMGSpdunSBPD8AAEAqCn8AAACFTM2aNXXbbbfpww8/1OXLl60OBwAAoMgqqLxq6tSpioiI0Pz583XTTTepWrVq6tixo2rUqHHNnhMAACAzflYHAAAAAFe//PKL5s+fr5EjR2rYsGHq3bu3Hn74Yd10001WhwYAAFCkFFRetXLlSnXq1En33nuv1q1bp4oVK2rIkCF69NFHM22fkJCghDT3No2OjnZrPICniIqKksPhyHP/0NBQVa5c2Y0ReZd9+/bluS/vPWAdCn8AAACFTOPGjfXGG29oxowZWrlypRYsWKA2bdqodu3aGjhwoPr166eyZctaHSYAAEChV1B51dGjRzVnzhyNHDlSzz//vLZu3aonn3xSAQEBioyMzNB+ypQpmjBhQr6fF/BkUVFRqlunjuLi4/O8jeCgIO3bv58CVC6d+ftv+dhs6tu3b563wXsPWIfCHwAAQCHl5+ene+65R127dtXbb7+tMWPG6JlnntHzzz+v++67T1OnTlWFChWsDhMAAKDQu9Z5ldPp1I033qjJkydLkpo0aaI9e/Zo7ty5mRb+xowZo5EjR5rz0dHRioiIyPPzA57I4XAoLj5e7/XqpetDQ3Pd/4DDoUc+/VQOh4PiUy5dvHxZTsPgvQeKKAp/AAAAhdS2bds0b948LVmyRCEhIXrmmWf08MMP6/fff9eECRPUvXt3bdmyxeowAQAACr1rnVdVqFBB9erVc1lWt25dffrpp5m2t9vtstvteX4+wJtcHxqqxuHhVofhlXjvgaKJwh8AAEAhM3PmTM2fP18HDhxQly5dtGjRInXp0kU+Pj6SpGrVqmnBggWqWrWqtYECQH4FBUnHjv0zDQBuVlB5VevWrXXgwAGXZQcPHlSVKlXytV0AXsDPT7HDh5vTAJBf/JIAAAAUMnPmzNHAgQPVv3//LIecKleunN5///0CjgwA3MzHR+IkBgDXUEHlVSNGjFCrVq00efJk3XfffdqyZYveeecdvfPOO/naLgAv4OMjo3Rpq6MA4EEo/AEAABQyhw4dumqbgICATO8XAwAAgH8UVF7VvHlzLV++XGPGjNHLL7+satWqadasWerTp0++tgsAAJBbFP4AAAAKmfnz56tYsWK69957XZZ/8skniouLo+AHwHMkJkpjx16ZnjRJCgiwNh4AHqcg86q77rpLd911l9u2B8BLJCcrYPVqSVJi+/YM9wkg33ysDgAAAACupkyZotDQ0AzLy5Urp8mTJ1sQEQBcI0lJ0vTpVx5JSVZHA8ADkVcBKPScTgVs3KiAjRslp9PqaAB4AAp/AAAAhUxUVJSqVauWYXmVKlUUFRVlQUQAAABFE3kVAADwNhT+AAAACply5cpp165dGZb/+uuvKlOmjAURAQAAFE3kVQAAwNtQ+AMAAChkHnjgAT355JNas2aNUlJSlJKSoh9++EFPPfWU7r//fqvDAwAAKDLIqwAAgLfhTqEAAACFzMSJE3X8+HG1b99efv9/Y3en06mHHnqIe9EAAADkAnkVAADwNvkq/CUmJurYsWOqUaOGmTwBAAAgfwICArR06VJNnDhRv/76q4KCgtSwYUNVqVLF6tAAAACKFPIqAADgbfJUrYuLi9MTTzyhhQsXSpIOHjyo6tWr64knnlDFihU1evRotwYJAADgjWrXrq3atWtbHQYAAECRR14FAAC8RZ4Kf2PGjNGvv/6qtWvX6s477zSXd+jQQS+99BKFPwAAgHxISUnRggULtHr1ap09e1ZOp9Nl/Q8//GBRZADgZkFB0p49/0wDgJuRVwEo9Pz8FDd0qDkNAPmVp1+SFStWaOnSpbr55ptls9nM5fXr19eRI0fcFhwAAIA3euqpp7RgwQJ17dpVDRo0cMm3AMCj+PhI9etbHQUAD0ZeBaDQ8/GRs1w5q6MA4EHyVPg7d+6cymXyYxQbG0sCBQAAkE9LlizRsmXL1KVLF6tDAQAAKNLIqwAAgLfxyUunG2+8UatWrTLnU4t97733nlq2bOmeyAAAALxUQECAatasWSDP9ccff6hv374qU6aMgoKC1LBhQ23btq1AnhsAlJgovfTSlUdiotXRAPBABZlXAUCeJCcrYM0aBaxZIyUnWx0NAA+Qpyv+Jk+erM6dO2vv3r1KTk7WG2+8ob1792rjxo1at26du2MEAADwKk8//bTeeOMNzZ49+5qOpnDhwgW1bt1at912m7766iuVLVtWhw4dUunSpa/ZcwKAi6QkacKEK9OjRkkBAdbGA8DjFFReBQB55nQqYO1aSVJi69bWxgLAI+Sp8NemTRv9+uuvmjJliho2bKhvv/1WTZs21aZNm9SwYUN3xwgAAOBVfvzxR61Zs0ZfffWV6tevL39/f5f1n332mVueZ+rUqYqIiND8+fPNZdWqVXPLtgEAAAqDgsqrAAAACotcF/6SkpL0+OOPa9y4cXr33XevRUwAAABerVSpUurZs+c1f56VK1eqU6dOuvfee7Vu3TpVrFhRQ4YM0aOPPnrNnxsAAKAgFFReBQAAUFjkuvDn7++vTz/9VOPGjbsW8QAAAHi9tFfgXUtHjx7VnDlzNHLkSD3//PPaunWrnnzySQUEBCgyMjJD+4SEBCUkJJjz0dHRBRIngNzbt29fnvuGhoaqcuXKbowGAKxTUHkVAABAYZGnoT579OihFStWaMSIEe6OBwAAAJKSk5O1du1aHTlyRA8++KCKFy+uU6dOqUSJEipWrJhbnsPpdOrGG2/U5MmTJUlNmjTRnj17NHfu3EwLf1OmTNGE1HtxASiUos86ZPPxUd++ffO8jaDgYO3ft4/iHwCPURB5FQAAQGGRp8JfrVq19PLLL+unn35Ss2bNFBIS4rL+ySefdEtwAAAA3ujEiRO68847FRUVpYSEBN1xxx0qXry4pk6dqoSEBM2dO9ctz1OhQgXVq1fPZVndunX16aefZtp+zJgxGjlypDkfHR2tiIgIt8QCwD3ioqNlOJ2KnDVF5WtWz3X/04ePauHwMXI4HBT+AHiEgsqrAAAACos8Ff7ef/99lSpVStu3b9f27dtd1tlsNgp/AAAA+fDUU0/pxhtv1K+//qoyZcqYy3v27OnW+++1bt1aBw4ccFl28OBBValSJdP2drtddrvdbc8P4NopX7O6Kjesd/WGAODhCiqvAgAAKCzyVPg7duyYu+OAB9i+fbsWLlyoyMhINWvWzOpwAAAosjZs2KCNGzcqICDAZXnVqlX1xx9/uO15RowYoVatWmny5Mm67777tGXLFr3zzjt655133PYcAJCtwEBpy5Z/pgHAzQoqrwKAPPPzU9xjj5nTAJBfPvndgGEYMgzDHbGgCEtISNC8efPkcDg0b948JSQkWB0SAABFltPpVEpKSoblv//+u4oXL+6252nevLmWL1+ujz/+WA0aNNDEiRM1a9Ys9enTx23PAQDZ8vWVmje/8vD1tToaAB6ooPIqAMgzHx85K1aUs2JFySffh+sBIO+Fv0WLFqlhw4YKCgpSUFCQbrjhBn3wwQfujA1FyOeff66LFy9Kki5evKiVK1daGxAAAEVYx44dNWvWLHPeZrMpJiZG48ePV5cuXdz6XHfddZd2796ty5cva9++fQx5BQAAPEpB5lUAAACFQZ6uHZ45c6bGjRunYcOGqXXr1pKkH3/8UYMGDZLD4dCIESPcGiQKt9OnT+t///ufeeWnYRhauXKlbrnlFpUvX97i6AAAKHpmzJihTp06qV69erp8+bIefPBBHTp0SKGhofr444+tDg8A3CcxUXrjjSvTTz0lpRuKDwDyi7wKQKGXnCz/n3+WJCXdfDPDfQLItzz9irz55puaM2eOHnroIXPZ3Xffrfr16+ull16i8OdFDMPQggULMgz3mrr8ueeek81msyg6AACKpkqVKunXX3/VkiVLtGvXLsXExOjhhx9Wnz59FBQUZHV4AOA+SUnSs89emR4yhMIfALcjrwJQ6Dmdsn/3nSQp6aabLA4GgCfIU+Hvzz//VKtWrTIsb9Wqlf788898B4Wi49SpU9q1a1eG5U6nU7t27dKpU6dUsWJFCyIDAKBo8/PzU9++fa0OAwAAoMgjrwIAAN4kT4W/mjVratmyZXr++eddli9dulS1atVyS2AoGsLDw3XDDTdoz549cjqd5nIfHx81aNBA4eHhFkYHAEDRtGjRomzXpx11AQAAAFkjrwIAAN4mT4W/CRMmqHfv3lq/fr15j7+ffvpJq1ev1rJly9waIAo3m82m/v37a9SoURmWDxgwgGE+AQDIg6eeesplPikpSXFxcQoICFBwcDAHqAAAAHKIvAoAAHgbn7x06tWrlzZv3qzQ0FCtWLFCK1asUGhoqLZs2aKePXu6O0YUcuXLl1e3bt3MIp/NZtPdd9+tsLAwiyMDAKBounDhgssjJiZGBw4cUJs2bfTxxx9bHR4AAECRQV4FAAC8TZ6u+JOkZs2a6cMPP3RnLCjCunfvrnXr1unChQsqXbq07r77bqtDAgDAo9SqVUuvvvqq+vbtq/3791sdDgAAQJFFXgUAADxZnq74+/LLL/XNN99kWP7NN9/oq6++yndQKHrsdrsGDhyo0NBQDRgwQHa73eqQAADwOH5+fjp16pTVYQAAABR55FUAAMBT5emKv9GjR+vVV1/NsNwwDI0ePVqdO3fOd2Aoepo1a6ZmzZpZHQYAAEXeypUrXeYNw9Cff/6p2bNnm/dXBgCPEBgorVnzzzQAuBl5FYBCz89P8f37m9MAkF95+iU5dOiQ6tWrl2F5nTp1dPjw4XwHBQAA4M169OjhMm+z2VS2bFndfvvtmjFjhjVBAcC14OsrtWtndRQAPBh5FYBCz8dHKdWqWR0FAA+Sp8JfyZIldfToUVWtWtVl+eHDhxUSEuKOuAAAALyW0+m0OgQAAACPQF4FAAC8TZ4Kf927d9fw4cO1fPly1ahRQ9KVot/TTz+tu+++260BAgAAAAA8VFKS9M47V6Yfe0zy97c2HgAAMhEVFSWHw5Hn/qGhoapcubIbIyo68vPe7du3z83RFFIpKfLftk2SlHTjjVdGREC+8f8W3ixPhb9p06bpzjvvVJ06dVSpUiVJ0smTJ3Xrrbdq+vTpbg0QAADA24wcOTLHbWfOnHkNIwGAaywxURo27Mp0//4U/gC4HXkV8isqKkp169RRXHx8nrcRHBSkffv3e10RwR3vnVdISZH9yy8lSUlNmlD4cwP+38Lb5Xmoz40bN+q7777Tr7/+qqCgIDVq1Ei33HKLu+PDVRiGoYSEBKvDkGEYSkxMlCQFBATIZrNZHNEVdru90MQCAEBO7dixQzt27FBSUpKuv/56SdLBgwfl6+urpk2bmu3YxwEAAGSPvAr55XA4FBcfr/d69dL1oaG57n/A4dAjn34qh8PhdQWE/L533x46pIk//HANIoOn4/8tvF2uCn+bNm3SX3/9pbvuuks2m00dO3bUn3/+qfHjxysuLk49evTQm2++Kbvdfq3iRToJCQkaOHCg1WEUWvPmzVNgYKDVYQAAkCvdunVT8eLFtXDhQpUuXVqSdOHCBQ0YMEC33HKLnn76aYsjBAAAKBrIq+Au14eGqnF4uNVhFEl5fe8OnDt3DaKBN+H/LbyVT24av/zyy/rtt9/M+d27d+vRRx/VHXfcodGjR+t///ufpkyZ4vYgAQAAvMmMGTM0ZcoU8+CUJJUuXVqvvPKKZsyYYWFkAAAARQt5FQAA8Da5uuJv586dmjhxojm/ZMkS3XTTTXr33XclSRERERo/frxeeukltwaJrNntds2bN8/qMJSQkKDBgwdLkubMmVNorvosLHEAAJAb0dHROpfJ2a3nzp3T33//bUFEAAAARRN5FQAA8Da5KvxduHBBYWFh5vy6devUuXNnc7558+Y6efKk+6LDVdlstkI3lKXdbi90MQEAUJT07NlTAwYM0IwZM3TTTTdJkjZv3qxRo0bpnnvusTg6AACAooO8CgAAeJtcFf7CwsJ07NgxRUREKDExUb/88osmTJhgrv/777/l7+/v9iABAAC8ydy5c/XMM8/owQcfVFJSkiTJz89PDz/8sF577TWLowMAACg6yKsAAIC3yVXhr0uXLho9erSmTp2qFStWKDg4WLfccou5fteuXapRo4bbgwQAAPAmwcHBevvtt/Xaa6/pyJEjkqQaNWooJCTE4sgAwM3sdumLL/6ZBgA3I68CUOj5+iq+Tx9zGgDyK1eFv4kTJ+qee+5R27ZtVaxYMS1cuFABAQHm+nnz5qljx45uDxIAAMAb/fnnn/rzzz916623KigoSIZhyGazWR0WALiPn5/UtavVUQDwAuRVAAotX1+l1K5tdRQAPEiuCn+hoaFav369Ll26pGLFisk33RkIn3zyiYoVK+bWAAEAALzNX3/9pfvuu09r1qyRzWbToUOHVL16dT388MMqXbq0ZsyYYXWIAAAARQJ5FQAA8DY+eelUsmTJDEU/SbruuutcrgAEAABA7o0YMUL+/v6KiopScHCwubx37976+uuvLYwMANwsKUlasODK4//vvQUA7kReBaDQS0mR344d8tuxQ0pJsToaAB4gV1f8AQAA4Nr79ttv9c0336hSpUouy2vVqqUTJ05YFBUAXAOJidKAAVem771X8ve3Nh4AHoe8CkChl5KiwBUrJEkx9etznz8A+ZanK/4AAABw7cTGxrqckZ7q/PnzstvtFkQEAABQNJFXAQAAb0PhDwAAoJC55ZZbtGjRInPeZrPJ6XRq2rRpuu222yyMDAAAoGghrwIAAN6GoT4BAAAKmWnTpql9+/batm2bEhMT9eyzz+q3337T+fPn9dNPP1kdHgAAQJFBXgUAALwNV/wBAAAUMg0aNNDBgwfVpk0bde/eXbGxsbrnnnu0Y8cO1ahRw+rwAAAAigzyKgAA4G244g8AAKAQSUpK0p133qm5c+dq7NixVoeDIiwqKkoOhyPP/UNDQ1W5cmU3RgQAQMEirwIAAN6Iwh8AAEAh4u/vr127dlkdBoq4qKgo1albV/FxcXneRlBwsPbv20fxDwBQZJFXAQAAb0ThDwAAoJDp27ev3n//fb366qtWh4IiyuFwKD4uTpGzpqh8zeq57n/68FEtHD5GDoeDwh+uLbtdWrbsn2kAcDPyKgCFnq+v4u+7z5wGgPyi8AcAAFDIJCcna968efr+++/VrFkzhYSEuKyfOXOmRZGhqClfs7oqN6xndRhA1vz8pHvvtToKAB6MvApAoefrq5T69a2OAoAHofAHAABQSBw9elRVq1bVnj171LRpU0nSwYMHXdrYbDYrQgMAAChSyKsAAIC3ovAHAABQSNSqVUt//vmn1qxZI0nq3bu3/v3vfyssLMziyADgGklOlpYvvzLds+eVKwABwA3IqwAUGSkp8t2//8pknToM9wkg3/irCgAAoJAwDMNl/quvvlJsbKxF0QBAAUhIkFLvaRMTQ+EPgNuQVwEoMlJSFPT/9zyOGTuWwh+AfPOxOgAAAABkLv0BKwAAAOQNeRUAAPAWFP4AAAAKCZvNluFeM9x7BgAAIPfIqwAAgLdiHBUAAIBCwjAM9e/fX3a7XZJ0+fJlDRo0SCEhIS7tPvvsMyvCAwAAKDLIqwAAgLcqFFf8vfXWW6pataoCAwPVokULbdmyJUf9lixZIpvNph49elzbAAEAAApAZGSkypUrp5IlS6pkyZLq27evwsPDzfnUBwAAALJHXgUAALyV5Vf8LV26VCNHjtTcuXPVokULzZo1S506ddKBAwdUrly5LPsdP35czzzzjG655ZYCjBYAAODamT9/vtUhAAAAeATyKgAA4K0sv+Jv5syZevTRRzVgwADVq1dPc+fOVXBwsObNm5dln5SUFPXp00cTJkxQ9erVCzBaAAAAAAAAAAAAoHCy9Iq/xMREbd++XWPGjDGX+fj4qEOHDtq0aVOW/V5++WWVK1dODz/8sDZs2FAQoQIAAAAA3C0gQEq9KicgwNpYAAAArODrq8upt7Ly9bU0FACewdLCn8PhUEpKisLCwlyWh4WFaf/+/Zn2+fHHH/X+++9r586dOXqOhIQEJSQkmPPR0dF5jhcAAAAA4Eb+/lL//lZHAQAAYB1fXyU3aWJ1FAA8iOVDfebG33//rX79+undd99VaGhojvpMmTLF5abNERER1zhKAAAAAAAAAAAAoOBZesVfaGiofH19debMGZflZ86cUfny5TO0P3LkiI4fP65u3bqZy5xOpyTJz89PBw4cUI0aNVz6jBkzRiNHjjTno6OjKf4BAAAAQGGQnCx9882V6U6dJD9L/0QFAAAoeCkp8j1y5MpkjRoM9wkg3yz9qyogIEDNmjXT6tWr1eP/xzF2Op1avXq1hg0blqF9nTp1tHv3bpdlL7zwgv7++2+98cYbmRb07Ha77Hb7NYkfAAAAAJAPCQnSXXddmY6JofAHAAC8T0qKghYvliTFjB1L4Q9Avlk+1OfIkSP17rvvauHChdq3b58GDx6s2NhYDRgwQJL00EMPacyYMZKkwMBANWjQwOVRqlQpFS9eXA0aNFAAN4MHAAAAAACAhV599VXZbDYNHz7c6lAAAIAXsvx0yt69e+vcuXN68cUXdfr0aTVu3Fhff/21wsLCJElRUVHy8bG8PgkAAAAAAABka+vWrfrPf/6jG264wepQAACAl7K88CdJw4YNy3RoT0lau3Zttn0XLFjg/oAAAAAAAACAXIiJiVGfPn307rvv6pVXXrE6HAAA4KW4lA4AAAAAAADIp6FDh6pr167q0KGD1aEAAAAvViiu+AMAAAAAAACKqiVLluiXX37R1q1bc9Q+ISFBCQkJ5nx0dPS1Cg1APkRFRcnhcOSp7759+9wcDYqK/HxvJCk0NFSVK1d2Y0QFy9tff2FA4Q8AAAAAAADIo5MnT+qpp57Sd999p8DAwBz1mTJliiZMmHCNIwOQH1FRUapbp47i4uOtDgVFiDu+N8FBQdq3f3+RLH55++svLCj8AQAAAACsERAgzZ79zzQAFEHbt2/X2bNn1bRpU3NZSkqK1q9fr9mzZyshIUG+vr4ufcaMGaORI0ea89HR0YqIiCiwmAFcncPhUFx8vN7r1UvXh4bmuv+3hw5p4g8/XL2hr68SunQxp1G05fd7c8Dh0COffiqHw1EkC1/e/voLCwp/AAAAAABr+PtLQ4daHQUA5Ev79u21e/dul2UDBgxQnTp19Nxzz2Uo+kmS3W6X3W4vqBAB5MP1oaFqHB6e634Hzp3LWUNfXyW1aJHr7aNwy+v3xlN4++u3GoU/AAAAAAAAII+KFy+uBg0auCwLCQlRmTJlMiwHAAC41ij8AQAAAACskZIibdhwZfqWWxjeCgAAeB+nU74nTkiSUqpUkXx8LA4IQFFH4Q8AAAAAYI3Ll6XbbrsyHRMjhYRYGw8AuMnatWutDgFAUZGcrKAFCyRJMWPHct9jAPnG6QMAAAAAAAAAAACAB+CKPwAAcsAwDCUkJFgdhqQrsSQmJkqSAgICZLPZLI7oCrvdXmhiAQAAAAAAALwRhT8AAHIgISFBAwcOtDqMQm3evHkKDAy0OgwAAAAAAADAazHUJwAAAPTqq6/KZrNp+PDhVocCAAAAAACAPOKKPwAAcsBut2vevHlWhyHpytWHgwcPliTNmTNHdrvd4oiuKCxxIPe2bt2q//znP7rhhhusDgUAAAAAAAD5QOEPAIAcsNlshXIYS7vdXijjQtERExOjPn366N1339Urr7xidTgAAAAAAADIBwp/AAAAXmzo0KHq2rWrOnToQOEPQMHz95emTftnGgAAwNv4+CjhjjvMaQDILwp/AAAAXmrJkiX65ZdftHXr1hy1T0hIUEJCgjkfHR19rUIDFBUVJYfDkae++/btc3M0uVOUY3eHXL/+9u2v/LtnjxISEvI8dLQnvHcAAMAL+fkpqU0bq6MA4EEo/AEAAHihkydP6qmnntJ3332X4+Fip0yZogkTJlzjyIArhaM6desqPi7O6lByrSjH7g75ff02Hx8ZTqebowIAAAAA70HhDwAAwAtt375dZ8+eVdOmTc1lKSkpWr9+vWbPnq2EhAT5+vq69BkzZoxGjhxpzkdHRysiIqLAYob3cDgcio+LU+SsKSpfs3qu+/+2ZoO+mDH7GkR2dUU5dnfI7eu3pThV8chRSdJ3J//Qytff9tr3DgAAeCmnUz5//nllskIFhvsEkG8U/gAAALxQ+/bttXv3bpdlAwYMUJ06dfTcc89lKPpJkt1uz/MQfEBelK9ZXZUb1st1v9OHj16DaHKnKMfuDjl9/X5xcXqs+wOSpF1TJ+Sqb3qe8t4BAAAvk5ys4HfekSTFjB0rBQRYHBCAoo7CHwAAgBcqXry4GjRo4LIsJCREZcqUybAcAAAAAAAARQPXDQMAAAAAAAAAAAAegCv+AAAAIElau3at1SEAAAAAAAAgH7jiDwAAAAAAAAAAAPAAXPGXB4ZhKCEhweowCpW07wfvTebsdrtsNpvVYQAAAAAAAAAAAA9F4S8PEhISNHDgQKvDKLQGDx5sdQiF0rx58xQYGGh1GAAAAAAAAAAAwENR+AMAAAAAWMLp56+tw6+cOJjiy50oAACAF/LxUWK7duY0AOQXhb98Kvev22Tz87U6DMsZhiGlOK/M+PowpOX/M5JTdPa/a6wOAwAAACiUnAH+2jpiiCQpZfkXFkcDAABgAT8/Jd52m9VRAPAgFP7yyebnKx9/3kZkzml1AAAAAAAAAAAAwGtQsQIAAAAAWMPpVOnDRyVJNienzQEAAC/kdMrH4bgyGRrKcJ8A8o1fEQAAAACAJfwuX9YDd/TUA3f0lH9SstXhAAAAFLzkZAW/9ZaC33pLSiYfApB/FP4AAAAAAAAAAAAAD0DhDwAAAAAAAAAAAPAAFP4AAAAAAAAAAAAAD0DhDwAAAAAAAAAAAPAAFP4AAAAAAAAAAAAAD0DhDwAAAAAAAAAAAPAAflYHAAAAAADwTk4/f+14rL8kKcWX81IBAIAX8vFRYqtW5jQA5BeFPwAAAACAJZwB/to09mlJUsryLyyOBgAAwAJ+fkrs1MnqKAB4EE4hAAAAAAAAAAAAADwAV/wBAAAAAKzhdKr4H39KkmxOp8XBAAAAWMDplO3SJUmSUbIkw30CyDcKfwAAAAAAS/hdvqx+be6UJG2YOsHiaADAs0VFRcnhcOS5f2hoqCpXruzGiApOfl77vn373ByNNfL6OhISEmS32wv0Ob1OcrJCZs2SJMWMHSsFBFgbjxvl5zvAdw9W8JR9JYW/PDAM45/p5BRxXiqyYiSn/DOd5nsDAAAAAABQUKKiolS3Th3FxcfneRvBQUHat39/oTigmRvueO1F2Zm//5aPzaa+ffvmqb+PzSYnx7SQS/n93kl891DwPGlfSeEvDxITE83ps/9dY2EkKEoSExMVFBRkdRgAAAAAAMDLOBwOxcXH671evXR9aGiu+x9wOPTIp5/K4XBYfjAzt/L72r89dEgTf/jhGkRWMC5eviynYeTp9ae+dm9975B3+fneSXz3YA1P2ldS+AMAAAAAAAC8wPWhoWocHm51GJbI62s/cO7cNYim4OXl9ae+dm9/75B3+f3u8N2DFTxhX0nhLw8C0oyzXO5ft8nm52thNCjMjOQU86rQAA8anxsAAAAAAAAAABQ+FP7ywGaz/TPt5ysff95GZC7t/R/Tfm8AAAAAAAAAAADczcfqAADAatu3b9eTTz6p7du3Wx0KAAAAAAAAAAB5xqVqALxaQkKC5s2bpwsXLmjevHlq0KCB7Ha71WEBAAB4Baevn3b36/3/05yXCgAAvJCPjxKbNzenASC/KPwB8Gqff/65Ll68KEm6ePGiVq5cqXvvvdfaoAAAALyE0x6gDa+8IElKXv6FxdEAAABYwM9PiXfdZXUUADwIpxAA8FqnT5/W//73PxmGIUkyDEMrV67U6dOnLY4MAAAAAAAAAIDc44o/AF7JMAwtWLDALPqlX/7cc8/JZrNZFB0AAICXMAwFnr9gThd1UVFRcjgceeq7b98+N0cDb5Gf750khYaGqnLlym6MCACQK4YhxcVdmQ4OljgeBSCfKPwB8EqnTp3Srl27Mix3Op3atWuXTp06pYoVK1oQGQAAgPfwi4/XwKZtJUk/T51gcTT5ExUVpTp16yo+9cAdUADc8b0LCg7W/n37KP4BgFWSklRs2jRJUszYsVJAgMUBASjqKPwB8Erh4eG64YYbtGfPHjmdTnO5j4+PGjRooPDwcAujAwAAQFHjcDgUHxenyFlTVL5m9Vz3/23NBn0xY/Y1iAyeLL/fu9OHj2rh8DFyOBwU/gAAADwEhT8AXslms6l///4aNWpUhuUDBgxgmE8AAADkSfma1VW5Yb1c9zt9+Og1iAbeIq/fOwAAAHgeH6sDAACrlC9fXt26dTOLfDabTXfffbfCwsIsjgwAAAAAAAAAgNyj8AfAq3Xv3l2lSpWSJJUuXVp33323tQEBAAAAAAAAAJBHFP4AeDW73f5/7N13VBTXHgfw77JsofeqSLFi78aKLWJiYo0SYwGNGnuLxpIYNMZoNBp9avRpImiiUZNYEmvUSOzl2QsaC3ZEwYKALGXv+4MwsrAgfRf4fs7Zc3Zn7p35Tdmdu3Pn3ouBAwfC0dERAwYMgEqlMnRIRERERERERERERET5wjH+iKjMa9CgARo0aGDoMIiIiIiIiIiIiIiICoQVf0REZLSEENBoNIYOw+hk3CfcP/qpVCpp/E4iIjJeWrkprrzX+d/37JCGiIiIyiATEyTXrSu9JyIqKFb8ERGR0dJoNBg4cKChwzBqw4YNM3QIRmnVqlVQq9WGDoOIiF5Dq1Lir/mzAAApm7cZOBoiIiIiAzA1haZbN0NHQUSlCB8hICIiIiIiIiIiIiIiIioF2OKPiIhKhMbtgiCXKwwdhlEQQkCbmgIAMJGbskvLf6WmJuPEvlBDh0FERHkhBExfvpTeExEREZU5QgDJyWnvFQqA//GJqIBY8UdERCWCXK6A3JQVfxKF0tAREBERFZjpy5cY4tsEAPC/r2cYOBoiIiIiA0hOhuWstK7P4z79FFDy/z4RFQy7+iQiIiIiIiIiIiIiIiIqBVjxR0RERERERERERERERFQKsOKPiIiIiIiIiIiIiIiIqBRgxR8RlXmnTp3C6NGjcerUKUOHQkRERERERERERESUb6z4I6IyTaPRYOnSpYiOjsbSpUuh0WgMHRIRERERERERERERUb6w4o+IyrSNGzciMTERAJCYmIhffvnFwBEREREREREREREREeWPqaEDKOlESiq0hg7CCAghgNR/94TcBDKZzLABGQmRkmroECgHDx8+xM6dO3Wm7dixA+3bt4erq6uBoiIiIiIqO4SJHNfffvPf9/wPQURERGWQTIaU6tWl90REBcWKvwJ69Ot+Q4dARPkghMDixYv1zlu8eDG+/PJLVmATERERFbFUtQp/LlsAAEjevM3A0RAREREZgEKBxIAAQ0dBRKUIu/okojLp3r17iIiI0DsvIiIC9+7dK+aIiIiIiIiIiIiIiIgKxiha/C1duhTz5s3Dw4cPUadOHSxevBiNGzfWm3blypVYs2YNLl68CABo0KABvvrqq2zTFwWVSoVVq1YV2/pKAo1Gg2HDhgEAli1bBpVKZeCIjA/3iXF59OjRa+d7eHgUUzRERERERERERERERAVn8Iq/DRs2YPz48Vi+fDmaNGmChQsXwt/fH1evXoWzs3OW9GFhYejduzeaNWsGtVqNr7/+Gh06dMClS5dQrly5YolZJpNBrVYXy7pKIpVKxf1DRq9evXowNzdHQkJClnnm5uaoV6+eAaIiIiIiKltMExIwxLcJAODs1zMMHA0RERGRASQlwXLWLABA3KefAkqlgQMiopLO4F19LliwAIMHD8aAAQNQvXp1LF++HObm5tm2qFu7di2GDx+OunXrolq1avj++++h1Wqxb9++Yo6ciEoyExMTjBkzRu+8cePGwcTE4D+PRERERERERERERER5YtAWf0lJSTh16hSmTJkiTTMxMUH79u1x9OjRXC0jISEBycnJsLe31ztfo9FAo9FIn2NjYwsWNBGVGrVq1ULlypVx7do1aVrlypVRo0YNA0ZFGQkhpPepKckGjIRKgoznSMZzh4iIiIioqM2ePRubNm3ClStXYGZmhmbNmuHrr79G1apVDR0aERERlTEGrfiLjo5GamoqXFxcdKa7uLjgypUruVrGpEmT4O7ujvbt2+udP3v2bMyYwS5jiEi/jz/+GMOGDYMQAjKZDB9//LGhQ6IMkpKSpPcn/go1XCBU4iQlJcHMzMzQYRARERFRGfH3339jxIgRaNSoEVJSUjB16lR06NABly9fhoWFhaHDIyIiojKkRPdlN2fOHKxfvx6bN2/Odky5KVOm4Pnz59Lr7t27xRwlERkza2trdOnSBSYmJujSpQusra0NHRIRERERERGVMLt27UJQUBBq1KiBOnXqIDQ0FHfu3MGpU6cMHRoRERGVMQZt8efo6Ai5XI6oqCid6VFRUXB1dc0x7zfffIM5c+Zg7969qF27drbpVCoVVCpVocRLRKVTr1690KtXL0OHQXooMwxo3bhtEOSmCgNGQ8YuNSVZahmq5GDoRERERGRAz58/B4Bsh6YhIiIiKioGrfhTKpVo0KAB9u3bh65duwIAtFot9u3bh5EjR2abb+7cuZg1axZ2796Nhg0bFlO0RERU3GQymfRebqpgxR/lWsZzh4iIiIioOGm1WowdOxbNmzdHzZo19abRaDTQaDTS59jY2OIKj6jMCQ8PL9Z8VHrk5xworPOmIMvRaDQFagzl6OiIChUq5Ds/GZ5BK/4AYPz48QgMDETDhg3RuHFjLFy4EPHx8RgwYAAAoH///ihXrhxmz54NAPj666/x+eefY926dfDy8sLDhw8BAJaWlrC0tDTYdhBR7gkhdP7gGJIQQhpHTqlUGk1lgUqlMppYiIiIiIqKMJHjdpuW/75n2YeISocRI0bg4sWLOHToULZpZs+ejRkzZhRjVERlT9SLFzCRydC3b19Dh5IzmQwplStL78nwDHnuFMa6TWQyaIXId35zMzOEX7nCyr8SzOAVfwEBAXj8+DE+//xzPHz4EHXr1sWuXbvg4uICALhz5w5MTF4NRbhs2TIkJSXhvffe01lOcHAwpk+fXpyhE1E+aTQaDBw40NBhGLVVq1ZlO3YpERERUWmRqlZhe+h3AIDkzdsMHA0RUcGNHDkS27Ztw4EDB1C+fPls002ZMgXjx4+XPsfGxsLDw6M4QiQqM54lJkIrBL7v0QNVHR3znP/Pa9cw86+/iiCyTBQKJBp75WQZU5Bzp6DnTWGdt/nNfzU6GoN++w3R0dGs+CvBDF7xB6QVirLr2jMsLEzn861bt4o+ICIiIiIiIiIiolwSQmDUqFHYvHkzwsLC4O3tnWN6lUpVoG7YiCj3qjo6oq67e57zXX38uAiioZIkP+dOYZ03BT1v85ufSgejqPgjorJFpVJh1apVhg4DQFrrw2HDhgFIa1FsLH+8jCUOIirdZs+ejU2bNuHKlSswMzNDs2bN8PXXX6Nq1aqGDo2IiIioRBkxYgTWrVuHrVu3wsrKShqaxsbGBmZmZgaOjoiIiMoSVvwRUbGTyWRG2Y2lSqUyyriIiIrK33//jREjRqBRo0ZISUnB1KlT0aFDB1y+fBkWFhaGDo+IygDThAQMqN8aAHB2+mTDBkNEVADLli0DALRu3VpnekhICIKCgoo/ICIqOZKSYDF3LgAg/pNPAKXSwAERUUnHij8iIiKiMmrXrl06n0NDQ+Hs7IxTp06hVatWBoqKiMoaxcuXhg6BiKjAhBCGDoGISjBZcrKhQyCiUoQVf0REREQEAHj+/DkAwN7eXu98jUYDjUYjfY6NjS2WuMqqO3fuIDo6Ol95w8PDCzmavCvp8Zd1+T0GpeHYleVtJyIiIiKiko8Vf0REREQErVaLsWPHonnz5qhZs6beNLNnz8aMGTOKObKy6c6dO6jm64uXCQmGDiVfSnr8ZVnso2jITEzQt29fQ4dS7MrythMRERERUenBij8iIiIiwogRI3Dx4kUcOnQo2zRTpkzB+PHjpc+xsbHw8PAojvDKnOjoaLxMSEDgwtlwreST5/yX9h/EtvlLiiCy3Cnp8ZdlCbGxEFptmTx2ZXnbiYiIiIio9GDFHxEREVEZN3LkSGzbtg0HDhxA+fLls02nUqmgUqmKMTJyreSDCrWq5znfw+s3iyCavCvp8ZdlZfnYleVtJyIiIiKiko8Vf0RERERllBACo0aNwubNmxEWFgZvb29Dh0RERERERERERAXAij8iIiKiMmrEiBFYt24dtm7dCisrKzx8+BAAYGNjAzMzMwNHR0RlgTAxwf03Gqa9l8kMHA0RERGRAchkSPXykt4TERUUK/6IiKhESE1NNnQIRkMIAW1qCgDARG4KGf8YAOA5kh/Lli0DALRu3VpnekhICIKCgoo/ICIqc1LVamzdEAIASN68zcDREBERERmAQoGXAwYYOgoiKkVY8UdERCXCiX2hhg6BqNQRQhg6BCIiIiIiIiIiKkQmhg6AiIiIiIiIiIiIiIiIiAqOLf6IiMhoqVQqrFq1ytBhGB2NRoNhw4YBSOuqUaVSGTgi48N9QkRUMpgmJKBf844AgLOTxho2GCIiIiJDSEqCxbffAgDix40DlEoDB0REJR0r/oiIyGjJZDKo1WpDh2HUVCoV9xEREZVoZk+eGjoEIiIiIoOSJSQYOgQiKkXY1ScRERERERERERERERFRKcCKPyIiIiIiIiIiIiIiIqJSgBV/RERERERERERERERERKUAK/6IiIiIiIiIiIiIiIiISgFW/BERERERERERERERERGVAqaGDoCIiIiIiIjKJmFigke1a6S9l8kMHA0RERGRAchkSHV3l94TERUUK/6IiIiIiIjIIFLVavz6x3oAQPLmbQaOhoiIiMgAFAq8/OgjQ0dBRKUIu/okIiIiIiIiIiIiIiIiKgVY8UdERERERERERERERERUCrDij4iIiIiIiAzC9OVL9G3uj77N/aFMSjJ0OERERETFLykJ5t9+C/NvvwVYHiKiQsAx/oiIiIiIiMgwhID1vQf/vjdsKERERESGYvLsmaFDIKJShC3+iIiIiIiIiIiIiIiIiEoBVvwRERERERERERERERERlQKs+CMiIiIiIiIiIiIiIiIqBVjxR0RERERERERERERERFQKsOKPiIiIiIiIiIiIiIiIqBQwNXQAREREREREVEbJZHhSueK/7w0bChEREZGhpDo5GToEIipFWPFHREREREREBpFiZob1e7cAAJI2bzNsMERERESGoFTi5ciRho6CiEoRVvwRlRFCCGg0GkOHYXQy7hPun6xUKhVkMj5+T0RERERERERERFQSsOKPqIzQaDQYOHCgocMwasOGDTN0CEZn1apVUKvVhg6DiIiIiIiIiIiIiHKBFX9ERERERERkEKYvX+K9d3sDAM4O7m/gaIiIiIgMICkJZitWAABeDhkCKJUGDoiISjpW/BGVQTObuEEpZ/eNQFoXqMlaAQBQmMjYrSWApFSBaccjDR0GERERlQVCwP7ajX/fGzYUIiJ6vfDw8Hzn1Wg0UKlUxZ63IDETFRf548fZzsvPOczzngoqv+dQYZ17BVmOo6MjKlSoUChxlFSs+CMqg5RyGVRyE0OHYTTYkWVmWkMHQEREREREREYk6sULmMhk6Nu3b76XYSKTQSvy95RHQfISlVSF8b0jyitDn3eFsX5zMzOEX7lSpiv/WPFHRERERERERERE2XqWmAitEPi+Rw9UdXTMc/4/r13DzL/+ylf+guTNmJ+opCnI947nPeVXYf3eG2r9V6OjMei33xAdHc2KPyIiIiIiIiIiIqKcVHV0RF139zznu/pvN4b5yV+QvBnzE5VUBfneEOWXoX9z87t+SsOKPyIiIiIyWnfu3EF0dHS+8xdkPJiC5udYNERUEuX396c0jKXCsWSIiIiIqDRgxR8RERERGaU7d+6gmq8vXiYk5HsZMhMTCG3+xy4tSP6CrpuIqDjFPoqGzMQk3+OpmJmb40p4eIms/CrotgMle/uJiIiIqHRhxR8RERERGaXo6Gi8TEhA4MLZcK3kk+f8l/YfxLb5SwySv7DWTVTqyWSILf9vFz4yw4ZS1iXExkJotfn63Xp4/SZWj51SYsdSKci2AyV/+4mIyPC0traGDoGIShFW/BERERGRUXOt5IMKtarnOd/D6zcNlr+w1k1U2qWYmeGnw7sBAEmbtxk4GgLy/7tVGpTlbSciIgNSKpEwbpyhoyCiUsTE0AEQERERERERERERERERUcGx4o+IiIiIiIiIiIiIiIioFGBXn0RERERERGQQ8sREdOsZBAA40zfAsMEQERERGUJyMsxWrQIAvBw4EFAoDBwQEZV0rPgjIiIiIiIig5BptXA+fyntvRAGjoaIiIjIAISA/MED6T0RUUGxq08iIiIiIiIiIiIiIiKiUoAVf0RERERERERERERERESlACv+iIiIiIiIiIiIiIiIiEoBVvwRERERERERERERERERlQKs+CMiIiIiIiIiIiIiIiIqBUwNHQARERERERGVXS/t7QwdAhEREZFBCXNzQ4dARKUIK/6IiIiIiIjIIFLMzRFy5gAAIGnzNgNHQ0RERGQASiXiJ00ydBREVIqw4o+ojBBCSO+TUrUGjISMXcbzI+N5Q0RERERERERERETGjRV/JZwQAhqNxtBh6MRgDPGkU6lUkMlkhg7DKCQlJUnvpx1/aMBIqCRJSkqCmZmZocMgIiIiIiIiIiIiolxgxV8Jp9FoMHDgQEOHoWPYsGGGDkGyatUqqNVqQ4dBRERERER6yBMT8U5g2v+HM907GzgaIiIiIgNITobZTz8BAF727QsoFAYOiIhKOlb8EZURSqVSej+ziSuUchMDRkPGLClVK7UKzXjeEBERERU2mVaLcsf+l/a+27sGjoaIiIjIAISA/NYt6T0RUUGx4q+EU6lUWLVqlaHDgBBC6kpSqVQaTfeaKpXK0CEYjYzHRCk3gYoVf5QLxvJdJiIiIiIiIiIiIqLXY8VfCSeTyYymK0uOA1ZyJKUKAFpDh2EUhBBI1qY9TaUwkbGiC+nnB2VmLGOqAhxXlYiIiIiIiIiIiPRjxR9RGTTteKShQyAqcYxxTFWA46oSERERERERERHRK+zrj4iIiIiIiIiIiIiIiKgUYIs/ojLCWMaDNDYajUZqMbVs2TKOC5kJ98crxvQd4riqREREREREREREpA8r/ojKCGMaD9JYqVQq7iPKlrF9hziuKhERlRbJvKYRERFRGScUCkOHQESlCCv+iIiIiIiIyCBSzM2x8soJAEDS5m0GjoaIiIjIAJRKxH/2maGjIKJShGP8EREREREREREREREREZUCrPgjIiIiIiIiIiIiIiIiKgXY1ScREREREREZhDxRg45DxwEAzrz9poGjISIiIjKA5GSoN2wAACQGBAAc74+ICogVf0RERERERGQQMm0qPPcfTHvfsb2BoyEiIiIyACFgeu2a9J6IqKDY1ScRERERERERERERERFRKcCKPyIiIiIiIiIiIiIiIqJSwCgq/pYuXQovLy+o1Wo0adIEJ06cyDH9L7/8gmrVqkGtVqNWrVrYsWNHMUVKREREVPrktSxGRERERPqxXEVERESGZvCKvw0bNmD8+PEIDg7G6dOnUadOHfj7++PRo0d60x85cgS9e/fGhx9+iDNnzqBr167o2rUrLl68WMyRExEREZV8eS2LEREREZF+LFcRERGRMTA1dAALFizA4MGDMWDAAADA8uXLsX37dqxatQqTJ0/Okn7RokXo2LEjJk6cCACYOXMm9uzZgyVLlmD58uXFGjsR5Y8QAhqNxtBhAIBOHMYSEwCoVCrIZDJDh0FEZUBey2JEREREpB/LVURERGQMDFrxl5SUhFOnTmHKlCnSNBMTE7Rv3x5Hjx7Vm+fo0aMYP368zjR/f39s2bJFb3qNRqNzM//58+cAgNjY2AJGT0T5lZiYiBEjRhg6jCwGDRpk6BAkS5cuhVqtNnQYRGVSehlBCGHgSIpeXstixV2uiouLAwDcuXgZmoSEPOd/eD3CYPkNue7CyB918xYA4NSpU9JxyIurV68WaP2G3P6yvO2GyK9I1CD9FyR935eU2Jn/lYJ+b4C0649Wq81XXkN/7wy5/QXd9vTY4+LiiuR6znKV8ZWrzkZGIj4pKc/5/4mONlh+Q667MPJfi4kBUPCyBfd96c1vkpyMJv++P377NrQKRYHXX1K2vTTmL8mxl4b8BfnNLejvbfq6jaJcJQzo/v37AoA4cuSIzvSJEyeKxo0b682jUCjEunXrdKYtXbpUODs7600fHBwsAPDFF1988cUXX3zl6XX37t3CKfAYsbyWxViu4osvvvjiiy++8vNiuYrlKr744osvvvjiq3BeuSlXGbyrz6I2ZcoUnRaCWq0WT548gYODA7vRK2SxsbHw8PDA3bt3YW1tbehwiHKN5y6VRDxvi44QAi9evIC7u7uhQzE6eSlX8Rw1DjwOxoPHwjjwOBgPHgvjUNTHgeWq7BX0fhW/Q69wX7zCfZGG++EV7os03A+vcF+8UtL2RV7KVQat+HN0dIRcLkdUVJTO9KioKLi6uurN4+rqmqf0KpUKKpVKZ5qtrW3+g6bXsra2LhFfFKLMeO5SScTztmjY2NgYOoRikdeyWH7KVTxHjQOPg/HgsTAOPA7Gg8fCOBTlcWC5qvDKVfrwO/QK98Ur3BdpuB9e4b5Iw/3wCvfFKyVpX+S2XGVSxHHkSKlUokGDBti3b580TavVYt++fWjatKnePE2bNtVJDwB79uzJNj0RERER6ZefshgRERERZcVyFRERERkLg3f1OX78eAQGBqJhw4Zo3LgxFi5ciPj4eAwYMAAA0L9/f5QrVw6zZ88GAIwZMwZ+fn6YP38+OnXqhPXr1+N///sfVqxYYcjNICIiIiqRXlcWIyIiIqLcYbmKiIiIjIHBK/4CAgLw+PFjfP7553j48CHq1q2LXbt2wcXFBQBw584dmJi8apjYrFkzrFu3Dp999hmmTp2KypUrY8uWLahZs6ahNoH+pVKpEBwcnKWrCiJjx3OXSiKet1RYXlcWyy+eo8aBx8F48FgYBx4H48FjYRx4HApXUZWr9OGxe4X74hXuizTcD69wX6ThfniF++KV0rwvZEIIYeggiIiIiIiIiIiIiIiIiKhgDDrGHxEREREREREREREREREVDlb8EREREREREREREREREZUCrPgjIiIiIiIiIiIiIiIiKgVY8UdERERERERERERERERUCrDij4zKpUuX0KNHD3h5eUEmk2HhwoWGDokoV1auXImWLVvCzs4OdnZ2aN++PU6cOGHosIhyNH36dNStW9fQYVAJsnTpUnh5eUGtVqNJkyY5/s61bt0aMpksy6tTp05SmqCgoCzzO3bsWBybUqLl5TgAwMKFC1G1alWYmZnBw8MD48aNQ2JiYoGWSYV/HKZPn57l+1CtWrWi3oxSIS/HIjk5GV988QUqVqwItVqNOnXqYNeuXQVaJqUp7OPA70T+HDhwAO+++y7c3d0hk8mwZcuW1+YJCwtD/fr1oVKpUKlSJYSGhmZJw+9E8cjrfn727BlGjBgBNzc3qFQqVKlSBTt27CjQMo1BYe+Hkvx7UtjlbyEEPv/8c7i5ucHMzAzt27fHtWvXimNTCoz/RdLwv8ArLI+nYVn4FZZHMxBU5mk0GkOHIDlx4oSYMGGC+Pnnn4Wrq6v49ttvDR0SGTFjOnc/+OADsXTpUnHmzBkRHh4ugoKChI2Njbh3756hQyMjY0znbXBwsKhTp46hw6ASYv369UKpVIpVq1aJS5cuicGDBwtbW1sRFRWlN31MTIyIjIyUXhcvXhRyuVyEhIRIaQIDA0XHjh110j158qSYtqhkyutxWLt2rVCpVGLt2rUiIiJC7N69W7i5uYlx48ble5lUNMchODhY1KhRQ+f78Pjx4+LapBIrr8fik08+Ee7u7mL79u3ixo0b4rvvvhNqtVqcPn0638ukojkO/E7kz44dO8Snn34qNm3aJACIzZs355j+5s2bwtzcXIwfP15cvnxZLF68WMjlcrFr1y4pDb8TxSOv+1mj0YiGDRuKt99+Wxw6dEhERESIsLAwcfbs2Xwv0xgUxX4oqb8nRVH+njNnjrCxsRFbtmwR586dE507dxbe3t7i5cuXxbRV+cP/Imn4X+AVlsfTsCz8CsujuljxVwb5+fmJESNGiDFjxggHBwfRunVrERYWJho1aiSUSqVwdXUVkyZNEsnJyVIeT0/PLJVwderUEcHBwdLn8PBw0bx5c6FSqYSvr6/Ys2dPlj8ad+7cET179hQ2NjbCzs5OdO7cWUREROiNU986qWwrKeeuEEKkpKQIKysrsXr16kLaeiqpjPm8ZcUf5UXjxo3FiBEjpM+pqanC3d1dzJ49O1f5v/32W2FlZSXi4uKkaYGBgaJLly6FHWqpltfjMGLECNG2bVudaePHjxfNmzfP9zKpaI4Df5PzJ6/Hws3NTSxZskRnWvfu3UWfPn3yvUwqmuPA70TB5abi75NPPhE1atTQmRYQECD8/f2lz/xOFI+87udly5YJHx8fkZSUVGjLNAZFsR9K6u9JYZe/tVqtcHV1FfPmzZPSPHv2TKhUKvHzzz8XbvCFjP9F0vC/wCssj6dhWfgVlkd1savPMmr16tVQKpU4fPgwpk+fjrfffhuNGjXCuXPnsGzZMvzwww/48ssvc7281NRUdO3aFebm5jh+/DhWrFiBTz/9VCdNcnIy/P39YWVlhYMHD+Lw4cOwtLREx44dkZSUVNibSKVUSTl3ExISkJycDHt7+wJtL5UOJeW8JcpOUlISTp06hfbt20vTTExM0L59exw9ejRXy/jhhx/w/vvvw8LCQmd6WFgYnJ2dUbVqVQwbNgwxMTGFGntpkp/j0KxZM5w6dUrq4uTmzZvYsWMH3n777Xwvs6wriuOQ7tq1a3B3d4ePjw/69OmDO3fuFN2GlAL5ORYajQZqtVpnmpmZGQ4dOpTvZZZ1RXEc0vE7UfSOHj2qc+wAwN/fXzp2/E4Uj/zs599//x1NmzbFiBEj4OLigpo1a+Krr75CampqvpdpaEWxH9KVtN+Toih/R0RE4OHDhzrLtLGxQZMmTYz2nAD4XyQd/wu8wvJ4GpaFX2F5NCtTQwdAhlG5cmXMnTsXALBmzRp4eHhgyZIlUj+1Dx48wKRJk/D555/DxOT19cN79uzBjRs3EBYWBldXVwDArFmz8Oabb0ppNmzYAK1Wi++//x4ymQwAEBISAltbW4SFhaFDhw5FsKVU2pSUc3fSpElwd3fP8ieayqaSct4SZSc6OhqpqalwcXHRme7i4oIrV668Nv+JEydw8eJF/PDDDzrTO3bsiO7du8Pb2xs3btzA1KlT8dZbb+Ho0aOQy+WFug2lQX6OwwcffIDo6Gi0aNECQgikpKRg6NChmDp1ar6XWdYVxXEAgCZNmiA0NBRVq1ZFZGQkZsyYgZYtW+LixYuwsrIq0m0qqfJzLPz9/bFgwQK0atUKFStWxL59+7Bp0ybpBjG/E3lXFMcB4HeiuDx8+FDvsYuNjcXLly/x9OlTfieKQX6+Rzdv3sRff/2FPn36YMeOHbh+/TqGDx+O5ORkBAcHl8jfs6LYD0DJ/D0pivL3w4cPpWVkXmb6PGPE/yJp+F/gFZbH07As/ArLo1mxxV8Z1aBBA+l9eHg4mjZtKt0YBoDmzZsjLi4O9+7dy9Xyrl69Cg8PD+kGNAA0btxYJ825c+dw/fp1WFlZwdLSEpaWlrC3t0diYiJu3LhRwC2isqIknLtz5szB+vXrsXnz5ixPjlDZVBLOW6Ki9MMPP6BWrVpZztP3338fnTt3Rq1atdC1a1ds27YNJ0+eRFhYmGECLYXCwsLw1Vdf4bvvvsPp06exadMmbN++HTNnzjR0aGVKbo7DW2+9hZ49e6J27drw9/fHjh078OzZM2zcuNGAkZc+ixYtQuXKlVGtWjUolUqMHDkSAwYMyNWDN1R4cnMc+J0gyplWq4WzszNWrFiBBg0aICAgAJ9++imWL19u6NCKVW72Q1n8Pcmu/F0WleX/Ivwv8ArL42lYFn6ltJdH2eKvjMrctP11TExMIITQmZacnJynZcTFxaFBgwZYu3ZtlnlOTk55WhaVXcZ+7n7zzTeYM2cO9u7di9q1a+dpPVR6Gft5S/Q6jo6OkMvliIqK0pkeFRWlUwGtT3x8PNavX48vvvjitevx8fGBo6Mjrl+/jnbt2hUo5tIoP8dh2rRp6NevHwYNGgQAqFWrFuLj4zFkyBB8+umnBTq2ZVVRHAd9f7RtbW1RpUoVXL9+vfA3opTIz7FwcnLCli1bkJiYiJiYGLi7u2Py5Mnw8fHJ9zLLuqI4DvrwO1E0XF1d9R47a2trmJmZQS6X8ztRDPLzPXJzc4NCodBpmeTr64uHDx8iKSmpRP6eFcV+UCqVWfKUhN+Toih/p+eLioqCm5ubzjLr1q1bOIEXAf4XScP/Aq+wPJ6GZeFXWB7NquxV5VIWvr6+OHr0qM5N5sOHD8PKygrly5cHkPZFiIyMlObHxsYiIiJC+ly1alXcvXtX58t18uRJnfXUr18f165dg7OzMypVqqTzsrGxKarNo1LM2M7duXPnYubMmdi1axcaNmxY6NtLpYOxnbdEuaFUKtGgQQPs27dPmqbVarFv3z40bdo0x7y//PILNBoN+vbt+9r13Lt3DzExMTo3IuiV/ByHhISELH9i02+MCSEKdGzLqqI4DvrExcXhxo0b/D7koCDnr1qtRrly5ZCSkoLffvsNXbp0KfAyy6qiOA768DtRNJo2bapz7IC0buXTjx2/E8UjP/u5efPmuH79OrRarTTtn3/+gZubG5RKZYk8dkWxH/QpCb8nRVH+9vb2hqurq84yY2Njcfz4caM9JwD+F0nH/wKvsDyehmXhV1ge1UNQmePn5yfGjBkjfb53754wNzcXI0aMEOHh4WLLli3C0dFRBAcHS2kmT54sXF1dxYEDB8T58+dF165dhaWlpZQmJSVFVK1aVfj7+4tz586JQ4cOiTfeeEMAEFu2bBFCCBEfHy8qV64sWrduLQ4cOCBu3rwp9u/fL0aNGiXu3r0rhBBCo9GIM2fOiDNnzgg3NzcxYcIEcebMGXHt2rXi2j1kxIz53J0zZ45QKpXi119/FZGRkdLrxYsXxbV7yEgZ83kbHBwsqlSpIv3upr+uX79eXLuHSpD169cLlUolQkNDxeXLl8WQIUOEra2tePjwoRBCiH79+onJkydnydeiRQsREBCQZfqLFy/EhAkTxNGjR0VERITYu3evqF+/vqhcubJITEws8u0pqfJ6HIKDg4WVlZX4+eefxc2bN8Wff/4pKlasKHr16pXrZVJWRXEcPv74YxEWFiYiIiLE4cOHRfv27YWjo6N49OhRsW9fSZLXY3Hs2DHx22+/iRs3bogDBw6Itm3bCm9vb/H06dNcL5OyKorjwO9E/rx48UIq0wEQCxYsEGfOnBG3b98WQqSVM/v16yelv3nzpjA3NxcTJ04U4eHhYunSpUIul4tdu3ZJafidKB55/R7duXNHWFlZiZEjR4qrV6+Kbdu2CWdnZ/Hll1/mepnGqCj2Q0n9PSns8rcQafcubG1txdatW8X58+dFly5dhLe3t3j58mWRbktB8b9IGv4XeIXl8TQsC7/C8qguVvyVQZlvQgshRFhYmGjUqJFQKpXC1dVVTJo0SSQnJ0vznz9/LgICAoS1tbXw8PAQoaGhok6dOjo3qsPDw0Xz5s2FUqkU1apVE3/88YcAoPOHITIyUvTv3184OjoKlUolfHx8xODBg8Xz58+FEEJEREQIAFlefn5+RblLqIQw5nPX09NT77mbcT1UNhnzeRscHKz3vG3Xrl2R7hMquRYvXiwqVKgglEqlaNy4sTh27Jg0z8/PTwQGBuqkv3LligAg/vzzzyzLSkhIEB06dBBOTk5CoVAIT09PMXjwYKP/M2EM8nIckpOTxfTp00XFihWFWq0WHh4eYvjw4Tp/Zl63TNKvsI9DQECAcHNzE0qlUpQrV04EBATwQYxcysuxCAsLE76+vkKlUgkHBwfRr18/cf/+/Twtk/Qr7OPA70T+7N+/X2/5Ln3/BwYGZvl/vX//flG3bl2hVCqFj4+PCAkJybJcfieKR17LWkeOHBFNmjSRyvqzZs0SKSkpuV6msSrs/VCSf08Ks/wthBBarVZMmzZNuLi4CJVKJdq1ayeuXr1alJtQaPhfJA3/C7zC8ngaloVfYXn0FZkQ2bRlJSqgw4cPo0WLFrh+/ToqVqxo6HCIco3nLpVEPG+JiIiIiIiIiIiIFX9UaDZv3gxLS0tUrlwZ169fx5gxY2BnZ4dDhw4ZOjSiHPHcpZKI5y0RERERERERERFlZmroAKj0ePHiBSZNmoQ7d+7A0dER7du3x/z58w0dFtFr8dylkojnLREREREREREREWXGFn9EREREREREREREREREpYCJoQMgIiIiIiIiIiIiIiIiooJjxR8RERERERERERERERFRKcCKPyIiIiIiIiIiIiIiIqJSgBV/RERERERERERERERERKUAK/6IiPJAJpNhy5Ythg6DiIiIiIiIiIiIiCgLVvwRUYkTFBQEmUyGoUOHZpk3YsQIyGQyBAUF5WpZYWFhkMlkePbsWa7SR0ZG4q233spDtERERESFxxgeQpo+fTrq1q1r0BiIiIiIjJ2XlxcWLlyY6/StW7fG2LFjiyweIio7WPFHRCWSh4cH1q9fj5cvX0rTEhMTsW7dOlSoUKHQ15eUlAQAcHV1hUqlKvTlExERUdmV/lCTTCaDQqGAi4sL3nzzTaxatQparVYnrTE8hDRhwgTs27dP+hwUFISuXbsWeLmpqamYM2cOqlWrBjMzM9jb26NJkyb4/vvvC7xsIiIiKt0ePnyIUaNGwcfHByqVCh4eHnj33Xd1yixFJTQ0FLa2tlmmnzx5EkOGDMn1cjZt2oSZM2dKn/NacZidx48fY9iwYahQoQJUKhVcXV3h7++Pw4cPF3jZRGScWPFHRCVS/fr14eHhgU2bNknTNm3ahAoVKqBevXrSNK1Wi9mzZ8Pb2xtmZmaoU6cOfv31VwDArVu30KZNGwCAnZ2dTkvB1q1bY+TIkRg7diwcHR3h7+8PIOtT9vfu3UPv3r1hb28PCwsLNGzYEMePHy/irSciIqLSpmPHjoiMjMStW7ewc+dOtGnTBmPGjME777yDlJQUKV1RP4SUmpqapbIxM0tLSzg4OBT6umfMmIFvv/0WM2fOxOXLl7F//34MGTIk1z0z5Ef6w11ERERUct26dQsNGjTAX3/9hXnz5uHChQvYtWsX2rRpgxEjRmSbLzk5uUjjcnJygrm5ea7T29vbw8rKqtDj6NGjB86cOYPVq1fjn3/+we+//47WrVsjJiam0NeVjmUsIsNixR8RlVgDBw5ESEiI9HnVqlUYMGCATprZs2djzZo1WL58OS5duoRx48ahb9+++Pvvv+Hh4YHffvsNAHD16lVERkZi0aJFUt7Vq1dDqVTi8OHDWL58eZb1x8XFwc/PD/fv38fvv/+Oc+fO4ZNPPnntzTIiIiKizNKfvi5Xrhzq16+PqVOnYuvWrdi5cydCQ0OldBkfQmrWrBkmTZqks5zHjx9DoVDgwIEDAACNRoMJEyagXLlysLCwQJMmTRAWFialT39C/ffff0f16tWhUqlw584dhIWFoXHjxrCwsICtrS2aN2+O27dvA9Dt6nP69OlYvXo1tm7dKrVaDAsLQ9u2bTFy5MgssSmVymyfvP/9998xfPhw9OzZE97e3qhTpw4+/PBDTJgwQUqj1Woxd+5cVKpUCSqVChUqVMCsWbOk+RcuXEDbtm1hZmYGBwcHDBkyBHFxcdL89NaJs2bNgru7O6pWrQoAuHv3Lnr16gVbW1vY29ujS5cuuHXr1usPHBERERnc8OHDIZPJcOLECfTo0QNVqlRBjRo1MH78eBw7dkxKJ5PJsGzZMnTu3BkWFhZSGWLr1q2oX78+1Go1fHx8MGPGDJ0HrxYsWIBatWrBwsICHh4eGD58uFS+CAsLw4ABA/D8+XOpLDR9+nQAui32PvjgAwQEBOjEnZycDEdHR6xZswaAblefrVu3xu3btzFu3DhpufHx8bC2tpYeaE+3ZcsWWFhY4MWLF1n2zbNnz3Dw4EF8/fXXaNOmDTw9PdG4cWNMmTIFnTt31kn30UcfwcXFBWq1GjVr1sS2bduk+b/99htq1KgBlUoFLy8vzJ8/X2c9Xl5emDlzJvr37w9ra2uppeOhQ4fQsmVLmJmZwcPDA6NHj0Z8fHzOB5SICowVf0RUYvXt2xeHDh3C7du3cfv2bRw+fBh9+/aV5ms0Gnz11VdYtWoV/P394ePjg6CgIPTt2xf//e9/IZfLYW9vDwBwdnaGq6srbGxspPyVK1fG3LlzUbVqVemmUEbr1q3D48ePsWXLFrRo0QKVKlVCr1690LRp06LfeCIiIir12rZtizp16uj0cJBRnz59sH79egghpGkbNmyAu7s7WrZsCQAYOXIkjh49ivXr1+P8+fPo2bMnOnbsiGvXrkl5EhIS8PXXX+P777/HpUuXYG9vj65du8LPzw/nz5/H0aNHMWTIEMhksiwxTJgwAb169ZJaLEZGRqJZs2YYNGgQ1q1bB41GI6X96aefUK5cObRt21bv9ri6uuKvv/7C48ePs90nU6ZMwZw5czBt2jRcvnwZ69atg4uLCwAgPj4e/v7+sLOzw8mTJ/HLL79g7969WSog9+3bh6tXr2LPnj3Ytm0bkpOT4e/vDysrKxw8eBCHDx+GpaUlOnbsyKfViYiIjNyTJ0+wa9cujBgxAhYWFlnmZ+6Cc/r06ejWrRsuXLiAgQMH4uDBg+jfvz/GjBmDy5cv47///S9CQ0N1HiwyMTHBf/7zH1y6dAmrV6/GX3/9hU8++QRA2oNYCxcuhLW1tVQWyvjQUro+ffrgjz/+0Hkgaffu3UhISEC3bt2ypN+0aRPKly+PL774QlquhYUF3n//fZ2H4AEgJCQE7733nt7WgpaWlrC0tMSWLVt0ymUZabVavPXWWzh8+DB++uknXL58GXPmzIFcLgcAnDp1Cr169cL777+PCxcuYPr06Zg2bZrOw2kA8M0336BOnTo4c+YMpk2bhhs3bqBjx47o0aMHzp8/jw0bNuDQoUNZymZEVAQEEVEJExgYKLp06SKEEKJ79+5i+vTpIjg4WPTo0UMIIUSXLl1EYGCguHjxogAgLCwsdF4KhUI0btxYCCHE/v37BQDx9OlTnXX4+fmJQYMGZVk3ALF582YhhBDDhg0TrVq1KrLtJCIiorIhY9kms4CAAOHr6yt9zlgWefTokTA1NRUHDhyQ5jdt2lRMmjRJCCHE7du3hVwuF/fv39dZZrt27cSUKVOEEEKEhIQIAOLs2bPS/JiYGAFAhIWF6Y0pODhY1KlTJ8f4X758Kezs7MSGDRukabVr1xbTp0/XvxOEEJcuXRK+vr7CxMRE1KpVS3z00Udix44d0vzY2FihUqnEypUr9eZfsWKFsLOzE3FxcdK07du3CxMTE/Hw4UMpVhcXF6HRaKQ0P/74o6hatarQarXSNI1GI8zMzMTu3buzjZeIiIgM7/jx4wKA2LRp02vTAhBjx47VmdauXTvx1Vdf6Uz78ccfhZubW7bL+eWXX4SDg4P0OSQkRNjY2GRJ5+npKb799lshhBDJycnC0dFRrFmzRprfu3dvERAQIH328/MTY8aM0Zs/3fHjx4VcLhcPHjwQQggRFRUlTE1Nsy23CSHEr7/+Kuzs7IRarRbNmjUTU6ZMEefOnZPm7969W5iYmIirV6/qzf/BBx+IN998U2faxIkTRfXq1XVi7dq1q06aDz/8UAwZMkRn2sGDB4WJiYl4+fJltvESUcGxxR8RlWgDBw5EaGgoVq9ejYEDB+rMS3+Kavv27Th79qz0unz5cpZuEfTR96RYRmZmZvkPnIiIiCgXhBB6W9oBaePGdOjQAWvXrgUARERE4OjRo+jTpw+AtG4vU1NTUaVKFelpb0tLS/z999+4ceOGtBylUonatWtLn+3t7REUFAR/f3+8++67WLRoESIjI/MUt1qtRr9+/bBq1SoAwOnTp3Hx4kVpPGV9qlevjosXL+LYsWMYOHAgHj16hHfffReDBg0CAISHh0Oj0aBdu3Z684eHh6NOnTo6ZbjmzZtDq9Xi6tWr0rRatWpBqVRKn8+dO4fr16/DyspK2kf29vZITEzU2U9ERERkfESGng9yo2HDhjqfz507hy+++EKnrDR48GBERkYiISEBALB37160a9cO5cqVg5WVFfr164eYmBhpfm6YmpqiV69eUrktPj4eW7dulcptudW4cWPUqFEDq1evBpDWo4KnpydatWqVbZ4ePXrgwYMH+P3339GxY0eEhYWhfv36Uou9s2fPonz58qhSpYre/OHh4WjevLnOtObNm+PatWtITU2Vpunbt6GhoTr71t/fH1qtFhEREXnabiLKG1NDB0BEVBDpXTDJZDL4+/vrzMs4To2fn5/e/Ok3fTIWVHKrdu3a+P777/HkyROpy1AiIiKiwhQeHg5vb+9s5/fp0wejR4/G4sWLsW7dOtSqVQu1atUCkPYQlFwux6lTp6SumtJZWlpK783MzLJULoaEhGD06NHYtWsXNmzYgM8++wx79uzBG2+8kevYBw0ahLp16+LevXsICQlB27Zt4enpmWMeExMTNGrUCI0aNcLYsWPx008/oV+/fvj0008L7aGrzA93xcXFoUGDBtKNuIycnJwKZZ1ERERUNCpXrgyZTIYrV67kKr2+csCMGTPQvXv3LGnVajVu3bqFd955B8OGDcOsWbNgb2+PQ4cO4cMPP0RSUhLMzc1zHWufPn3g5+eHR48eYc+ePTAzM0PHjh1znT/doEGDsHTpUkyePBkhISEYMGBAtg+KZdyWN998E2+++SamTZuGQYMGITg4GEFBQUVaxvroo48wevToLGkrVKhQKOskIv3Y4o+ISjS5XI7w8HBcvnw5yw0tKysrTJgwAePGjcPq1atx48YNnD59GosXL5aejPL09IRMJsO2bdvw+PFjnb7WX6d3795wdXVF165dcfjwYdy8eRO//fYbjh49WqjbSERERGXTX3/9hQsXLqBHjx7ZpunSpQsSExOxa9curFu3Tuep8Xr16iE1NRWPHj1CpUqVdF6urq6vXX+9evUwZcoUHDlyBDVr1sS6dev0plMqlXofoqpVqxYaNmyIlStXYt26dVl6Z8iN6tWrA0h7Kr5y5cowMzPDvn379Kb19fXFuXPnEB8fL007fPgwTExM9I7XnK5+/fq4du0anJ2ds+ynjOM/ExERkfGxt7eHv78/li5dqlMGSPfs2bMc89evXx9Xr17NUgaoVKkSTExMcOrUKWi1WsyfPx9vvPEGqlSpggcPHugsI7uyUGbNmjWDh4cHNmzYgLVr16Jnz55QKBTZps9uuX379sXt27fxn//8B5cvX0ZgYOBr151Z9erVpf1Vu3Zt3Lt3D//884/etL6+vjh8+LDOtMOHD6NKlSpZ7sVlVL9+fVy+fFnvvs3Y+wIRFT5W/BFRiWdtbQ1ra2u982bOnIlp06Zh9uzZ8PX1RceOHbF9+3bpyfly5cphxowZmDx5MlxcXPI0wLBSqcSff/4JZ2dnvP3226hVq5bO4MdEREREuaXRaPDw4UPcv38fp0+fxldffYUuXbrgnXfeQf/+/bPNZ2Fhga5du2LatGkIDw9H7969pXlVqlRBnz590L9/f2zatAkRERE4ceIEZs+eje3bt2e7zIiICEyZMgVHjx7F7du38eeff+LatWvw9fXVm97Lywvnz5/H1atXER0djeTkZGneoEGDMGfOHAgh0K1btxz3wXvvvYdvv/0Wx48fx+3btxEWFoYRI0agSpUqqFatGtRqNSZNmoRPPvkEa9aswY0bN3Ds2DH88MMPANKeoler1QgMDMTFixexf/9+jBo1Cv369YOLi0u26+3Tpw8cHR3RpUsXHDx4EBEREQgLC8Po0aNx7969HGMmIiIiw1u6dClSU1PRuHFj/Pbbb7h27RrCw8Pxn//8B02bNs0x7+eff441a9ZgxowZuHTpEsLDw7F+/Xp89tlnAIBKlSohOTkZixcvxs2bN/Hjjz9i+fLlOsvw8vJCXFwc9u3bh+jo6By7AP3ggw+wfPly7Nmz57XdfHp5eeHAgQO4f/8+oqOjpel2dnbo3r07Jk6ciA4dOqB8+fLZLiMmJgZt27bFTz/9hPPnzyMiIgK//PIL5s6diy5dugAA/Pz80KpVK/To0QN79uxBREQEdu7ciV27dgEAPv74Y+zbtw8zZ87EP//8g9WrV2PJkiWYMGFCjvFPmjQJR44cwciRI3H27Flcu3YNW7duzdO9NyLKJwOPMUhERERERFSmBQYGCgACgDA1NRVOTk6iffv2YtWqVSI1NVUnLQCxefNmnWk7duwQAESrVq2yLDspKUl8/vnnwsvLSygUCuHm5ia6desmzp8/L4QQIiQkRNjY2Ojkefjwoejatatwc3MTSqVSeHp6is8//1yKJTg4WNSpU0dK/+jRI/Hmm28KS0tLAUDs379fmvfixQthbm4uhg8f/tr9sGLFCtGmTRvh5OQklEqlqFChgggKChK3bt2S0qSmpoovv/xSeHp6CoVCISpUqCC++uoraf758+dFmzZthFqtFvb29mLw4MHixYsXOvu6S5cuWdYdGRkp+vfvLxwdHYVKpRI+Pj5i8ODB4vnz56+Nm4iIiAzvwYMHYsSIEcLT01MolUpRrlw50blzZ51yib5ylBBC7Nq1SzRr1kyYmZkJa2tr0bhxY7FixQpp/oIFC4Sbm5swMzMT/v7+Ys2aNQKAePr0qZRm6NChwsHBQQAQwcHBQgghPD09xbfffquzrsuXLwsAwtPTU2i1Wp15fn5+YsyYMdLno0ePitq1awuVSiUy38bft2+fACA2btyY435JTEwUkydPFvXr1xc2NjbC3NxcVK1aVXz22WciISFBShcTEyMGDBggHBwchFqtFjVr1hTbtm2T5v/666+ievXqUvlr3rx5OuvRt61CCHHixAmpnGhhYSFq164tZs2alWPMRFRwMiHyOAIqERERERERUS7cunULFStWxMmTJ1G/fn1Dh0NERERUKvz4448YN24cHjx4wG4ziSgLU0MHQERERERERKVLcnIyYmJi8Nlnn+GNN95gpR8RERFRIUhISEBkZCTmzJmDjz76iJV+RKQXx/gjIiIiIiKiQnX48GG4ubnh5MmTWcbBISIiIqL8mTt3LqpVqwZXV1dMmTLF0OEQkZFiV59EREREREREREREREREpQBb/BERERERERERERERERGVAqz4IyIiIiIiIiIiIiIiIioFWPFHREREREREREREREREVAqw4o+IiIiIiIiIiIiIiIioFGDFHxEREREREREREREREVEpwIo/IiIiIiIiIiIiIiIiolKAFX9EREREREREREREREREpQAr/oiIiIiIiIiIiIiIiIhKAVb8EREREREREREREREREZUCrPgjIiIiIiIiIiIiIiIiKgVY8UdERERERERERERERERUCrDij4iIiIiIiIiIiIiIiKgUYMUfERERERERERERERERUSnAij8iIiIiIiIiIiIiIiKiUoAVf0RUqIKCgiCTySCTydC6dWtDh4Nbt25J8chkMoSFhRk6JCIiojJv+vTp0rXZy8vLoLF4eXlJsUyfPr1I15WxTBIaGipNDw0N1ZlXXLKLh6gkMLb/HUREVLQKs/zIe0WFx5jK9YWJ5Qwq6VjxR2RgYWFhOoUNmUyGzp076027e/fuLGmDgoIKPYZbt24VeJmU1ZMnT/DZZ5+hXr16sLKyglKphLOzM3x9fdGtWzfMmDEDd+/e1cljqBuBRERU9DJff0tLxYsh//zfu3cPY8eORY0aNWBhYQGVSgVXV1fUqlULAQEBmD17Np4+fVqsMZVUhjw3NRoNHBwcdGJo2LBhscZQEvH8JyIqu6KiojBz5kz4+fnBxcUFSqUSFhYWqFGjBj788EPs3LkTQghDh5ktY6o8KmuVghn3vUwmg4mJCVQqFRwcHODr64uuXbti+fLlePHihaFDNRqsFKSSwNTQARBRVtu3b8fNmzfh4+OjM33RokUGiij33n//fdSsWRMA4OHhYeBojMft27fRokUL3Lt3T2f648eP8fjxY1y5cgVbtmxBnTp1uN+IiIjy4fTp02jbti2eP3+uMz0qKgpRUVG4ePEiNm7ciLfeegt2dnbS/E8//VTK06xZsyKNcd68edL7Ro0aFem6csPY4kn3+++/48mTJzrTTp06hYsXL0rlTNKV3/OfiIhKvu+++w4ff/wxEhMTdaYnJyfj8uXLuHz5MlatWoWIiAiDV6oVRIcOHWBpaQkAsLGxKdCy7O3tdcpBFStWLNDyShMhBJKSkvDkyRM8efIEV65cwdatW/Hpp5/ihx9+QNeuXXXSF+ZxMSa8v0klHSv+iIyQVqvFkiVLsGDBAmnaP//8g127dhkwqpzFxsbC2toaHTt2RMeOHQ0djtGZNGmSVOlnamqKnj17onr16hBC4ObNmzhy5Aj++ecfA0dJRERUcg0fPlyq9LCwsEBAQAB8fHyQnJyMa9eu4eDBg1la1gPA4MGDiy3GCRMmFNu6spOamgqNRgNzc3OjiEef7FoYhoaG4ptvvinSdSclJUEIAZVKVaTrKWz5Pf+JiKhkmzt3LiZNmiR9lsvl6NSpExo0aACZTIbr169j9+7diIqKyvUy0+/vGJtmzZoV2kNa1tbWRlsOMrSpU6fCxsYGjx8/xt9//42TJ08CSOvFqnv37li3bh3ef/99KX1hHpeikN+yHe9vUokniMig9u/fLwBILxMTEwFA2NjYiLi4OCndyJEjpTRyuVx6HxgYmGWZDx8+FFOmTBF16tQRlpaWQqVSiYoVK4rhw4eL27dv66TNuG59r/TlZ47z2rVrYt68eaJatWpCqVSKLl26CCGECAwMlNL4+flliS06Olp88cUXokmTJsLW1lYolUrh7u4uOnToINavX6+TNiQkRPj5+QkHBwdhamoqbG1tRZUqVUSvXr3E0qVLc7V/IyIidOLev3+/WL9+vWjQoIEwMzMTTk5OYsCAAeLhw4dSnlWrVknpzczMxLNnz3SW+fTpU6FQKKQ0mePWx87OTko/ffp0vWkuX74sIiIi9Mat7xUcHCyEECImJkZMnDhRtG3bVnh6egpLS0uhUCiEs7OzaN++vVizZo3QarU668p8PG/cuCGWLl0qatWqJVQqlXBychIffvihePLkid5YT5w4IYKCgkTFihWFmZmZsLCwEJUrVxZBQUHi+vXrOmkTExPF4sWLRcuWLYWdnZ1QKBTC1dVVvPfee+LIkSOv3XdERKVV5t/ikJCQXOXLy3VeiKzX5gcPHojBgwcLV1dXoVQqRbVq1cSKFSv0ruv8+fPinXfeEVZWVsLKykp07NhRnDlzRgQHB0vL9PT01Ls9+l7p25g5f1xcnJgyZYrw8vISSqVSeHt7i1mzZmW5fmXn+fPnOusJDQ3Vm+7EiRPi8ePHOtM8PT2zXFv1bc+VK1fE559/LipUqCDMzMxEo0aNxM6dO4UQQjx69EgMHDhQODo6CrVaLZo3by4OHDiQZf3ZHe+QkBCdeRnt379fDBw4UNSrV086ZmZmZqJixYoiKChInD9/Pst6Mh/z27dvi759+wpnZ2chk8nE5s2bs43Hz88vx2Po6ekprl+/LpVZAYjdu3dniaFhw4bS/KFDh+o9Hvo8ePBAp6xbpUoV6b2Li4tITk7ONm9uyycZtzEwMFBcuHBBdOnSRdjb2wsA4syZM1Laq1eviqFDh4oqVaoIMzMzYWZmJipXriyGDBkiwsPDs8QQFxcnZsyYIerVqycsLS2FqampcHJyEnXq1BGDBg2Szpl0Bw4cEF27dhXu7u5CoVAICwsL4enpKTp27CiCg4OzlEP1Kcj5v2nTJtG3b19Rq1Yt4ezsLMXg6+srRowYIZVNM8q8/44fPy7atWsnLCwshLOzsxg+fLh48eKFEEKIDRs2iPr16wu1Wi3c3d3F+PHjRWJios7yMv8ePH36VIwePVqUK1dOKJVK4evrKxYvXpzl9+B1/zvy+luZ12NHRGRoly5d0rlmOjs7i9OnT2dJl5SUJFasWCGioqKkaZnLAFu2bBFNmzYVFhYWwsbGRif/gQMHREBAgPDw8BBKpVJYWVmJN954QyxZskQkJSVlWd8PP/wgevbsKapVqybdz7GyshJ16tQRn3zyic61qCDlRyHSroHm5uY5lqd79eolzW/fvr0QQv+9IiF0y4X6Xn5+fuKvv/7SmXb16lWd9aWmpgoXFxdp/pw5c3I8ji1atMhyDy6j7777TppvbW0tEhIShBBC3Lp1SwwZMkRUqlRJqNVqoVKphLu7u2jWrJkYN26cuHz5co7rTZdxvwLIcu3fsmWLUKlU0nxLS0vx6NEjvfkLelzS3bhxQ4waNUpUq1ZNmJubC7VaLXx9fcWkSZOylGWEyH3ZLi/lLn3ljMxldn2v/fv3i1atWkmfe/funSXeJUuWSPPt7OzEy5cvc3GkiPKGFX9EBpa5kNO1a1fpfXrl1vPnz4WVlZUAIOrVq6dTEMlcKDhy5IhwdHTM9gJkY2OjcyPqdRes7Cr+WrZsqfM5NxV/J06cEK6urtmuK30ZQmQteGR+ubi45Gr/Zi7MderUSe/yfHx8pILLy5cvhYODQ5bjkC5jxaCdnV2Wmxf6pB8/AOL9999/bZ68VPxduHDhtWkHDBigs/zMxzNjQTPjq1WrVllimzFjhpDJZNmuK/1mohBpN0Lr1q2bbVoTExOxcOHC1+4/IqLSKD8Vf3m9zguhe2328fERbm5uevP+8MMPOvlOnjwpLC0ts6RTq9XizTfflD4XtOLPyclJ1K9fX2/6adOm5WpfxsTE6OSbMGGCSElJyVXe3Fb8NWjQQO91bP369cLb2zvLPJVKleWGS3bHO6eKv48//jjHfapUKsWePXt08mQ85pUrV85S/ipoxZ8QQqdM1bNnT53137x5UyfPiRMncnUshBDi66+/1jnXDh06pLOs33//XW++vJRPMm5jvXr1hIWFhU7a9JtDGzduFGq1OttlqlQq8fPPP+vE0bp16xz3X0BAgJR27969Ojds9b30VS5mVpDzv0ePHjmu39raOkvlcsb9V6NGDZ2bgemv1q1bi2+++UbvMvv166ezvMy/BzVr1tSbb9SoUTr5cvrfkZ/fyrwcOyIiYzB06FCd36nffvst13kz5st8fydjxd/UqVNz/G1s2bKlzkPrQgi9ZaaMr3Llyon79+8LIQpe8SeEEP369ZOmd+jQQSeWFy9eCDMzM2n+unXrhBAFq/gTQuhcqyZOnKizzowVg3K5XDx48CDHY/HDDz/oXHczVwJlPD5DhgwRQggRFRUlnJyccox12bJlOa433esq/oQQYt68eTppvvrqK735C3pchEiraMxYaajv/Mlcxs5N2S6v5a6CVPz98ssv0me1Wp3lofqMFYPDhw/P1XEiyit29UlkZPr06YNDhw4hOjoaS5YswfDhwxESEiINojt69GhMnz5db97Y2Fh07doV0dHRAABPT08EBATAzMwMv/76Ky5duoTnz5+jR48euHbtGmxsbDBv3jzcuHEDy5cvl5YzdepUaeyP7MZROXjwIGrUqIF3330XQgjI5fIct+vFixfo3LkzHj58KE1r27YtmjdvjtjYWBw6dEgn/bJly6T37du3R+vWrREfH4+7d+/i0KFDePnyZY7ry8727dvRpk0btGzZEocPH8a+ffsAADdv3sSkSZOwatUqqNVqDB48GHPmzAEAfP/99xg+fLi0jF9++UV6/8EHH+Squ4D69evj77//BgCsX78eO3bsQNOmTVG/fn00adIEbdu2hZWVlZQ+vb/5//3vf9iwYYM0PWMf9OldKZiYmMDX1xeNGzeGq6srbG1tkZiYiDNnzuCPP/6AEAIhISEYOnQoGjdurDe+Q4cOoV27dmjWrBm2bNmCCxcuAAAOHDiAY8eO4Y033pC2PTg4WMpnbm6O999/H56enoiIiMAff/yhs9x+/frh7NmzAAArKyt88MEHKF++PA4fPoxdu3ZBq9Vi3LhxaNiwIZo3b/7a/UhEVJbl5zqf2c2bN6FWqzFs2DCYmZlh2bJl0jV17ty5GDhwIABACIGBAwciLi5Oytu7d2/4+Phg48aN2LNnT5ZlV6xYEfPmzcOff/4pzbezs8PUqVOlNPrGkXv8+DFiYmLQv39/uLu74/vvv5e2cdGiRfjss8+gVCpz3Df29vbw9PTE7du3AQDffPMNQkJC0Lx5c9SrVw9NmzZF69atC9R946lTp6TuE5csWYIXL15Aq9VKXR3169cPjo6OWLx4MVJSUqDRaLBo0SKdMlZ+WFhYwM/PD7Vq1YK9vT3MzMwQExOD7du3Izw8HElJSRg9ejQuX76sN/+1a9cAAN27d0edOnVw+/btHMdfGTZsGN555x1MnDhRmhYQEICGDRsCeDV2y6hRo7B9+3YAwNatWxEdHQ1HR0cAumWlGjVq5Gn8wNWrV0vv3377bTRv3hy+vr4IDw8HkNbd57vvvquTJ6/lk4zOnDkDU1NT9OvXD5UrV8aVK1egVqtx/fp19OvXDxqNBgDg4OCAwMBAyGQyrF69GtHR0dBoNAgMDESDBg1QuXJlhIeHIywsDEBa+ax///6oUqUKoqOjERERIc1Lt2LFCqSmpgIAqlWrhp49e8LU1BR37tzB2bNncfr06Vzts4Kc/7a2tujQoQN8fX1hZ2cHpVKJqKgobN68GXfu3EFsbCwmTZqEHTt26F33pUuX4OnpiT59+uDEiRPYu3cvACAsLAxhYWGoVKkSAgICsHv3bvzvf/8DAKxduxZz5syBu7t7luU9fvwYsbGxGDp0KGxtbfHTTz9J3eUvXrwYPXr0gJ+fX477Iz+/lXk9dkRExiD9fgaQVubKPPZabh08eBCOjo54//334eDggEuXLgFIu3fx1VdfSen8/f3RvHlzREVFYfXq1YiLi8PBgwcxbtw4rFixQkrn7OyMd999FxUrVoS9vT3kcjnu37+PDRs2ICYmBvfv38eXX36J7777Lt/lx4wGDBiAH3/8Udonjx49grOzMwBgy5YtUlnX1tYW3bp1y3FZn376KW7duqWz3UOHDpXGAEwf623kyJEYOnQoAGDNmjWYNWsWFAoFAN1yUMeOHeHm5pbjOnv16oXRo0cjPj4esbGx2L59O3r06AEA0j2wjNsKAL/99hseP34MIG1/DRgwAA4ODnjw4AGuXLmCgwcP5rjOvBo4cCA++eQTCCEAAPv378eUKVNyzJOf4xIREYHevXtL82rUqIFu3bpBq9Vi7dq1uH37Nu7fv48ePXrgwoULeu9FZle2K4xyV6NGjTBv3jxs2LBBKtf4+Phg2LBhUpqKFSuiRYsWKF++PO7du4fExET8+OOPGD16NADg4cOHeo8pUaEzbL0jEWV+uumPP/7QeaJq165dolKlSgJIewI2MTEx2xZ/ixYtkqbb2dmJmJgYaV5cXJzO00CLFi3KNgZ9T/dkTvPGG2/obYqe3ZO3//nPf3Tyz5o1K0veGzduSO+tra2ltJGRkTmmzUnmp7g6dOggdROk1WpFhw4dpHlKpVLEx8cLIYS4ffu2zpNAp06dEkII8eTJE51uPtOnv87x48eFUqnM9okgtVotRo8eLa0/XU4tADK7ffu2+PXXX8WSJUvEN998I+bNmyfKlSsn5f3iiy+ktJmPZ7du3aT9EhMTo7Pt//nPf6R8GVtkWFhYZOnSIi4uTuo+5Ny5czrr+Ouvv3TSvv322zrrJyIqa/La4i+/1/mM12YAYsuWLdK8hQsX6syLjY0VQghx9OhRnemTJk2S8jx58kSnC+uMT/YKkf1Tv9mlAaDT+nvLli068/R1ZanPpk2bcmzxZWNjI2bMmJGlJVRuW/wNGjRImjdlyhSdeSNGjJDmvf/++9L0+vXr66wru+P9uut9amqqOH78uAgNDRULFy4U8+bNE+PHj9fJc+fOHSl95mOeXev6nM6/152bWq1WpxvO+fPnS/MyPumfcfrrHD9+XGe9v/zyixBCiC+++EKnvBYdHa2TLy/lEyGytmrM+J1IN2bMGGm+iYmJuHDhgjTvwoULOl2djhkzRgghxOnTp6Vpvr6+WbqmTElJEbdu3ZI+d+7cWUqfueWgEEJERkZmKRtmJ7/nvxBpXcAdOHBA/PDDD+Lbb78V8+bNEwMGDJDyqlQqna7cMu4/hUIh/XeIj48XpqamOscqvUXHlStXdOLJ2HIz8+/B2rVrpXkRERE6Ze8+ffpI87L735Gf38q8HjsiImOQsVVUkyZN8pQ34++utbW13i6Q69WrJ6Xp37+/zryNGzdK80xNTXV+a4VIuybs3btXrFixQixYsEDMmzdPdOnSRcrj4+Ojkz6v5ceMabRarU7vC4sXL5bmZbzvMGzYMGl6di3+XjcvXVxcnLC1tZXSpLe2TElJ0enmM7etMIOCgqQ8PXr0kKbPnTtX5/qUbsGCBdL0jz76SG98GYe0yUluWvwJIYSzs7OUpnr16nrzF/S4jBs3TppepUoVnfuOmbuD37p1qzQvN2W7vJa7cupZ4HXdjQshxKxZs6Q0tWrVkqYvXrxY73SiwmYCIjI6w4cPh6lpWoPcDz/8ENevXwcADBkyJMcn1Q8fPiy9f/r0KRwcHCCTySCTyWBpaSk9DQQAR44cKVCMEyZMgFqtznX6jE+zWFlZ6Qw+nc7Hx0d637JlS+l9zZo10alTJ4wdOxYrV67E9evXddLmRd++fSGTyQAAMpkMffr0keYlJSVJLd0qVKiALl26SPNWrlwJIO2ppOTkZABA7dq1Ub9+/Vytt3Hjxjh+/Di6dOkiPQWWUWJiIv7zn//otCzMrZiYGLzzzjvw9PTEe++9h5EjR2LChAmYOHEi7t+/L6VLf1pan2HDhkn7xd7eXnpiH0g7lwAgISEBZ86ckaanPwmdkYWFhfQEV8bzEUhr4Zl+PspkMp0nxwt6PhIRlQWFcZ13d3fXub5VrVpVZ376b376E6zp+vfvL723s7PTWUZByeVyfPTRR6+N6XW6deuGv/76C23btoWJSda/Oc+fP0dwcDBmzpyZrzj79u0rvffy8tKZ16tXL+l9+hPhQO5jz8mePXvg7e2NJk2aICgoCGPHjsXEiROxYMECnXTZXeft7OwwYsSIAseRmUwmw8iRI6XP33//PYC0J7VPnToFAFAoFDr77XVCQ0Ol91ZWVujUqRMASK0qgbTy2tq1a6XPeS2fZFazZk295/PRo0el9w0aNNDpBaNmzZpo0KBBlrS+vr5wcHAAAISHh6NSpUp47733MHXqVKxfvx5Pnz6Fp6enlC9jeTcoKAht2rTBRx99hAULFuD48eNwcXGBubm53rgzy+/5v3btWri7u6NVq1b48MMPMW7cOEycOBEhISFSGo1GI7Wey6x58+bS98Hc3BxOTk4689Jb9WX8XgDZfzcUCgUCAgKkz15eXmjRooX0Of3cykl+fivzeuyIiEqT/v37o0KFCjrTEhISpN57gLRWbRn/z2cs+6SkpODEiRPS5wULFsDFxQXt27fHkCFDMH78eEycOBFbt26V0uR0fyKvZDIZgoKCpM8///wzgLR7JRl7qSjMllUWFhZSTxnAq3tGBw4cQFRUFADA0dExSy8F2ckY2/bt26Vev9K3JXOa5s2bS/dw/vvf/6JBgwbo168fvvzyS+zatQumpqZwcXHJ59bpJ/5t7Zdb+TkuGa/h//zzD8zMzKRzzt3dXWqxB2T/fye7sl1hlrtyY/DgwdI93AsXLuD48eMAdFuEsrUfFSVW/BEZoXLlyknN+tMrbhQKxWsrhZ48eZLrdWT8w5sf1apVy1P6jLF5eHi8tmvQZcuWSd1LxsTEYMeOHVi0aBGGDBmCypUrIyAgAFqtNs9xZ77pk7kg9OzZM+l9ejN8IK2AkpCQgI0bN0rTMhbycqNu3brYsmULnj17hv3792P27Nlo3bq1TprVq1fn6TgCaZXD6V1t5SS9qyp9Mt/AzFjBnL6fnz59qlPQ8/b2znF9xXk+EhGVBYXxu5rT7z3w6jc/4/UQAFxdXXP8XBAuLi46DxNlF1NutG7dGvv27cOTJ0+wc+dOTJ8+XeqiMt23336brzgzdkuYuevRjPPSH94C8ha7Pg8ePEDXrl1x586d16bN7jpfsWJFnZgKU1BQkNRVeXh4OA4fPqxTVurUqVO2FW6ZaTQanZtbnTt3hpmZGQCgcuXKOhVtGSsI81o+ySy7Mm3G75u+G2cZp6VXYqnVamzcuFG6eXrz5k389ttvmD17Nnr37o1y5crpVNiOHTsW/fr1g1wuh0ajQVhYGFasWIGPP/4Yb7zxBmrXro3IyMhcb0tez//Tp0+jf//+2VbqZZTd+ZW5u86M343svhdA9t8NBweHLP8TMu7rzL9N+uTntzKvx46IyBiUK1dOev/PP//kuWImnb5rYebr6+uk/55u2bIFH3/8sU538fokJSXlLcjXCAoKkh58OXr0KG7duoVffvlFenC7Zs2aeep6PDdGjhwprfPPP//E3bt3dcpBffv21fvgtz6tWrVCpUqVAKQ9GL5p0yZcuXJFerjJ1NRU50G8xo0bY8GCBbC0tASQdk3/6aefMG3aNLz11lsoX758oXZT/eTJE53yQsZzLyd5PS6F8X8nu7JdYZe7XsfJyQm9e/eWPn///feIjIyUGkbk9QE5orziGH9ERmrMmDE6Y7v16NFD7zgYGdnb20vv3dzcMH78+GzTpvdLnl8WFhZ5Sp8xtrt37yI1NTXHyj8PDw8cPXoU169fx4kTJ3Dt2jVcuHABW7duRUpKCjZu3IiOHTvm+emYR48e6XxOfxIrna2trfQ+fTydCxcu4Pnz5/jvf/8r9aGvVCp1Wgvmhbm5OVq3bo3WrVtj8uTJmDlzJj7//HNp/rVr19CkSZNcLSs+Ph7btm2TPrdr1w4rVqyAp6cn5HI5GjdujJMnT752OZkLo+lPjmVkZ2cHmUwmFf4jIiJyXGbGYw4AX3zxhXQDj4iI8q4wrvO5+b0HdK+HQNr1M+P6M47ZW1C5jSkvbGxs0LFjR3Ts2BHBwcH48MMPsWrVKgBp439FRUXl+SnonG7cFFXF2h9//IGEhATp8/z58/Hhhx/CxsYGly9fRo0aNV67jLyW2fLCysoKQUFBWLx4MYC0GxrpvScAeXuKOf3hqHRr167VadmX0ZkzZ3DhwgXUqlUrz+WTzLLbPxnP98zlxczT0sfGBtJ6OIiIiMDp06dx9uxZXL9+HUeOHMHBgweRlJSEiRMnonPnzqhUqRJMTU2xZs0azJ8/H0eOHMHVq1dx9epVbN68GU+fPsXFixcxefJknXEPcyO35/8vv/wiVcDJZDKsW7cO7777LiwsLLBjxw6pxWVOCvt7ERMTk+V/QsZ9nfm3SZ/8/lbm5dgRERmDdu3aSWP5Pn36FFu3bs3XOH/6roWZf287d+6s02Iqs/TekDLex7K0tMSmTZvQsmVLqNVqfPfdd0XSCwGQ1mtT27ZtsXfvXgghsH79euzcuVOaXxQtq7y9vdGpUyf88ccf0Gq1WLlyJTZt2pTvdQYFBeGzzz4DkPbw+c2bN6V5b731Vpay69ixYzFkyBAcO3YMly5dwrVr17Br1y5cu3YN0dHRCAwMlMb/LaiQkBCdiuC2bdvmKl9ej0vGa3iNGjV0WgxmlrE3hoyyK9sVVbkrJ6NGjZIeWFu/fj0qVqwolb3eeecdnZ4SiAobK/6IjFTTpk3RqFEjqdImY+uz7DRr1kx6uujx48fo0KEDateurZNGCIF9+/bpdLeT+Q97xhtMhaVFixZSbC9evMC8efMwefJknTS3b9+WutA5d+4catWqhUqVKun8ue7SpQt+//13AGlPNOW1IPXTTz9J3X0KIXRuKCmVStSqVUsn/ahRozBkyBAAwNSpU6Wnkt59912d7jBfZ9SoUejRowf8/Pyy3NBMf0IrXcYCtr5jk7HrgefPn+t0ddCpUyepG9SrV6/i/PnzuY7xdczNzVGvXj1pwOMff/wR48eP1zk+L1++xIsXL+Ds7IxmzZrp5Hd0dNQZ8DjdpUuXCqUrNCKi0i6/1/n8yNxK6Oeff8aMGTMAvLqxlJ2M166iKFNkJzAwEKNHj9ZpGZYu47XWxMREaqVm7GJiYnQ+DxgwADY2NgCg80R5UTA1NUVKSgqAnI/jyJEjsWTJEggh8PPPP0stw1xcXPD222/nen0ZW/HlRkhICBYsWJDn8kluNWvWTOq27NSpU7h06ZJU0Xrx4kWdLifTyzyJiYmIiIiAr68vGjZsKH2PhBCws7PD8+fPodVqce7cOVSqVAlXr16Fh4cHnJycdLqkqlmzplRZlb5dr5Of8z/j+WVjY4NevXpJT+UX9fmVneTkZGzYsAEffPABAODWrVs6Qwbo277M8vNbmddjR0RkDEaOHImVK1dK9wSGDRsGb29v1KlTRyddcnIyVq9ejc6dO+f6WmhhYYG6detK3X3GxMRgzJgxWe5RPH/+HDt37pSukRmvLT4+PnjzzTcBpLX0/vXXX7NdX2GUHwcOHIi9e/cCAJYvXy71mKBQKNCvX79cLycv98hGjRqFP/74AwAwb948JCYmAki7XmW+9rxOYGAgPv/8c2i1Wuzbtw+XL1+W5mXucerBgweQy+VwcXFB27ZtpYq4M2fOSJWwd+7cQUxMjNSVdX5t27ZNqpAE0h78GjRoUK7z5+W4ZCx/RUZGSq3uM0pJScEff/yR6wfm0xVmuSu352v9+vXRrFkzHDlyBHFxcdL/KSDvvYgR5RUr/oiM2Jo1a3DlyhUoFAo0bdr0temDgoLw5ZdfIjo6GikpKWjevDl69uyJSpUqQaPR4OrVqwgLC0NUVBT2798vdYWU+SI6YsQI+Pv7w9TUFJ07d84yTkp+BAUFYdasWdITu1OmTMG+ffvQtGlTJCQk4NixY3B0dMSWLVsAAAEBAXj+/DnatGmDcuXKwd7eHjdu3NAZFy43T/xm9ueff6Jdu3Zo1aoVDh06JLXgA4APPvggS3/effr0waRJk/D06VOpAAfk/cmtP/74A0uWLIG7uzv8/PxQuXJlKJVKXL16VeeJOG9vb539nfnYfPDBB2jWrBlMTEzQr18/ODs7w9bWVnpC/ssvv8SjR4+QkpKCVatW5di9Z35MnjxZ6ss/Li4OdevWxfvvvw9PT0/cvXsX27Ztw3fffYeuXbuiTp06ePPNN6W+20eOHImdO3eiQYMGMDExwe3bt3HkyBGEh4cjODhYZ/wWIqKyaMaMGViyZEmW6e7u7vj999/zfZ3PjzfeeENq9Q4AM2fOREREBCpUqICNGzfm+MBGxmvX48ePMWDAAFSvXh0ymQwjRowostbfa9aswZo1a1CxYkW0aNECPj4+kMlkOHfunM7T161atSrU8TuKUubxDjt16oS33noL58+fz/HmWWEoV66c9JT4/PnzERMTAzMzM9SrVw/t2rWT0lWpUgUdOnTA7t27dcod/fr1y3WLr/v37+PPP/+UPtesWVNva8Zjx45JMa1duxZz586FqalpnsonuTVixAgsW7YMGo0GWq0Wfn5+CAwMhEwmw+rVq6WntZVKpdR64dmzZ6hevTpq1KiBxo0bw93dHWZmZjh06BCeP38uLTu9DPvtt9/ixx9/RLt27eDt7Q0XFxc8efIEa9asyZL2dfJz/mc8v549e4ZOnTqhWbNmOHTokM7xKG4DBw7EwYMHYWtri59++kl68A5Arm405ue3Mq/HjojIGNSoUQMzZ87E1KlTAaT1yNCwYUO88847qFevHmQyGa5fv47du3cjKioK7du3z9PyJ06cKPV0dPjwYdSuXRvvvvsu7OzsEBMTgzNnzuDQoUNwc3OTxuOtWrWqdA/g/Pnz6N27N3x9fbFz504cO3Ys23UVRvmxW7du0v2RjC3dOnXqlKeWVU5OTlAoFNL159NPP8W5c+egUCjQunVrnQfk2rdvj2rVquHKlSsFumcEAOXLl8ebb76J3bt3IyUlBXfv3gWQNmRN5lb4Bw4cQJ8+fdCiRQv4+vpK499lvOYrlcp8lXlXrlwJGxsbREdH48CBA9LYdEBaDwE//PBDnh6Ez8txGTVqFJYvX47ExEQ8efIEdevWRc+ePeHh4YG4uDhcvnwZYWFhePbsGSIiInR6XXidwix3ZTxfT506hTFjxsDDwwNKpTJLw41Ro0ZJ4xGmnyOurq7o2LFjrmMnyhdBRAa1f/9+AUB6/fHHH6/N4+npKaUPDAzUmXf48GHh6Oios0x9r/379+vkq1evnt50v/zyi944IyIi9MYWGBgopfHz89OZd+LECeHi4pJtTF26dJHSVq1aNcf47e3txa1bt167ryIiInTytW7dWu/yvLy8RFRUlN5lTJgwQSetm5ubSElJee26M8p4zLJ7qdVqsW/fPp18iYmJws3NTW/6kydPCiGEmDNnjt75NWvWFA0aNNB7rrzueGaMNzg4WGfe9OnThUwmy3Y7Nm/eLKWNiooSdevWfe22Z14HEVFZkPm3OLuXp6enlCc/1/mcrs05XQ9OnjwpLC0tsyxbpVKJtm3bSp+9vb11lhkZGSnMzc31xvX48WMhhBDBwcF6t0+IrNfuzGWW7ORmX9rb24sLFy7o5MvumpfTvgkJCcl2Xk7bljFPSEhItstLl5SUJGrVqqV3WzIe17wc89zEI4QQ48aN07veESNGZFnOtm3bsqS7dOlStuvNbPbs2Tp5Dx06pDfdDz/8oJNuy5Yt0ry8lE/8/Pz0lo8y27hxo1Cr1dkuU6VSiZ9//llKHxkZ+dpzsHHjxiI5OVkIIcRHH32UY1oTExOduHOSn/M/JiZGuLu75+r8yniO57T/cvqfkt35lvE74+LiolN+zfgaPny4zvJyOs/z+luZ12NHRGRMFi1aJFQq1Wt/xzL+ludUBshoypQpr11uxvLOtWvXhJWVVZY0pqamok+fPjrTMipo+THdsGHDsuT//fffs6R7XXmzW7duemOZN29elmUtWbIkS/ngyZMn2e7TnGzYsCHLOsePH58l3c8///za46Ivnz4Z92tOLwcHB737sjCPixBCbN68WVhYWOTpfM5N2S6v5a6cyhlnzpwRJiYmWZZhYWGRZb1JSUlZylsTJ07UGyNRYUrrx4OISo1mzZrh0qVLmDZtGho0aABra2vI5XLY2tqiQYMGGDlyJPbs2YNWrVrp5Nu0aRO6desGe3v7QhlbR59GjRrh0qVLmDFjBho1agRra2uYmprC2dkZbdu2lZ4QA4DZs2dj6NChaNCgAVxdXaFQKGBubo5q1aph+PDhOHXqlNQtaF4EBwdj9erVqFevHtRqNRwcHBAYGIgjR45k2+XFiBEjpG6PAKB///45jk+oz+7du7FkyRJ0794dNWvWhLOzM0xNTWFhYYHq1atjxIgRuHDhQpZ+0lUqFXbs2IEOHTrA2tpa77InTZqEpUuXokqVKlAoFHB1dcXgwYPx999/Z+lGtDAEBwfj2LFjCAwMhI+PD9RqNczNzeHj44N+/frp9LPu7OyM48ePY9myZWjbti0cHR0hl8thYWGBatWqoW/fvli7di0mTpxY6HESEZVG+b3O50fDhg1x5MgRdOrUCZaWlrC0tES7du1w4MABVK5cWUqX+clYV1dX/PHHH2jevHmRji+X2enTpzFv3jx06tQJvr6+cHBwgFwuh5WVFerVq4dPPvkEly5dynY8EGOkUCjw119/ISgoCA4ODlCpVKhZsyZWrFiB6dOnF+m6Z82ahTFjxqB8+fKvLfe8/fbbOt0fNmnSBNWrV8/1ujKOpVK1alU0b95cb7pevXrpnFMZuwfNS/kkt3r27ImzZ89i6NChqFSpEtRqNdRqNSpWrIjBgwfjzJkzOuVXOzs7LFmyBL1790b16tVhb28PuVwOa2trNGzYEDNnzsS+ffuklpAffvghJk2ahFatWsHDwwNqtRpKpRIeHh7o2bMn/v7771y3UszP+W9vb49Dhw6he/fusLa2hpmZGRo1aoRNmzblOKZOUVKr1di/fz/GjRuH8uXLQ6lUomrVqli0aJHeFtHZyetvZV6PHRGRMRk9ejQiIiIwffp0tGjRAk5OTjA1NYW5uTl8fX0xbNgwhIWF5eseyldffYXDhw+jb9++8Pb2hkqlgkKhQLly5dChQwd89dVXOj0pVapUCQcOHECHDh1gbm4OS0tL+Pn5Yd++fTm2OCys8mPmlnYuLi5466238ryclStXIjAwEC4uLjr3g/QJDAzUuV/TtWvXPLVEy6hLly4649wB+lsPtmjRArNmzUKnTp1QsWJFWFlZwdTUFE5OTmjXrh1CQ0Mxf/78fMUApHX5bmdnh2rVqqFLly7473//i9u3b+Pdd9/N1/Lycly6du2KixcvYvz48ahVqxYsLS0hl8vh4OCApk2bYuLEiTh8+DC8vLzyFENhlrvq1q2Ln3/+GfXr14darc4xrUKhwNChQ3WmsZtPKg4yITKMzElERFkkJibC1dVV6ubnypUrWbreIiIiKm2SkpJgamqa5WZHXFwcatasKXXVM3jwYKxYscIQIZIR6dixI3bv3g0gbfyWjz76yMARUUkxffp0acwbT09P3Lp1y7ABERER5ZGvry+uXLkCANi1axf8/f0NHBEZk/Xr16N3794A0oZUOHr0qIEjorKAj6sREWXj2LFjePbsGdasWSNV+rVv356VfkREVCZcvnwZnTt3Rp8+fVC9enXY2dnh1q1bWL58uVTpZ2JiIo1vRmXPlStXcP/+fRw7dkwaE87W1lYaD4iIiIiotDp79iweP36M7du3S5V+6WMfEz179gxnz55FVFQUPv30U2n6yJEjDRgVlSWs+CMiysb777+vM/CwUqnE3LlzDRgRERFR8bp79y7mzJmjd55SqcSyZctQp06dYo6KjMWcOXN0uukE0roILYquxomIiIiMydixY/H3339Ln2UyGRYsWFBkw+dQyXL27Fm0adNGZ9obb7whtfwjKmoc44+I6DWsrKzQqlUr7N27F/Xq1TN0OERERMXCw8MD48aNQ7169eDg4ABTU1NYWlqiVq1aGDVqFM6dO8fxKQhA2pjENWrUwPfff4/hw4cbOhwiIiKiYmNubo6GDRti8+bN6NSpk6HDISMjk8ng5uaGIUOGYNu2ba8dM5KosHCMPyIiIiIiIiIiIiIiIqJSgFXMRERERERERERERERERKUAK/6IiIiIiIiIiIiIiIiISgFTQwdQ3LRaLR48eAArKysOtkpERERZCCHw4sULuLu7s//912C5ioiIiHLCclXusVxFREREOclLuarMVfw9ePAAHh4ehg6DiIiIjNzdu3dRvnx5Q4dh1FiuIiIiotxguer1WK4iIiKi3MhNuarMVfxZWVkBSNs51tbWBo6GiIiIjE1sbCw8PDykMgNlj+UqIiIiygnLVbnHchURERHlJC/lqjJX8ZfeXYK1tTULUkRERJQtdrH0eixXERERUW6wXPV6LFcRERFRbuSmXMUO1omIiIiIiIiIiIiIiIhKAVb8EREREREREREREREREZUCrPgjIiIiIiIiIiIiIiIiKgXK3Bh/RKVRamoqkpOTDR0GlXFKpRImJnyehIiIiIiIiIiIiCiznO7jKxQKyOXyQlkPK/6ISjAhBB4+fIhnz54ZOhQimJiYwNvbG0ql0tChEBERERERERERERmF3N7Ht7W1haurK2QyWYHWx4o/ohIs/cfC2dkZ5ubmBf5BIMovrVaLBw8eIDIyEhUqVOC5SERERERERERERITX38cXQiAhIQGPHj0CALi5uRVofaz4IyqhUlNTpR8LBwcHQ4dDBCcnJzx48AApKSlQKBSGDoeIiIiIiIiIiIjIoHJ7H9/MzAwA8OjRIzg7Oxeo208OxkRUQqX3BWxubm7gSIjSpHfxmZqaauBIiIiIiIiIiIiIiAwvL/fx09NkNw5gbrHij6iEY5eKZCx4LhIRERERERERERFllZt7p4V1f5UVf0RkFFq3bo2xY8cCALy8vLBw4UKDxhMaGgpbW1uDxkBERERERERERFQqaLVAYiLAnqKIihzH+CMio3Py5ElYWFgYNIaAgAC8/fbb0ufp06djy5YtOHv2rOGCIiIiolInWavFfc1LpAgBe4US9gqloUPKk5IePxWdx0kaPEtOgspEjnJqM8jLcO8QsSnJeJykgQlkcFOpoS7AeC1EREQlzrNnwJUraS+NBpDLgYoVgWrVADc3Q0dHVCqx4o+oFPKavL3Y1nVrTqdCX6aTk1OhLzMjIQRSU1Nhapr9T6CZmZk0oCoRUUlw4MABzJs3D6dOnUJkZCQ2b96Mrl275pgnLCwM48ePx6VLl+Dh4YHPPvsMQUFBxRIvUVknhMDJ509x5Fk0YpKSkAoBcxM5fC2t0c7BGbZGXoEmhMD/Yp/iyNNoRP8bv1mG+O2MPH4qOo80idgX8wjXEuKQqE2FXCaDi1KNlnaOqG1lU6a6h09ITcFfMY9w/sVzxKemQAbAVqFEI2s7NLd3hKmMnTAREVEpd+8e8OefwNOngFoNKJVASgpw+nRaRWCLFkCtWoaOkqjUYSmTiIpdfHw8+vfvD0tLS7i5uWH+/Pk68zN29fnBBx8gICBAZ35ycjIcHR2xZs0aAIBWq8Xs2bPh7e0NMzMz1KlTB7/++quUPiwsDDKZDDt37kSDBg2gUqlw6NAhnDt3Dm3atIGVlRWsra3RoEED/O9//wOg29VnaGgoZsyYgXPnzkEmk0EmkyE0NBQDBw7EO++8kyU2Z2dn/PDDD4W5y4iIXis+Ph516tTB0qVLc5U+IiICnTp1Qps2bXD27FmMHTsWgwYNwu7du4s4UiICgANPHmPro/t4kpwEe6USbio15DIZjj97gnUP7iA2pWCDuRe1Q0+jsTXqPmIyxK8wkeHEs5gSET8VjegkDdZF3sHZ2GdQmaS1brMzVeCh5iU2Rd3Hqdinhg6x2Gi0qdgYeQ8Hn0ZDQMBFpYKTUoX41BTsin6InY8fQghh6DCJiIiKzosXwJ49wPPnaS377O0BS0vAxibtsxDAwYPA3buGjpSoWOSm7FdY5UO2+COiYjdx4kT8/fff2Lp1K5ydnTF16lScPn0adevWzZK2T58+6NmzJ+Li4mBpaQkA2L17NxISEtCtWzcAwOzZs/HTTz9h+fLlqFy5Mg4cOIC+ffvCyckJfn5+0rImT56Mb775Bj4+PrCzs0OrVq1Qr149LFu2DHK5HGfPnoVCocgSQ0BAAC5evIhdu3Zh7969AAAbGxtUqVIFrVq1QmRkJNz+7Zpg27ZtSEhIyFJZSURU1N566y289dZbuU6/fPlyeHt7Sw9f+Pr64tChQ/j222/h7+9fVGESEYAnyUk49CwGahM5HJSvWsbZKBSwkMtxOzEBp2OforW9swGjzN6z5CQceBoNlYkJHJQqabq1qQLmclPcTozH/549QVtHFwNGSYZw7FkMHiS+RAUzc5j827JPLpfDXW6GKE0i9j95jOqW1jCXl/5bERdfxOJqfCxcVWqoTP595loGOClViE1Jxv+eP0UdK1tUMDM3bKBERERF5dq1tJZ+Li5A5hb/Mhlgaws8fAhcvAh4eBgkRKLikH6/OSEh4bU9zCUkJOjkyS+2+COiYhUXF4cffvgB33zzDdq1a4datWph9erVSElJ0Zve398fFhYW2Lx5szRt3bp16Ny5M6ysrKDRaPDVV19h1apV8Pf3h4+PD4KCgtC3b1/897//1VnWF198gTfffBMVK1aEvb097ty5g/bt26NatWqoXLkyevbsiTp16mSJwczMDJaWljA1NYWrqytcXV1hZmaGZs2aoWrVqvjxxx+ltCEhIejZs6dUSUlEZKyOHj2K9u3b60zz9/fH0aNHDRQRUdlxNf4FXqQkw07PnzlTExOYmchxJvYZUo20NdCr+LN252kqk8FCboozL4w3fioaL1NTceHFc1grFFKlX0YOShWeJCfhekKcAaIrfudfPIOJTPaq0i8DK7kpErWpuBIXa4DIiIiIisnVq4BCAei5FgJIq/yzsgJu3wbiykb5gMomuVwOW1tbPHr0CDExMXj58iUSExN1Xi9fvkRMTAwePXoEW1tbyAs4JnTpf8yOiIzKjRs3kJSUhCZNmkjT7O3tUbVqVb3pTU1N0atXL6xduxb9+vVDfHw8tm7divXr1wMArl+/joSEBLz55ps6+ZKSklCvXj2daQ0bNtT5PH78eAwaNAg//vgj2rdvj549e6JixYp52p5BgwZhxYoV+OSTTxAVFYWdO3fir7/+ytMyiIgM4eHDh3Bx0W2N4+LigtjYWLx8+VLvU2gajQYajUb6HBvLG5ZE+ZGQmvbAk77KEQBQy02QkJqKZK22wH/4ikJ8aipkyD5+lYkJErVaaLSpZaJlF6VJSE1BktDCIptz1lQmA4RAfGpqMUdmGM9SkvVW+gGATCaDXCbDi1T9Dz8SERGVCgkJaRV/OVEogKSktBdRKebq6goAePToUY7pbG1tpbQFwX9hRGT0+vTpAz8/Pzx69Ah79uyBmZkZOnbsCCCtBSEAbN++HeXKldPJp1KpdD5bWFjofJ4+fTo++OADbN++HTt37kRwcDDWr18vdSGaG/3798fkyZNx9OhRHDlyBN7e3mjZsmV+NtPgzt97VqD8IiUJj56+xKBNYbj/ouhv6Nya06nI10FEumbPno0ZM2YYOgyiEs/cJO1vmFYIvZVniVotbOQKKLJ7OtrALORyCGQfv0arhaXcFCoT46u0pKJjJpdDKTOBRquFuZ5Dn9YCVJZtxWBpY2OqQHSSRu88IQRShYAVK8aJiKg0MzcHoqNzTpOcDMjlgDJrTxJEpYlMJoObmxucnZ2RnKx/PHSFQlFoD34a5z9JIiq1KlasCIVCgePHj0vTnj59in/++SfbPM2aNYOHhwc2bNiAtWvXomfPnlI/x9WrV4dKpcKdO3dQqVIlnZdHLvoHr1KlCsaNG4c///wT3bt3R0hIiN50SqUSqXqeTnZwcEDXrl0REhKC0NBQDBgw4LXrJCIyBq6uroiKitKZFhUVBWtr62z7nJ8yZQqeP38uve5yEHaifKlqaQVLU1M80/OHL0UIvExNRT1rW8izaVFnaFUtrGBlqsDTbOJPSE1FXSvjjZ+KhrncFLWsbPA8ORlaPd28xiRpYKdQoJJ52egSv7aVDbRCIEmrzTIvLjUVahM5qllaGyAyIsqPx0kaHH8Wg0NPo3Em9inishmuhIxTslaL8LhYHH4ajSNPoxGREK/3WkWFrHLltJZ8eq6FkhcvgAoVAA6ZQ2WEXC6HWq3W+yrM3l74eBkRFStLS0t8+OGHmDhxIhwcHODs7IxPP/0UJq95ov2DDz7A8uXL8c8//2D//v3SdCsrK0yYMAHjxo2DVqtFixYt8Pz5cxw+fBjW1tYIDAzUu7yXL19i4sSJeO+99+Dt7Y179+7h5MmT6NGjh970Xl5eiIiIwNmzZ1G+fHlYWVlJLQoHDRqEd955B6mpqdmuj4jI2DRt2hQ7duzQmbZnzx40bdo02zwqlSpLa2oiyjt7hRLNbR2xNyYKUZpE2CmUMJXJEJeagidJSfA0s0B9GztDh5ktW4USLWwd8Kee+J8mJ8NDbY6GNvaGDpMMoImtA64lxOFu4ks4KJQwl8uRLLR4kpwMGYDW9s5lpvvXWlY2uPDiOa7Ev4CNqSmsTBUQQuBZSjISUlPR1NYBHmr9D9oQkfGITUnGrscPcSX+BRJSU5D2SIsMNqamaGRjDz8HJ5jK2K7CmF148Rx/xTzCo6REaIWAAKAwMYGH2gwdHd1Qwczc0CGWXlWqABcuAI8fA87OaWP6ZfT0KaBSATVqGCY+olKsbJS4iciozJs3D3FxcXj33XdhZWWFjz/+GM+fP88xT58+fTBr1ix4enqiefPmOvNmzpwJJycnzJ49Gzdv3oStrS3q16+PqVOnZrs8uVyOmJgY9O/fH1FRUXB0dET37t2z7cKuR48e2LRpE9q0aYNnz54hJCQEQUFBAID27dvDzc0NNWrUgLu7e952BhFRIYmLi8P169elz+kPK9jb26NChQqYMmUK7t+/jzVr1gAAhg4diiVLluCTTz7BwIED8ddff2Hjxo3Yvn27oTaBqEzxs3eCmVyOo89iEJ2kQSoAcxM5GtrYo72jC6xNXzMeioG1tHeCWk/89a1t0d7BBTavG8+FSiUnpQofuFXAnpgo3EiIw9OUZJhCBmeVCi3sHFHXytbQIRYblYkcPV098NeTKFx4EYtITSJkAGxNlWhp54SW9o6QsVUskVGLT03Bhsi7uJ4QBzuFAg4KM8hkMqQKgWfJSdgbE4UEbSo6ObllO+4tGdbZ2GfY+ug+krVaOClVUP770PnL1FTcTIjHz5F38IFbBXiw8q9oWFsD7dsDf/4JREYCZmZpXXqmpKSN/6dWAy1bAp6eho6UqNSRCVG22jXHxsbCxsYGz58/h7U1u9WgkisxMRERERHw9vaGWq02dDhlWlxcHMqVK4eQkBB0797d0OHkW6GM8ffgHqbvf8Qx/qhEK6llhbCwMLRp0ybL9MDAQISGhiIoKAi3bt1CWFiYTp5x48bh8uXLKF++PKZNmyY91JAbJXVfERmTJK0W9xITkCIEHBRKOChLVqvajPHbK5RwLGHxU9EQQuBRkgbPUpKhkpmgvJlZmW4R8zw5GY+SEiGTyeCuUpeZVo8Aywp5wX1lfP5+8hg7HkfCXaXWO+7ui5QUxKemIKicF3zKSDfGJUlCagq+u3MDsSnJcFVlvW8mhMDdxJeoamGFoHJefBijKD19CoSHA1evAhpN2ph+Pj5AtWpAuXKGjo6oxMhLWaHslDaJiAqZVqtFdHQ05s+fD1tbW3Tu3NnQIRFRGda6dWvk9DxXaGio3jxnzpwpwqiI6HWUJiYl+mZhSY+fioZMJoOLSg0XPTdayyIbhYKtYIlKmCStFqdjn8LMRK630g8ArExN8TQ5Cedin/NaaISuxL9ATJIGbtl0qyyTyeCgVOLWywTc17xEeTVb/RUZOzugWTOgSZO0Mf9MTQFeF4mKFCv+iIjy6c6dO/D29kb58uURGhoKU1P+pBIRERERERGVdM+Sk/A8ORlWr/mfby6X43ZifDFFRXnxSKOBFoBpDi35zE3kiNEmIUqjYcVfcZDL07r7JKIix7vURET55OXllWPrGiIiIiIiIiIqecS/r9ymJeMjIMDOO4morCq7newTERERERERERERZWKrUMDa1BRxqSk5pktITYUHW4oZJad/xx1OzeGB7ZdaLVQmcjgqlcUVFhFRsWDFHxEREREREREREdG/VCZy1LOyRUJqKlK0Wr1p4lNToJCZoI6VTTFHR7nha2kNO4USMUkavfOFEIhO0qCCmRkrb4mo1GHFHxEREREREREREVEGjWzt4WVmjnuJLxGfmiIN9aEVAs+SkxCTlIR61rbwMbc0cKSkj4XcFG0dnKEFEKVJ1KnA1Wi1uJeYCGtTBdrau8Akh3EAiYhKIlb8ERERERERERFRmbJ06VJ4eXlBrVajSZMmOHHiRLZpk5OT8cUXX6BixYpQq9WoU6cOdu3apZNm+vTpkMlkOq9q1aoV9WZQEbIyVaC3WwXUtLJBfEoq7ia+xN2XCbiX+BJaAK3snfCuszvkrDQyWg2t7dDFuRysTBWITNLg7ssE3HmZgOgkDcqpzRDg5gFvcwtDh0lEVOhMDR0AERERERERERFRcdmwYQPGjx+P5cuXo0mTJli4cCH8/f1x9epVODs7Z0n/2Wef4aeffsLKlStRrVo17N69G926dcORI0dQr149KV2NGjWwd+9e6bOpKW+7lXS2CiX6uXvivuYlbibEI0UImMvlqGZhBVsFx4UzdjKZDA1s7FDD0hpX4l/gSXISTAC4qc1Q0dwCpjK2iSGi0oklkDLMa/J2Q4eQa7fmdDJ0CERERERERERUCixYsACDBw/GgAEDAADLly/H9u3bsWrVKkyePDlL+h9//BGffvop3n77bQDAsGHDsHfvXsyfPx8//fSTlM7U1BSurq7FsxFUbGQyGcqrzVGe48CVWGq5HHWtbQ0dBhFRseFjDURUpslkMmzZsiXX6b28vLBw4cIii4eIiIiIiIiKTlJSEk6dOoX27dtL00xMTNC+fXscPXpUbx6NRgO1Wq0zzczMFcTr8AABAABJREFUDIcOHdKZdu3aNbi7u8PHxwd9+vTBnTt3Cn8DiIiIiF6DFX9EVCZMnz4ddevWzTI9MjISb731Vq6Xc/LkSQwZMkT6nNeKQyIiIiIiIjKc6OhopKamwsXFRWe6i4sLHj58qDePv78/FixYgGvXrkGr1WLPnj3YtGkTIiMjpTRNmjRBaGgodu3ahWXLliEiIgItW7bEixcv9C5To9EgNjZW50VERERUGNjVJ1FpNN2mGNf1vEgXn5ycDIVCUWTLz2s3LE5OTkUUCRERERERERmjRYsWYfDgwahWrRpkMhkqVqyIAQMGYNWqVVKajA+U1q5dG02aNIGnpyc2btyIDz/8MMsyZ8+ejRkzZhRL/ERERFS2sMUfERU7rVaLuXPnolKlSlCpVKhQoQJmzZqFW7duQSaTYcOGDfDz84NarcbatWsBAN9//z18fX2hVqtRrVo1fPfddzrLnDRpEqpUqQJzc3P4+Phg2rRpSE5OBgCEhoZixowZOHfuHGQyGWQyGUJDQwHotthr1qwZJk2apLPcx48fQ6FQ4MCBAwB0u/r08vICAHTr1g0ymQxeXl64desWTExM8L///U9nOQsXLoSnpye0Wm1h7UYiIiIiIiLKI0dHR8jlckRFRelMj4qKyvbBUCcnJ2zZsgXx8fG4ffs2rly5AktLS/j4+GS7HltbW1SpUgXXr1/XO3/KlCl4/vy59Lp7927+N4qIiIgoA1b8EVGxmzJlCubMmYNp06bh8uXLWLdunU43K5MnT8aYMWMQHh4Of39/rF27Fp9//jlmzZqF8PBwfPXVV5g2bRpWr14t5bGyskJoaCguX76MRYsWYeXKlfj2228BAAEBAfj4449Ro0YNREZGIjIyEgEBAVni6tOnD9avXw8hhDRtw4YNcHd3R8uWLbOkP3nyJAAgJCQEkZGROHnyJLy8vNC+fXuEhITopA0JCUFQUBBMTPizS0REREREZChKpRINGjTAvn37pGlarRb79u1D06ZNc8yrVqtRrlw5pKSk4LfffkOXLl2yTRsXF4cbN27Azc1N73yVSgVra2udFxEREVFh4B1oIipWL168wKJFizB37lwEBgaiYsWKaNGiBQYNGiSlGTt2LLp37w5vb2+4ubkhODgY8+fPl6Z1794d48aNw3//+18pz2effYZmzZrBy8sL7777LiZMmICNGzcCSBt03dLSEqampnB1dYWrqyvMzMyyxNarVy88ePBAZ4D2devWoXfv3pDJZFnSp3f7aWtrC1dXV+nzoEGD8PPPP0Oj0QAATp8+jQsXLmDAgAGFsAeJiIiIiIioIMaPH4+VK1di9erVCA8Px7BhwxAfHy/9Z+vfvz+mTJkipT9+/Dg2bdqEmzdv4uDBg+jYsSO0Wi0++eQTKc2ECRPw999/49atWzhy5Ai6desGuVyO3r17F/v2ERERUdnGMf6IqFiFh4dDo9GgXbt22aZp2LCh9D4+Ph43btzAhx9+iMGDB0vTU1JSYGPzaizDDRs24D//+Q9u3LiBuLg4pKSk5PmJSScnJ3To0AFr165Fy5YtERERgaNHj+pUMOZG165dMWLECGzevBnvv/8+QkND0aZNG6lrUCIiIiIiIjKcgIAAPH78GJ9//jkePnyIunXrYteuXVJPNHfu3NHprSUxMRGfffYZbt68CUtLS7z99tv48ccfYWtrK6W5d+8eevfujZiYGDg5OaFFixY4duwYx4knIiKiYseKPyIqVvpa2mVmYWEhvY+LiwMArFy5Ek2aNNFJJ5fLAQBHjx5Fnz59MGPGDPj7+8PGxgbr16/H/Pnz8xxfnz59MHr0aCxevBjr1q1DrVq1UKtWrTwtQ6lUon///ggJCUH37t2xbt06LFq0KM+xEBEREf2fvTuPk6q+8v//urVXdVfvK02z78gmCIoaNCHiEo1ZGXWi0WjGmcFkwuQ3wSguySiTycQhX2PiTCJJJplEs5rMqKghYkZFURRFkX1plu6m9+quvere3x8XGhqqG4Smq5f38/GoB/StW7dONU113Xs+5xwRETk7lixZwpIlSzLet3bt2i5fL1iwgM2bN/d4vMcff7y3QhMRERE5I0r8iUifGj9+PH6/nzVr1nRp79md8vJyhg0bxq5du7jhhhsy7vPKK68wcuRI7rrrrs5te/fu7bKPx+MhnU6f9Pk+/vGP88UvfpHVq1fzi1/8ghtvvLHH/d1ud8bj3nrrrZxzzjl8//vfJ5VK8clPfvKkzy0iIiIiIiIiIiIiciaU+BORPuXz+fja177GP/3TP+HxeLjwwgtpaGjgvffe67b95/3338+XvvQl8vPzufzyy4nH47zxxhu0tLSwdOlSxo8fT01NDY8//jjnnXceTz31FL///e+7HGPUqFHs3r2bjRs3Mnz4cILBIF6v94TnysnJ4dprr2X58uW8//77J53HMGrUKNasWcOFF16I1+ulsLAQgMmTJ3P++efzta99jVtuueWUKh1FRERERERERERERM6E4+S7iIj0ruXLl/OP//iP3HPPPUyePJnFixdz6NChbve/9dZb+dGPfsSPf/xjpk2bxoIFC/jJT37C6NGjAbjmmmv4yle+wpIlS5g5cyavvPIKy5cv73KMT33qU1x++eVceumllJaW8stf/rLb57vhhht4++23ufjiixkxYkSPr+U73/kOzz//PNXV1cyaNavLfV/4whdIJBLccsstJ/uWiIiIiIiIiIiIiIicMcOyLCvbQfSlUChEfn4+bW1t5OXlZTucrBq17Klsh3DK9vzLVdkOod+JxWLs3r2b0aNH4/P5sh2OZPDNb36TX//617zzzjvZDuWUvLO/9Yweb6USHDq4n/teOMSB9pO3VT1Tel+Qs0WfFU6dvlciIiLSE31WOHX6XomIAJYFDQ1QUwPJJHi9MHIkFBWBYWQ7OpGs+iCfFdTqU0Skl3V0dLBnzx6+973v8c///M/ZDkdERERERERERKR/C4fhxRdhzx6IxY5u9/lg7Fj40IdAo3RETolafYqI9LIlS5Ywe/ZsLrnkErX5FBERERERERER6Uk8DqtXw/vv21V+FRVQWWn/6fHAu+/Cc8/ZVYAiclJK/ImI9LKf/OQnxONxnnjiCZxOZ7bDERERERERERER6b+2bIG9e6G0FAKBo209DQNycqCkBHbtgh07shunyAChVp8iIiIiIiIiMrh0dMDWrfYFwngcioth0iQYPRocWgMtIiLSb5gmbN4MLhe43Zn38XjsJODmzfbvc837E+mREn8iIiIiIiIiMng0NsIzz0BDg30B0eWCpibYuRPOOQcWLAB15hAREekfYjFoa7Mr/XoSCNi/z1Op7hOEIgIo8SciIiIiIiIig0U6DX/+s530Ky/vWt0XicA779htxKZNy16MIiIicvpU7SdyUupvISIiIiIiIiKDw4EDUFcHRUUntvQ8MjNo82a7rZiIyCBnWhY10QjvtbexNdxOJJ3Kdkgy2KXT9u/iHTtgzx673fbJ+Hx2S+5wuOf9IhF7UY9LtUwiJ6P/JSIiIiIiIiIyOBxpAeb1Zr4/Nxeam+2Lh7m5fRubiEgfsSyLzR0hXmpp5EA8SsI0MQyDApebmcECPlRUil8tj6U3WZY9W3fjRjh0yP5d7HBAXh5MmQLnnmvP6cvE4bD32b/fThRm+h0ei9mLdyZPPqsvQ2SwUOJPRERERERERAaHI1V+lpW5FZhp2tuPrwYUERlE3gi18L+HaklZJkVuDz6HgzTQlkzw5+ZD1CViLK6oxqfkn/SWt96Cl1+2f8/m59tJvnQa2tvt7Y2NsGhR97P5JkyA3bth2zbIybEX5zgc9vHa2+0FO1OmwNixffu6RAYofdIVkT53ySWX8A//8A/ZDoO1a9diGAatra29fuyf/OQnFBQUnPFxDMPgySefBGDPnj0YhsHGjRvP+LijRo1i5cqVZ3wcEREREZF+paLCrhSIRjPfHw5DZSX4/X0bl4j0L5EIbNoE69bB+vWwd++gaQHcmIjzXGM9DgOqfH78TieGYeAyDIo9Xiq8Xt7vCPFqW1O2Q5XBoqEBXnvNbsFZVmb/HjYM++vCQruN5/bt8O673R/D7YaPftSuDAS7arCuDurrwemEuXPhIx+x/y4iJ6WKPxEZEi655BJmzpzZZ8muxYsXc+WVV57xcWprayksLOyFiLp6/fXXycnJ6fzaMAz+/Yc/58OXX9XrzyUiIiIi0mfKymDUKNiyxb44eKRdmGVBa6t9EfKcczJXA4rI4GeasGGD3Y6wvf3odpfLXjiwYIE9Q2wAe7e9jVAqyQhf5gUOXocTn8PJW6FW5heU4FEFtJyprVvtZHplZeb7vV77/9jmzTB9evfJO68XLrkEZs+GmhpIJOz5f9XVas8t8gEp8ScyCE376bQ+e65NN23qs+caSPx+P/5eWEVcUVHRC9EclUgk8Hg8lJaW9upxRURERET6BcOASy+1Zwvt2XN0xpBp2q3DLrwQxozJdpQiki3r18Orr9oJhvLyo21/43F7vtjTT8PVV0NJSXbjPAM7Ix14HQ6MHhY45LtdNCcTHErEGO4L9GF0Mijt23e0yq87ubnQ0mIvwiku7vl4wSBMndqrIYoMNVrSISJZFY/H+epXv0pVVRU5OTnMmzePtWvXdt5/pGXms88+y+TJk8nNzeXyyy+ntra2c59UKsWXvvQlCgoKKC4u5mtf+xo33XQT1157LQCf//znefHFF/nud7+LYRgYhsGePXs6H79hwwbmzJlDIBBg/vz5bN269ZRif/vtt7n00ksJBoPk5eUxe/Zs3njjjS5xH3Hfffcxc+ZMVq1axYgRI8jNzeXv/u7vSKfT/Ou//isVFRWUlZXxwAMPdHmOY1t9Hi+dTvOFL3yB0aNH4/f7mThxIt/97ne77PP5z3+ea6+9lgceeIBhw4YxceJEoGurz1GjRgHwldv+mhnVhVxxwXQO7Kth5ogi3nv7rS7H+/mPfsDl50/DHCQtUERERERkEAoE4GMfg49/HObMsSv8PvQhWLwYZsxQtZ/IUNXcbM8h8/uhoKDrrE+v1674a26Gw+f1A1XKsk56wdeBgWVZpC2rT2KSgceyLGrjUf7S3MBzjXX8pbmBg7EoVqafmSOLbHpy5P50uveDFZETZD3x98gjjzBq1Ch8Ph/z5s1j/fr1Pe6/cuVKJk6ciN/vp7q6mq985SvEYrE+ilZEetuSJUtYt24djz/+OO+88w6f+cxnuPzyy9m+fXvnPpFIhH/7t3/jZz/7GX/5y1+oqanhq1/9auf93/rWt/jv//5vfvzjH/Pyyy8TCoW6JMu++93vcsEFF3DbbbdRW1tLbW0t1dXVnfffddddfOc73+GNN97A5XJxyy23nFLsN9xwA8OHD+f1119nw4YNLFu2DHd3Q4qBnTt38swzz7B69Wp++ctf8thjj3HVVVexf/9+XnzxRb71rW9x991389prr53S85umyfDhw/n1r3/N5s2bueeee/j617/Or371qy77rVmzhq1bt/L888/zv//7vycc5/XXXwfgG995hDUbtvDf//tnqqpHMO+iS/jDr/67y75/+NV/c81nrsehViAiIiIi0p85nXbLzwUL7JlB551nzxkSkaFr+3a7HWEwmPl+w4C8PLtauLW1LyPrVWUeH7GTLNaNpNP4HE7yXd1fw5ChqyOV4ld1+/jPfbt4qqGWPzcd4qmGWn64fxeP1+6jI5Xq+oDiYrtqtifRqJ1gV8tOkT6R1VafTzzxBEuXLuXRRx9l3rx5rFy5kkWLFrF161bKyspO2P8Xv/gFy5YtY9WqVcyfP59t27bx+c9/HsMweOihh7LwCkTkTNTU1PDjH/+Ympoahg0bBsBXv/pVVq9ezY9//GMefPBBAJLJJI8++ihjx44F7GThN77xjc7jPPzww9x555184hOfAOB73/seTz/9dOf9+fn5eDweAoFAxtaZDzzwAAsWLABg2bJlXHXVVcRiMXw+30nj///+v/+PSZMmATB+/Pge9zdNk1WrVhEMBpkyZQqXXnopW7du5emnn8bhcDBx4kS+9a1v8cILLzBv3rwejwXgdru5//77O78ePXo069at41e/+hWf/exnO7fn5OTwox/9CI/Hk/E4R9p+BvPyKSk7Osvgk9d9jn++cylfvecBPF4v7296m+1bNrPysV+cNDYRERERERGRfqWhwZ4z1lPVbyAAhw7Zib9juvgMJOcE83gz1EIknSaQYZaaZVm0ppLMyy+iwJ35OoEMXXEzzW/q9vN+OESx20OJ24Nh2BWi4XSat0KtRM0011eOwHfk52viRNi2zU7+HZmteyzThHDYnt0XUGtZkb6Q1ZKNhx56iNtuu42bb76ZKVOm8OijjxIIBFi1alXG/V955RUuvPBCrr/+ekaNGsVll13Gddddd9IqQRHpnzZt2kQ6nWbChAnk5uZ23l588UV27tzZuV8gEOhM+gFUVlZy6NAhANra2qivr2fu3Lmd9zudTmbPnn3KcUyfPr3LsYHO4/dk6dKl3HrrrSxcuJB/+Zd/6RJzJqNGjSJ4zMrC8vJypkyZ0qV6rry8/JSe+4hHHnmE2bNnU1paSm5uLv/5n/9JTU1Nl32mTZvWbdKvJx9edBVOp5M1q+0qwT/8+hecN/9iqqpHfOBjiYiIiIiIiGTVEGnzOyaQy9RgHg2JOB2pVJfWjCnT5EAsRpHbw/kFJ5mzJkPSpvY2toZDVHh95LpcnbMiDcMg1+VimM/H9nA7mzrajj5o5EgYPRqamuzKvmPbgaZSUF8PRUVwzPU3ETm7spb4SyQSbNiwgYULFx4NxuFg4cKFrFu3LuNj5s+fz4YNGzoTfbt27eLpp5/myiuv7PZ54vE4oVCoy01E+oeOjg6cTicbNmxg48aNnbf333+/y6y649tnHllp1FuOPf6RDzSnMsPuvvvu47333uOqq67iz3/+M1OmTOH3v//9KT3PkefKtO1U5+c9/vjjfPWrX+ULX/gCzz33HBs3buTmm28mkUh02S8nJ+eUjndCvB4PH/vUX/GHX/2CZCLBM0/+hmsX33BaxxIRERERERHJqvJyOwnR0/WEcNiuSCoeuEkxp2Hw8bIqZucVEk6nqYlFORCLUhONUBuPU+b18tmKaob5/NkOVfoZy7J4M9SCwzDwdjPixeNw4DQMNrS1YB75v+Ry2W21J060/w/V1tqVs7W1djKwrAyuuMJO/olIn8haq8/GxkbS6TTl5eVdtpeXl7Nly5aMj7n++utpbGzkoosuwrIsUqkUt99+O1//+te7fZ4VK1Z0aYUnIv3HrFmzSKfTHDp0iIsvvvi0jpGfn095eTmvv/46H/rQhwBIp9O8+eabzJw5s3M/j8dD+iwMEJ4wYQITJkzgK1/5Ctdddx0//vGPO1uOnm0vv/wy8+fP5+/+7u86t52s6rA7brcb0zzx+/PJ6z7HpxbO54n/eox0OsVHLr/6tOMVERERGWgsy2J7pIONoVZqYhFchsGknDxm5RVQ7u25LbyIiPQz48fDhg3Q1pa5jadpQigEM2d2PwdwgPA7nXymYjjnx6K83xGiNZXA43Aw2p/L5NwgXseJLUBF4qZJQyJB0NVzyiDX5aIpmSBmpgk4D+8bCMCVV9rJvl27oKMDPB6orrarAd2aJynSl7La6vODWrt2LQ8++CDf//73efPNN/nd737HU089xTe/+c1uH3PnnXfS1tbWedu3b18fRiwiPZkwYQI33HADN954I7/73e/YvXs369evZ8WKFTz11FOnfJw77riDFStW8Ic//IGtW7fy5S9/mZaWls7qPbDbbL722mvs2bOHxsbGU66q6040GmXJkiWsXbuWvXv38vLLL/P6668zefLkMzruBzF+/HjeeOMNnn32WbZt28by5ct5/fXXT+tYo0aN4rWXXqTxUD2hY4aYjxk/kennzmHlivu4/JpP4fNrRaCIiIgMDZZlsabpED8/uNeeZ5NO05ZK8kLzIX68fzfbw+3ZDlFERD6I/HyYOxeSSWhstKv/wK4AjESgrs6uCpwzJ7tx9hLDMBjhD7CotILFlSP4RPlwZuYVKOkn3TIMMOi5KLbL/hzXPtfhgKoquPhiu8LvIx+BCROU9BPJgqxV/JWUlOB0Oqmvr++yvb6+noqKioyPWb58OZ/73Oe49dZbAXtuVTgc5otf/CJ33XVXlzlZR3i9XryZhoqKSL/w4x//mH/+53/mH//xHzlw4AAlJSWcf/75fOxjHzvlY3zta1+jrq6OG2+8EafTyRe/+EUWLVqE85gh1l/96le56aabmDJlCtFolN27d59R3E6nk6amJm688Ubq6+spKSnhk5/8ZJ9WGP/N3/wNb731FosXL8YwDK677jr+7u/+jmeeeeYDH+s73/kOS770D/zul/9FWUUlz6x7p/O+axd/jo1vrOfaxX/dm+GLiIiI9GvbIh38paUBn8NJhffoBSvLsjgYj/GHQwe5vXosuSdZFS8iIv3IzJl2W8I337RbEFqWffN6Ydw4+NCHMlcDysCVTsO+fbBlCzQ02Nmt4cPttpQVFUNm9uOp8BgOhnn9bIu0k99Dsi6USjEukIuvm3agIpJ9htWbg7I+oHnz5jF37lwefvhhwJ6pNWLECJYsWcKyZctO2H/27NksXLiQb33rW53bfvnLX/KFL3yB9vb2Lhf5uxMKhcjPz6etrY28vLzeezED0Khlp15RlW17/uWqbIfQ78RiMXbv3s3o0aPx+dRm6FimaTJ58mQ++9nP9lgRLF29s7814/b/WPltnn/qSX7z/Ms9Pt5KJTh0cD/3vXCIA+2931b1eHpfkLNFnxVOnb5XIjKYPVFbw8ZQK9X+wAn35bS04t+9m/mGm+EFhTBypN3K6hTOSaV/CaWSvNceojYexWEYjPLnMCkniE//lr1CnxVOnb5XfSyRgJoaaG+337vLy+05ZEoCDS6JBKxZA9u22QlAn89O9MZi9t9nzYLzz7cr1QSAt0OtPFG3j2K3B3+G34XRdJqmRILPVlYzM6+g7wMUGcI+yGeFrC5NXLp0KTfddBNz5sxh7ty5rFy5knA4zM033wzAjTfeSFVVFStWrADg6quv5qGHHmLWrFnMmzePHTt2sHz5cq6++upTSvqJyOC0d+9ennvuORYsWEA8Hud73/seu3fv5vrrr892aANaJNzBgX01PP7TH7Lk/7sr2+GIyCl45JFH+Pa3v01dXR0zZszg4YcfZu7cuRn3TSaTrFixgp/+9KccOHCAiRMn8q1vfYvLL7+8j6MWEel/LMuiJho9Orfm6B2M37yF8e9vhUgUn8cDLje8/bY9v2bhQlBr9AFjS0eIPx46SFMygcOwrwW/1tZMldfPpyuGU6E5jiKDl8djV/jJ4GVZ8Je/wObNUFRkJ/qOva+jA9avt2fTzZyZtTD7m6nBPGaE83kz1ErQ5aLA5cZhGJiWRVsqSSiVYlZeAVNztUBBpD/LauJv8eLFNDQ0cM8991BXV8fMmTNZvXo15eXlANTU1HRp33n33XdjGAZ33303Bw4coLS0lKuvvpoHHnggWy9BRPoBh8PBT37yE7761a9iWRbnnHMOf/rTn8543t7UqVPZu3dvxvv+4z/+gxtuuOGMjt/frbj7n3jmj7/l0suuUptPkQHgiSeeYOnSpTz66KPMmzePlStXsmjRIrZu3UpZWdkJ+9999938/Oc/54c//CGTJk3i2Wef5ROf+ASvvPIKs2bNysIrEJFBoa7ObqW1d699UW34cJg82Z73MoAYhoHTMDDp2iCnqmYfkza9R8rt5lBRAU5fAPwBiMftagKvFy67LEtRywdRH4/x+/oDdKRTVPv8OA5X+aRMk32xCL+p289t1aM1C0tEZKBqbrZ/N+fldU36gV3ZGQzaFYFvvw1TptjJYMFlOPhE+XDyXR7eCrVwIBYDLCwgz+XmkqJSPlxchltVkiL9WlZbfWaDWiccpVafA5tafZ59e/fuJZlMZryvvLycYDDYxxGdXd21+jxVavUpg8VA/awwb948zjvvPL73ve8Bdtvj6upq7rjjjowt1IcNG8Zdd93F3//933du+9SnPoXf7+fnP//5KT3nQP1eichZsnUrvPAChMN21ZthQDRqX2y76CKYPj3bEX4gTzfU8mJTAyP8fgzDLge7aM2LFDU00lJYQNRMMz6QS6H78IXCcNi+gPhXf2VXFki/lTRNnmus48XmRkYe+fc9Rso0qY3H+avKamaojdkZ0WeFU6fvlUgve+MNu+Kvpzl+qZQ96/Hqq2Hs2L6NbwBoTyXZGQkTTafxOR2MDeSS5+p+9p+InF0DptWnyCm7Lz/bEXww97VlOwLpBSNHjsx2CNKTgfS+oPcEOcsSiQQbNmzgzjvv7NzmcDhYuHAh69aty/iYeDx+wsIRv9/PSy+91O3zxONx4vF459ehUOgMIxeRQaOlBV58EZJJqKw8eoGtoMC+7+WX7flJh7u7DASz8grYGGrlYDxGhddHMBwhv7WViN9POJ0iz+XuevErEIBQCGprlfjrp3ZFOnijrYWd0Q52hDtwYBB0uShye7pcE3Y5HFhY7I1GlPgTERmoIhG7+0BPcxtdLnufaLTv4hpAgi635viJDFCqyRUREREZ4BobG0mn053t0o8oLy+nrq4u42MWLVrEQw89xPbt2zFNk+eff57f/e531NbWdvs8K1asID8/v/NWXV3dq69D5FRYlkV6aDUtGRh27ID2diguPvECW0GBffFt27ashHa6Kr1+PlleRb7LzYFYlIPRMNFUiqhlkudyM8afgzPTxUTT7Ptg5aQ2tLXw84N7eTPUgnn4PSSSTrEr0sH+WJTj31YMOKHVayZ6TxIR6afcp1CZZpp24u9U9hURGUBU8ScywA2xbr0yAJj6kRQZEL773e9y2223MWnSJAzDYOzYsdx8882sWrWq28fceeedLF26tPPrUCik5J/0mVAqyZuhFt4OtRE1U+S7PJybV8DMvALN4OoP6uvtVfOZEmGGYc++O3iw7+M6Q5Ny8xjuC/BeRxsNeRFyiooZ3tGBPyd4YtIvFrPnA5WUZCdY6VZTIs6zjXWYlkW1z27tWeROcsiK43I4qEvECLpcFBy+8Gta9iyjSm/3IxWaEnHeDLWwqT1EwkpT4vZybl4h04L5mnskItIfVFXZCb143P4ckklHB+TkwLBhfRubiMhZpk+jIgOU+/BJaSQSyXIkIjYrnSJtmoQTWuUu0tdKSkpwOp3U19d32V5fX09FRUXGx5SWlvLkk08SDofZu3cvW7ZsITc3lzFjxnT7PF6vl7y8vC43kb7QkIjz0/17eKahjpZkHNOyOBiP8GT9AX55cB+RdCrbIYrT2XOlm2naicEBKNflYl5BMR+rrKZ69hxyLXDGYl13SqftlqZVVfYsIelX3usI0ZZKUuLxds7zK/F4cBkGpmVhWhZNyQRgL6ysjccodnuZkpv599z+WISfHNjDn5oO0Z5OkrYsdkfD/KZ+P7+r309SVZ8iItk3fLjdfry5OfNnlGTSTvxNmADBYN/HJyJyFg3MMy8Rwel0UlBQwKFDhwAIBAInDKUX+SCsVOIMHmwRDbXwTl2M9oRK/kT6msfjYfbs2axZs4Zrr70WANM0WbNmDUuWLOnxsT6fj6qqKpLJJL/97W/57Gc/2wcRi5w6y7J4uqGW/fEow33+ziqrAiBumrwfDvFSSyOXlSjZklXDh8P779sJMOdxFZimaV9cGwzzk6dPh4YG+7W2tdkVBKmUfaushEsu6XmWkGRFQyKO0wDHMf82uU4XVT4/B2JRkpZJcyJO0OkkapoUuT18vHwYQdeJrd9SlskfDx2kIRGn2ufvPGahG6LpNBvb2xjhy+GCwuI+e30iIpKBwwEf/jA8/TTU1dmzeP1++76ODrsScMwYOP/87MYpInIWKPEnMoAdqeI4kvwTOROHWs5kmLVFSyTF4++2n8IkFBE5G5YuXcpNN93EnDlzmDt3LitXriQcDnPzzTcDcOONN1JVVcWKFSsAeO211zhw4AAzZ87kwIED3HfffZimyT/90z9l82WInOBgPMbuSJgSt+eE1opeh4Ncp5ONoVYuKiwh4NTpTdaMGwcbN8KhQ1BaerS6L522E2XFxfaK+oHO6YSPfMS+ULhli13l5/PB+PH26wsEsh2hZOB2OEgfP8PPMCj3eMlxOtkTCWMYBqUeHxNzcpkeLKCsmzafuyJhDsSilHu9XRKJAH6nE3fK4I1QM3MLijLPgBQRkb5TXAzXXAObNtm/tzs67O15eTBlCkyb1n0bUBGRAUxnxiIDmGEYVFZWUlZWRjKZzHY4MsDd+ru1p/3YtAmNkTQpZf1Esmbx4sU0NDRwzz33UFdXx8yZM1m9ejXl5eUA1NTU4Dhm5lAsFuPuu+9m165d5ObmcuWVV/Kzn/2MgoKCLL0CkcwaE3FiZppSjyfj/bkuFy3JJC3J5Jkn/pJJOHDAXgEeCNjzXo6vXpPM/H5YtAief95O/h1pqeVwQFERLFxoX2QbDJxOO9E5bly2I5FTNNafw6utTSRME88xvwsNwyDH6SLP7eHK0koWFJWe9FiNiThpy+p2tmiu035Pak8lKXBnft8SEZE+lJ8PF10Ec+ZAe7tdmZ+fb8//ExEZpJT4ExkEnE4nTl2UkjN0oD2d7RBE5AwtWbKk29aea9eu7fL1ggUL2Lx5cx9EJXJmXIcrZiwgU+1M2rJwYHTud1osCzZvhjfesCu4jsyjKy2F+fMHR4vKvlBWBp/5DOzaBfX19ve1rMyujvNlrp4S6QsTcoKM9uewPdxOudeH//C5U8I0qYvHKPd4mRHMP6VjHanisywr46gFEwuHAS7DccJ9IiKSRT6fPo+IyJChxJ+IiIiIiPRb1f4AeS43rckkRRmq/lqTSYb7ApR4zqBN0/vvwwsv2Imq4mI76ZdI2MmrZ5+FK6+0Z9jJyXk8MGmSfRPpJ9wOB5+pGM7v6w+wKxKmIREH7Jl/VT4/nyivOuXqvFH+HPxOJ+3pFHnHzQC0LIvWZJJzgvnkaGGmiIiIiGSJEn8iIiIiItJv5bnczMkv5IWmQ7hSBkGnC8MwMC2LlmQCA4PzC4pPf5ZWMgmvv24n/UpKjm73eOxqtbo62LABqqrs1lAiMiAVuD3cWDWKvdEwNdEIJlDu9TIhEMTtOPXqvDKPl3Ny81nf1owTg4DT2fme1JCI43c6mZdflLEaUERERESkLyjxJyIiIiIi/dqlRWXEzDRvhVppSUYxsFt/5rncLCotPeUWfRkdOGC39ywuPvG+IzNgDhyA1lYoLDz95xGRrHMaBmMCuYwJ5J72MQzD4MrSSlKWyeaOdhqTCXs7dnLxspJyxucEeyliEREREZEPTok/ERERERHp19wOB1eXDmNOXhHbIu3E0iZBl4vJuXkUnWJ7vm7F40dn+mV8cjdEIvZ+IiKA3+nksxXV1MQi7IyESZgmhW43k3PzTmj/KSIiIiLS15T4ExERERGRfs8wDIb5/Azz+Xv3wDk5dtIvHgdvhjmBsZid/MvJ6d3nFZEBzTAMRvpzGOnXe4OIiIiI9C+n3sheRERERERksKmstGf5tbTYc/6OZZrQ3g5jxkBQrftERERERESk/1PiT0REREREhi6nE+bPtyv66urstp7JpJ3wq6uD0lKYMyfbUYqISC975JFHGDVqFD6fj3nz5rF+/fpu900mk3zjG99g7Nix+Hw+ZsyYwerVq8/omCIiIiJnixJ/IiIiIiIytI0YAVddBWPH2i0/29rsar9p0+BjH4OiomxHKANERypFQyJOJJ3Kdigi0oMnnniCpUuXcu+99/Lmm28yY8YMFi1axKFDhzLuf/fdd/Mf//EfPPzww2zevJnbb7+dT3ziE7z11lunfUwRERGRs8WwrOP72QxuoVCI/Px82trayMvLy3Y4WTVq2VPZDuGU7fFdn+0QPpj72rIdgcgHNpDeE2CAvS/oPWFA0WeFU6fvlQw6lgWtrXbyLydH7T3llNXFY7zS0sj74XZSlonHcHBOMJ/5BcUUezLMjhQZIvrrZ4V58+Zx3nnn8b3vfQ8A0zSprq7mjjvuYNmyZSfsP2zYMO666y7+/u//vnPbpz71Kfx+Pz//+c9P65jH66/fq34hEoGdO2HXLnv2bm4ujBsHo0eDx5Pt6ERERPrEB/ms4OqjmERERERERPo3w4DCwmxHIQPMgViUX9bWcCgRo8DlJtfpImam+b/mBnZFwlw/bASlSv6J9BuJRIINGzZw5513dm5zOBwsXLiQdevWZXxMPB7H5/N12eb3+3nppZfO6JjxeLzz61AodNqvaVA7cAD+9CdoarLbczudUFsL27ZBRQUsWqTKfBERkeOo1aeIiIiIiIjIabAsi+cb62lIxBnhC1Dg9uB3Oil0exjhD3AgHuGFJrX5E+lPGhsbSafTlJeXd9leXl5OXV1dxscsWrSIhx56iO3bt2OaJs8//zy/+93vqK2tPe1jrlixgvz8/M5bdXV1L7y6QaalBZ59FpqboazMvhUXQ3k5lJTAwYOwerVdESinJJZO82ZbC6v27+bbu7by73u28UxDLQdi0WyHJiIivUiJPxEREREREZHTcDAeY3c0TInHg8MwutznMAyK3B62httpSsS7OYKIDATf/e53GT9+PJMmTcLj8bBkyRJuvvlmHI7Tv6x255130tbW1nnbt29fL0Y8SLz3np38Ky+3K/2O5XLZ2+vqYPv27MQ3wDQnE/z0wB5+XbePnZEO4laaUCrJ2uYGVu3fzbqWJobYRCiR3mGa9sgAkX5ErT5FRERERERETkMolSRupilzZJ4xFXA4qU/FCaVSmvUn0k+UlJTgdDqpr6/vsr2+vp6KioqMjyktLeXJJ58kFovR1NTEsGHDWLZsGWPGjDntY3q9XrxevS90K5GArVshELBbcWfidNoJwPffhxkz+ja+ASZpmvy2bj+7omGGeX24j0laW5ZFczLB6sY68twupubmZzFSkQEilbLnjm7ZAocO2e9Tw4bBpEkwciScwcIQkd6gn0ARERERERGR0+BxOHAaBsluVnknLQuX4cCjiz8i/YbH42H27NmsWbOmc5tpmqxZs4YLLrigx8f6fD6qqqpIpVL89re/5eMf//gZH1O6EYtBPA4nS456vdDeblfcSLd2RDrYEw1TcVzSD8AwDIo9XpJWmldbVfUnclLxuN1m+Omn7eRfKgXJpJ0E/J//gT//GdLpbEcpQ5wq/kREREREpNd0pFLEzDS5The+49tyiQwyI3wBSj1empMJKry+E+5vSiYY5Q9QmeE+EcmepUuXctNNNzFnzhzmzp3LypUrCYfD3HzzzQDceOONVFVVsWLFCgBee+01Dhw4wMyZMzlw4AD33XcfpmnyT//0T6d8TPmAnE67YuZkF89NE9zu7qsCBYD3OkKkLQtvDwtRitwe9kWj1MVjVPr8fRidyADzl7/YFcnFxV0XJ+Tn2zNH33kHcnJACz8ki5T4ExERERGRM3YgFmVdaxNbw+2kLBOfw8n0YD4XFBRT4M7cBlFkoHM7HFxcWMqThw5wKB6jyOPFZRgkTZPGZAKvw8FFhaUnzP8TkexavHgxDQ0N3HPPPdTV1TFz5kxWr15NeXk5ADU1NV3m98ViMe6++2527dpFbm4uV155JT/72c8oKCg45WPKBxQIQGUl7N4NubmZ97Es+yL75MlK/J1EWzJx0upzr8NJs5UkbKpSSaRbzc2wYwfk5WWuSA4E7FbF771ntyAOBPo+RhGU+BMRERERkTO0Jxrmidp9NCcT5Lvc5DhdRNNpXmg+xK5ImBuGjVDyTwatc/MKSFsWL7Y0UBuPgWVhGAYlbg8fKS5nSm5etkMUkQyWLFnCkiVLMt63du3aLl8vWLCAzZs3n9Ex5QMyDJg6FfbuhY6OzMm/tjbw++2ZWtIjv9NJyuq5HWrKMnEaBh5D7alFurVnj73goLKy+32CQWhogJoavT9J1ijxJyIiIiIipy1tWTzbUEdrMsEInx/j8Ir7gNNJvuVmbyzC/7U0cnXZsCxHKnJ2GIbB3IIizgnmsTMSJpJOketyMS6Qi9ehdrciIqdtzBg491zYsMG+0J6XBy6XXU0TCtktPi+6CCoqsh1pvzcxJ49N7W2kLAtXN9WRLckkZR4vw3xqTy3SrVjMbkPcU5XxkXEHsVjfxCSSgRJ/IiIiIiJy2mqiEfbHopR6vJ1JvyNchkG+y8Wm9jYuLSoj16XTDxm8Ak4X04L52Q5DRGTwcDhg/nwoKoJ334VDh+yZf243jBoF06fbyUE5qcm5Qcq8PmpjMap8vhNaUHekUiQti/Pyi3Cp4k+ke263PVvUsrpP/h253+3u29hEjqEzbxEREREROW1tqSRJy8TnzFzZFHA6aUkmCaWSSvyJiIjIB+NwwJQpdru8pia72s/ns5OBmut3ygJOF58or+LXdfupiUbIc7nxO52kLYu2VBKAeflFnJdflOVIRfq56mp7tl8sZrcaziQchpwce1+RLNGZt4iIiIiInDavw4GBQcoyM64QT5p2SymPQ6vHRURE5DQ5HFBamu0oBrRR/hxuGjaSN0ItbGpvoz2dwoHBmEAO5+YVMj1YgLO3kqnpNNTV2ckRt9tux+rRvGcZBMrLYeRI2LbN/tk+fmFjIgHt7Xab4jzNeZbsUeJPRERERERO20h/gCKPh+bDc2GOZVkWzckEk3LyKHbrYo+IiIhINpV5fVxZWsklRaWE02mchkGBy31C68/TZlmwZQts3AgNDZBK2UnbwkKYOhVmzjwxUSIykBgGXHIJRKOwf7+d0A4E7J/9cNhOeo8bBxdckO1IZYjTO62IiIiIiJy2gNPF/IJinm6opSERp8jtwWkYJE2ThkScHKeLCwuLT5j/JyIiIiLZEXC6CDh7+bKwZcHrr8Orr9p/z8+3kyLpNIRC8Je/QHMzfOQj0E2LeJEBIRiEq6+G99+H996zK/wMA8rKjrYmVoWrZJkSfyIiIiIickYuKCjGtCxeaW3iYCwKGPa5r8fLR0vKGZ8TzHaIIiIiInI21dXBG2/Y88+ObXHoctkzGaNR2LwZqqrs6j+Rgczvt9t5zphhV/oZhj3XT+MNpJ9Q4k9ERERERM6IwzC4uKiUWXmF7Ih0EDfTBF1uxgVyNdtPREREZCjYutVO7lVWZr7f77crozZvhsmTlSCRwcHp1Cw/6ZeU+BMRERERkV6R63IxM68g22GInLp4HGpr7RlE+flQUmKv2BYREZEPZs8eO7nX0+/R3Fx79l9Hh5Il0m8cisfYHQ2TtCxynE7GB4LkahYlrckEOyIdxEwTn8PBuEAuBZrbPmDoJ1hERERERESGFtOEjRvh7behrc3+2uuF4cPhoouguDjbEYqIiAwclmXP8jtZFZ/DcXRfkSwLpZKsbqhjS7idSDrFkZR1gdvDeflFLCgqxTkEF4TF0mmeb6rnnfY22lPJzu1Bl5sZwXw+WlKO16E5nf2dEn8iIiIiIiIytLzxBrzyCrjddpLP6bTbk+3YAaEQXHONXQEoIiIiJ2cY9hy/vXt7/v0Zi4HPZ89CE8mijlSKx2tr2BHpoMjtodjtxzAM0pZFazLB8431RNIpriqtxBhCyb+kafLb+v28095GvsvFcJ8fh2FgWhZtqST/19JIezrFp8uH41a73n5N/zoiIiIiIr0saZrUx2McisdIWWa2wxGRY4VC8NZb9oXHoiJwuewLloEAVFTAoUOwaVO2oxQRERlYJk2yq/mSycz3myZEIvZ+HrULlOx6o62ZnZEwVV4/eS53Z3LPaRgUe7wUuF283tbCnmgky5H2rU0dbbzbEaLc46XA7cFx+PviMAwK3R7KPF42tbfxXkcoy5HKyajiT0RERESkl6Qsk/WtzbzR1kJzMgFAicfLefmFzMkvGpKtYkT6nT17IByG8vIT73M47ATgtm1w/vl2UlBERERObuxYGDHC/j1bXGy30D4ilbJn+5WUwNSpWQtRBCBhmrzZ3orf6ey2ai3octOcjPBOeyujA0OjQtWyLN5sa8EB+JyZW3n6nU5IwluhFmYE84dUNeRAo7MYEREREZFeYFoWTx2q5dXWZjwOgzyXG4BDiRh/qD9IUzLBFSUVOjnKJJ2GmhpobbVbLlZVacaanD3xuF3h1117IrcbEgn7psSfiIjIqfF4YNEieP552LfPTvY5nUdn/5WXw8KFUFCQ7UiHlLRlURuPEjdNAk4nFR7f0D0fsSxobaW9uRnvoToKSno+3wg4nUOq4i9qpqlPxAme5PNv0OmiNh4jYZl4Dc366690FiMiIiIi0gt2RDp4o62FQreb3GNOlvxOJ6FUktdam5mckzdkVoyestpaWLvWbq9omvYJuc8HEybAxRd3XS0u0hsCAftP08yc/IvH7dlD+tkTERH5YHJz4eMfh/37Ydcuu8Le64WRI2HUKHtxjfSJtGWxoa2F19uaqU/ESFsWbsNBtd/P+fnFTMnNG1oJwP37YeNGqKkhNx7j8niceDCXA2NGs2vCONJupUlkcNFPtIiIiIhIL3i3vY2kZXZJ+h2R53LTkozwXkebEn/HammBZ56xK/2Ki+2V4pZlXyR6+217hfhll9nVWXL2NDfbrS0bGuwKtxEjYMwY8PuzHdnZMWqUfWGytdWe8XesVApiMZgzx65SEBERkQ/G4bA/S4wYke1IhizTsnimoZZXWptwGgaFLjcuh4OEmWZnJExNNMplJeVcWFiS7VD7xs6ddiVqJAJ5ebiCQaLtrfg6Ipyz8W0Km5p584LzSB2XmI6m00zLHaSfhzPwOZyUuD3si0U6u9dk0pFOMdqfg8fopnuG9AtK/ImIiIiI9ILGRBxvd60DAY/DQePhuX9y2Hvv2cm/ysqjyT3DsJMyDgds3w4zZkBFRXbjHMzeew9eegk6Ouykn2nC++/b7bgWLbJn8Qw2OTkwbx68+KJdaZqfbyf5olFob7dbzWr+kIiIiAxQ73a08WprM/kud5e2jS6ni4DTRVMizpqmekb4AlT7A1mMtA90dNjdReJx+5zCMHACBf4c9hsGSdNi2L59tBQXsX3qpKMPS6VwGw6m5xVkK/I+5zAMzs0vZE80Qtw0M57bxs00JnBufuHQqhgdgJSWFRERERHpBTkuFwnL7Pb+lGmS69S6u06maSf2/P7MFX1+vz1jbd++vo9tqDhwwE5+pVJ28rWszL4gUlYG9fX2yuhkMttRnh3TptnVpOXl9gWhlha72nTWLLjqKjv5LCIiIjLAWIdbfJpY3c5qK3J7CKfTvNPe1sfRZcHOndDWZi9mO+aco8zjJeh0EXIYxNxuRuzajTOZwrQsWpIJmpMJZuUVMMY/tLq1TA/mMzEnSG08SnsqiWVZgP1zFUolqYvHmZwT5Jzc/CxHKiejKw8iIiIiIr1gSm4e73aESJgmnuNWR8bNNIZhMDknmKXo+qF02k4qdTc83jDs21lMPCVNk3A6hc/hxDcU2zpu3my3tTy8+rmT02lfHKmvh717Ydy47MV4thgGTJxov7bGRjv5mZ+vhJ+IiIgMaO3pFPtjUfK7+4wNGIZBjtPJlnCIK62KwV25VVNjf7Y97vzM43AwNieXmmiEkM8kt72daF0tdSXFBF1uFhSVsrC4HMdg/t5k4HU4+UzlcJ5ucPJ+R4iWZLTzvoDTxdz8Iq4orTjhfFf6HyX+RERERER6wZTcPMYFctgabqfY7SX3cCKpPZ2iJZlkck4eE5T4O8rlgoICqK2FYIbvi2naFViZ7jtD7akk61ubeau9lWg6jcswmJKbx7yCYiq8vl5/vn7JsuwLId1VXLrd9r9Bff3gTPwd4XTaVX+SHR0ddlVvKgV5eTB8uGYrioiInIGkaWJi4TzJ/DWnYZC0LCxgUKe2kskTkn5H+BxOxucECbs9pGJxLswrxCyvYmJOkAK3p48D7T9ynC4+U1FNfTzGjkgHMTON3+FkXCCXsqFyrjQIKPEnIiIiItILvA4nn6mo5ulDtWyNtNNyeJ5fwOliTn4hV5RU4tbKyKMMAyZPtttNxuPg9R69z7KgudmuwBo7tlefNpRK8suDNeyMdpDjdOF3OElaJi+3NrEt0sHiimpGDPZZJ2B/jyFz0i/TfiK9KZ2G9eth0yY7+WcY9kW5sjL40IfsOYsiIiLygeW6XPgcTqLpNIEexgxE02lG+L2Dv6KtoAD27On2bgPITaUhkMN5w6qhoLivIuv3yr0+ypXoG7CU+BMRERER6SV5LjeLK6s5lIhzMG63Rany+rUysjuTJtlVZ9u22RWAgYBdZdbeDj4fXHihva0XvdTSyM5ImOE+P65jErH5Ljf7Y1FWN9Zy6/Axg/8iiMNhJ1fef99OsB4vlbKTMaWlfR+bDH6vvmon/vx+u+LS4bBnetbVwerVcM01+tkTERE5DV6HkxnBAv7cfIhCy8r4mTZlmqQsi1l5hVmIsI+NGwfvvmu3t/dlOCezLHsG4LhxUFTU9/GJnCVaciwiIiIi0osMw6Dc62NWXiGz8gqV9OuJ2w2XXQaXXAKFhfaFf9O0Z69dfbWdGOxFkXSKt0Ot5LldXZJ+AA7DoNTjZV8sSk000qvP229NmQIeD7S2dq3sM0177l1pKYwenbXwZJBqa7Mr/QIBO+l85P+ix2MnAVtb4Z13shqiiIicKGmavN8R4sXmBl5sbuD9jhBJ08x2WJLB7PxCyjxeDsSipI7r3pAwTQ7EY4z05zA1Ny9LEfah4cNhzBi7m0gs1vW+I595AwGYNevknTBEBhBV/ImIiIgMEo888gjf/va3qaurY8aMGTz88MPMnTu32/1XrlzJD37wA2pqaigpKeHTn/40K1aswJdpJaTI2eJ22yfa06dDJGLP9+pu7twZaksliZkmBe7Mp0F+p5OGRJyWVIJR5PT68/c71dUwfz6sW2fPWvR67QsgqRSUlMDChXYyRqQ31dTY/9crKk68zzAgNxd27oSLLuraAlhERLJmS0eI5xrrqU/ESB9OJDkNg3KPj4+WlDN5KCSQBpBSj5fPVlTzu/r91MaiGAa4DAdJ08QwDMb4c/h0xfAeW4EOGg4HfOQj9t937YKWlqOzrFMpexHSggX252KRQWQI/O8WERERGfyeeOIJli5dyqOPPsq8efNYuXIlixYtYuvWrZSVlZ2w/y9+8QuWLVvGqlWrmD9/Ptu2bePzn/88hmHw0EMPZeEVyJDndEIweFafwm04cBiQNC28GXqfpC0LA/AYQ6QximHYSdfKSti6Ferr7Zaro0bBhAl2AkaktyWT9p/dJfddLrv6N5lU4k9EpB/YGm7n13X7iZlpSj1ePIcrtROmSX0ixm/q9vOpiuFMUfKvXxnhD/DF6jFs6WhnSzhEJJ0mz+Vmam4eE3KCQ2v2uN8PV14J+/fD9u12dwGXC0aOtFt86jOvDEJK/ImIiIgMAg899BC33XYbN998MwCPPvooTz31FKtWrWLZsmUn7P/KK69w4YUXcv311wMwatQorrvuOl577bU+jVtOk2naFTOGYbemUVuaU1Ls9jDSl8PWcDs5TifGcd+3lmSCAreH0YEhUO13rIqKzNVXImdDbq79npVK2RfdjheL2fuo+lykd1gWHDpkt9l1OOyK7oKCbEclA0TKMnmusY6omabK6+vy2cnjcDDM6+NgPMafGusZH8gdWsmkASDgdHFufiHn5g+BWX4n43DAiBH2TWQIUOJPREREZIBLJBJs2LCBO++8s3Obw+Fg4cKFrFu3LuNj5s+fz89//nPWr1/P3Llz2bVrF08//TSf+9zn+ipsOR2mCdu22QPqGxvtbaWlcM45doWWEoA9MgyDCwqLqYmFqUvEKXV7cDkcmJZFazJJLG2yoLB0aLQ9EsmWkSPtmZ7Nzfb717HvW6mUnfg777zMSUER+WD274fXX4cDB+xKWrAXDI0ZA3PnKgEoJ7UzEqYuHqPU4z1hwRTYn61KPV7qEzG2RzpU9Sci0k/ok7SIiIjIANfY2Eg6naa8vLzL9vLycrZs2ZLxMddffz2NjY1cdNFFWJZFKpXi9ttv5+tf/3q3zxOPx4nH451fh0Kh3nkBcmosy57F9sYb9t+PtKTZt8++oNfSAvPmKfl3EhNzglxbXsVzjfXUJuJgWVhA0OVmYUkZFxWVZjtEkcHN67Xn9/3pT1BXB3l5dqvfaNS+jRwJ06ZlO0qRgW/PHnjuOejosBN8RUX29o4OeOcdaGiAq65S8k961JCIk7YsvD1U8nkcDtKWRUMi3u0+IiLSt5T4ExERERmC1q5dy4MPPsj3v/995s2bx44dO/jyl7/MN7/5TZYvX57xMStWrOD+++/v40il04ED8NZb9oyKY2fh5eRAKAQbNtgXzCsrsxfjADE9WMCEQJBtkXZCqRQ+h4PxgSD5bne2QxMZGsaNsxOAGzfa723xuP3eNmsWzJhh/11ETl8iAS++aLcFr6jouigoGLSr/urq7AVFV1yRvThFRETkrFDiT0RERGSAKykpwel0Ul9f32V7fX09Fd3M7Vq+fDmf+9znuPXWWwGYNm0a4XCYL37xi9x11104MqzqvfPOO1m6dGnn16FQiOrq6l58JdKj7dvtC3nFxSfeFwxCba29jxJ/p8TndDI9WJDtMESGrupqGD7crj5KpexFDB5PtqMSGRx277bb6ZaUZO4E4HTa1bZ79tgdAwo1/0syK/V4cRoGcdPstuovYZo4DYMyj7ePoxMRke4o8SciIiIywHk8HmbPns2aNWu49tprATBNkzVr1rBkyZKMj4lEIick95xOJwCWZWV8jNfrxevVCX3WNDV1f1HcMMDtti/ySb+Utix2RDp4vyNERypFodvD1Nw8RvoDGWfmyCAVicCOHXaVm2nalTjjx9sX4Iciw+hawSwivaO+3m4L3tOszJwcu+qvvl6JP+nW2EAOlV4/B+MRqrz+Ez6zWIdbfJZ7fIwL5GYpShEROZ4SfyIiIiKDwNKlS7npppuYM2cOc+fOZeXKlYTDYW6++WYAbrzxRqqqqlixYgUAV199NQ899BCzZs3qbPW5fPlyrr766s4EoPQzXq9dFdOddNreR/qdaDrN7+sP8F5HG2nLwmUYJC2L9W3NnJdfyBWllTiV/Bv8amvteVtNTeBw2EmvrVvtdpeXXgpjxmQ7QhEZLEzz5PsYhn07lX1lyHIZDi4rKedXdfs4EI9S6vHiddjnCnHTpDERx+dw8tGSctw9zAEUEZG+pcSfiIiIyCCwePFiGhoauOeee6irq2PmzJmsXr2a8vJyAGpqarpU+N19990YhsHdd9/NgQMHKC0t5eqrr+aBBx7I1kuQkxkzxm7lmUqduIL/SEJw9Oi+j0tO6vnGOt5ub6XM48V/TGK9PZXk5dYmitwe5heWZDFCOesiETvp19wM5eV24g/sipyGBlizBgoKoKgoq2GKyCCRl2e/v1hW5lafYM/WPNLyU6QHE3KCfLaimuca66mNR0kf7g7iNAwqvD4+WlzOpFz9HJ2qpGmyPdJBXTwGQJHbw6ScID4tvhx44vGjLZMNwx7JMHKk3YlFJMuU+BMREREZJJYsWdJta8+1a9d2+drlcnHvvfdy77339kFk0ivGjoVhw+wWgUVF4PPZF/TicTuZMGKEKob6odZkgnc62sh3ubok/QCCLjeRdPpw5V+RVsoPZjt32pV+ZWVHk35gXyQqLbWrAbduhQsuyF6MIjJ4jB0L69dDKAT5+Sfeb1nQ2mrPBR42rM/Dk4FnQk6QMYEcdkbCHDqcsCrz+hgbyMFl6PPLqdoabufZhjrqE7HOBKphGJS4PVxaXMasYIFawA8ElgVbtsBrr9lJvyOjMhwOe7bqhRdqQaZknRJ/IiIiIiIDgc8Hl18OL7wA+/fbJ5lgz/0bMwY+8pHuZwBK1hyIRelIpRju82e8P9/lpjmZ4FAiTlU3+8ggcOCAneTLtJrfMOw2vTU1SvyJSO/Iz4cZM+yL0kdmaR5JJqTT9mcIjwfOO6/rYgSRHrgMBxNzgkzM0WzW07E93M6v6/YRSacp83jxHP6/lzJNGpMJ/lB/ECw4N18zN/u9LVvgz3+2WyWXlBztxpJMQmMjPPssXHGFXf0nkiVK/ImIiIiIDBQFBfDxj9vVQYcO2dvKy6GiQhfu+qnD63/pbu32keuwVueeMij11G7v2H1ERHrL3Ln2n2+/bX9ucDiOvs/k58PFF6tTgEgfSVsWa5oOEU6lGe7zdanqczkcVHh91MVj/Ln5EJNz807oEiH9SDwOr756NOl3LLfb7u5QXw/r1sHw4ZkXfYn0ASX+REREREQGEocDqqrsm/R7FV4fOU4X7ekUea4T532EUinyXW5KPd4sRNd/JE2TLeF2Nne0EUqlKHJ7OCeYz7hALs6TJMwOxqJsam9jfyyCy+FgQiDI1GBexu931lRUwObN9kWi45P0R1r26v+0iPQmp9OuIp40yW433Nxsbysrg3HjwK8qc5G+sica5kAsSqnH020rzxKPh9pYjC3hELPyVPXXb+3ebbdKPj7pd4RhQGGhvUjzwAF7HINIFijxJyIiIiIicpaUeLxMzs1jfWszPoezs60TQCSdIppOs6CwFK9j6K4GjqRT/KZuP1vC7VgWuB0GuyJh3gq1MDOvkI+XDet2/uFrrU0811hPRzqF1+HAtCw2d4R4ra2JT1cMZ7gv0Mevphvjx8Nbb0FDg33RvbPU07IvxufkwMSJ2Y1RRAanwkKYMyfbUYgMaY2JOEnLxNdD9ZfLcGABjYlE3wUmH1iypZmkw4HX5aLbf02v92hb5UGY+DMti5iZxoGB1+HQXMp+Sok/ERERERGRs+jykgpCqSTbIx0YWHgMJ3EzjcMwmJ1XyIWF3awYHiKeb6znvfYQFT5vlwRoJJ3ijbZmit0eLi0uO+FxuyNhVjfWATDC5++86JC2LA7Eovyu7gB/M2JM/0iq5ubacziff95uuefx2Mm/eNxO+i1YYCcERUREZNAxum36nmlf6Y9qohE2trew2WWRmjwWn8fDjHCMmZEYpal05gcNsoRYNJ3mnfZW3gy10JxMYgDDvH7OzS9gam7+Sbt0SN9S4k9EREREROQsynW5uGHYCDZ3hHivI0R7KkWR2830YAETcoJD+iS5NZlgU0cb+W73CQm6gNOF35lmQ6iFCwqKT1gl/1aohUg6zUh/16o+p2EwzOujNh5jS0c7M/IKzvbLODUjR8KnPw3btsHevXbbz6oqu9KvtDTb0YmIiMhZUub14nE4iKbT3c7vS5omxuF9pX95o62ZZxrq6EinCHo8uCyLiAF/ys/hzRwfn2xuZ3z8mErNWAxcLiguzl7QvSyUSvKr2n3siHTgdhjkOF1YFmyLtLM90s6svI4eu3RI31PiT0RERERE5CzzOpzMyivUzJbj1MZjdKRSDPdlnjWV73LTlEhwKBFnxDEJPsuy2BkJk+vMfErrcjgwsTgYjzKDgrMR+ukpKIC5c+1bN1KWyXvtITaGWjmUiBNwOpkWzGdmXkH/mlsoIiIip2SEL8AIX4AdkQ6qj+lScIRlWTQk4pR6fEzMCWYpSslkdyTM0w21WBzuMOH12a3bOyIU+3wc8Lr4fVGQWw+1UJQ27TbuLS1QXQ2VldkOv1dYlsUfDx1kW6SDYV5fl9EF+W53Z5eOApebhSXlWYxUjqXEn4iIyFk27afTsh3CB7Lppk3ZDkHk1MXjEI3acxT8mRMHIjJwWb2wx0CSNE2erD/AW+2tAPgdTjrSSZ5qiLAx1MriymrKvb7sBikySDzyyCN8+9vfpq6ujhkzZvDwww8zt4ek/MqVK/nBD35ATU0NJSUlfPrTn2bFihX4fPb/yfvuu4/777+/y2MmTpzIli1bzurrEJH+z2EYfLSknKbaBPtiUUo93s7Kv7hp0piI43U4WVRS3ictyi3Loj4RZ080TNI0yXW5GB8IkutSquB4G0IthNPpo23lDQPKK2D/foxYlGGml31+H5sCPhY0tthJv2AQ5s+HQVL9ti8WZXu4g1KPp0vS74iA00WOM82boRbmFxYT6GZhnvQt/SuIiIiIyMATCsHbb8PWrZBI2K1Uxo6FGTOgZGjPSxMZSCq9PoIuN6FUkgK354T77e1uyo9re2UYBmMDOaxva6bIsk5YOZ80TRxAVTeVhP3V+rZm3gy1UOzxEjimFdiRuYX/c+ggtwwfjWMIt4cV6Q1PPPEES5cu5dFHH2XevHmsXLmSRYsWsXXrVsoyzNv8xS9+wbJly1i1ahXz589n27ZtfP7zn8cwDB566KHO/aZOncqf/vSnzq9duoguIoeN9OfwV5XVPNtYx/5YlIZEHAMDhwGVXj8fKS5jcm7eWY+jNZngmYY6tkXaiabTh+cPWhS4PczNL+JDRaVDug39sTpSKbaG28l3ubt+1szPA6Ma6utxxGL4DIu3DZMF7e12G/cLL7T/HCR2RDqImWnKHCd+Vj+iwO3hYCzGzkiYacH8PoxOuqNPICIiIiIysLS1wf/+L9TVQSAAPh8kk7BxI9TUwJVXQrlajIgMBAVuD9OD+bzU0ojP4ewyxy+cShFNp1lQWJpx9fu5+YW829FGQzJBqdvTeUEmbVnUxmNU+fwDol1W2rLYEw1TG4vxbKPdSsp/3Ot1GgalHi81sQg10QijAjnZCVZkkHjooYe47bbbuPnmmwF49NFHeeqpp1i1ahXLli07Yf9XXnmFCy+8kOuvvx6AUaNGcd111/Haa6912c/lclFRUXH2X4CIDEgj/TncOnwMe6MR6uIxLCyKPV7GBnJwGWe/Oqw9leSXtfvYEw1T5PZQcvjzU9qyaEkmeK6pnqiZ5oqSihMWVQ1FcTNNyjLJyTSXMS8IubkQ7sATjxMBrOlzMKqqBk2l3xExM40BPf5MHEkWx8x0H0UlJzO4fgpFREREZPBbvx5qa+3kXkGB3eIzL8+eodDSAi+9ZM9WEJEBYWFxOdOC+TQlE9QcvhBWE40QSqWYm1/EhYWZq3hH+XO4srQSFwY1sSi18RgHYlEOxKJUev18qnx4n7TLOhO18Sg/2reLn+zfw5P1+9kZCVMXj7ErGiZldn0f8zudJEyT+kQsS9GKDA6JRIINGzawcOHCzm0Oh4OFCxeybt26jI+ZP38+GzZsYP369QDs2rWLp59+miuvvLLLftu3b2fYsGGMGTOGG264gZqamm7jiMfjhEKhLjcRGfwchsHoQA4XFBYzv7CEiTnBPkn6AbzW2szuaAdVXh9Bl6szkeM0DEo8XvJdLl5rbaYmFumTePo7r8OJy3CQMLs5t3QYEAySCOYSKCrGqK4edEk/AJ/DiYXdIrY76cP3+fr5Z++hRBV/IiIiIjJwtLfDzp12ou/4lZeGYScCa2uhvh604l5kQPA7nfxVZTXbwx1s7ggRSiUpdHuYmpvHmEBuj+2m5uQXUe0LsKm9lf3xGG7DYFwgl6m5+f1+Tk1rMsETtfuojcco93gp8rhpSSWxsGhMxDEti3GBXI68/CMXW9R+S+TMNDY2kk6nKT+uO0B5eXm38/iuv/56Ghsbueiii7Asi1Qqxe23387Xv/71zn3mzZvHT37yEyZOnEhtbS33338/F198Me+++y7B4InVxytWrDhhJqCIyNkSS6d5q72VXKcLVzfJqaDTRUsyyqb2Nkb61V0g1+ViYk6Q19uayT8mUXos07KImSYz8gr6PsA+Mi6Qy4sOJxEzTU438/takwkK3W7GqitFv9G/z4RERERERI7V0WHP9CsoyHy/zwetrXaCUIk/kQHDZTiYnJt3WrNtyr0+yr0D7//7xvZWauMxqn1+HIaBZVnkOF2EUkl8DietySTt6SR5LjcA7ekUAadLF+JEsmDt2rU8+OCDfP/732fevHns2LGDL3/5y3zzm99k+fLlAFxxxRWd+0+fPp158+YxcuRIfvWrX/GFL3zhhGPeeeedLF26tPPrUChEdXX12X8xIjIkNScTtKeSFLrd3e5jGAZ+h5O9UVX8HTE7r5DNGVrLg70o62A8RrHbM6jn2lX7/IzPyeWd9jbcXgee4xLHkXSKcDrNBQUlBLpJDErf07+EiIiIiAwcbrdd6ZdK2X8/Xjptt1fp4YRWRKQ/2NTehs/hwHH4ApJhGJR5vbSnU6Qsk7Rl0pZKkedyE0mnaEkmmZdfRKnHm+XIRQa2kpISnE4n9fX1XbbX19d3O59v+fLlfO5zn+PWW28FYNq0aYTDYb74xS9y11134chQPVNQUMCECRPYsWNHxmN6vV68Xv1/FpG+ccqDEIwPsO8QMDpgt5Z/pqGOmliUoNOFy2GQME3C6TTFbg+fKK+iyO3JdqhnjWEYXFM2jFg6zY5IBy7DINflwrIglErhMOwuHAuKSrMdqhxj8DWdFREREZHBq6gIysqgrS3z/W1tdjXgsGF9GpaIyAcVS5u4j5vpU+hyU+3zYxiQsEyaEnH2RiO0pVLMDBZweenAq2wU6W88Hg+zZ89mzZo1ndtM02TNmjVccMEFGR8TiUROSO45D7cc727mUUdHBzt37qSysrKXIhcROX1Fbg+5ThcdqVSP+0XTaap9/j6KamCYk1/E56tGcWFhMS6Hg7QFAaeLhcVl3Dx8NONzTmznPNjkudzcMGwknywfTpXPT9qyE8STcoIsrqzmE+VVuAfhfMOBTBV/IiIiIjJwOBxw7rnQ0ACNjXaSz+WyK/1CITBN+37P4F1xKSKDQ5nHy9ZIO0XHbDMMgwqvjzyni53RMBNzgkzJzWNcIJdR/pzO6kAROTNLly7lpptuYs6cOcydO5eVK1cSDoe5+eabAbjxxhupqqpixYoVAFx99dU89NBDzJo1q7PV5/Lly7n66qs7E4Bf/epXufrqqxk5ciQHDx7k3nvvxel0ct1112XtdYqIHOF3OpmZV8CfGg+R77ZwZfhM0Z5K4XU4mB4s6PsA+7lqf4Bqf4ArSkySlonX4Rxyc5f9TidzC4qYk19I3DRxGOAxHBlnH0r2KfEnIiIiIgPL2LHw4Q/Dq6/ayb8jgkG44AKYNi17sYmInKKZeQVsjbQTOTy771hhM81wX4Abq0YN6tZRItmyePFiGhoauOeee6irq2PmzJmsXr2a8vJyAGpqarpU+N19990YhsHdd9/NgQMHKC0t5eqrr+aBBx7o3Gf//v1cd911NDU1UVpaykUXXcSrr75Kaalan4lI/zAvv5ht4Q72xSKUeDz4DAehdJr2VJJIOkXasrioqJSR/kC2Q+233A4H7iHeRNFhGPgPL3qR/ivrib9HHnmEb3/729TV1TFjxgwefvhh5s6d2+3+ra2t3HXXXfzud7+jubmZkSNHsnLlSq688so+jFpEREREsmrSJBg9GmpqIBIBrxdGjIDA2T9JTVsWSdPEc8xsLhGRD2pqMI9zI4VsaGsh5EgRdLowsWhNpvA4HCwsKVPST+QsWrJkCUuWLMl439q1a7t87XK5uPfee7n33nu7Pd7jjz/em+GJSF8yTdi1C5qb7VnhEyf2yXlFX8t3u7muspr/bahlc0eI2niMpGliYeE0HOQ6nWzvaOdPTfV8uLgMlzG0E1wiA1lWE39PPPEES5cu5dFHH2XevHmsXLmSRYsWsXXrVsrKyk7YP5FI8NGPfpSysjJ+85vfUFVVxd69eykoKOj74EVEREQku7xeGD++z56uMRFnQ1sL77S3kbBM8pwuzs0v5Ny8Qq14HADiZprWZBKnYVDk9ihpK1nnMhx8vGwYVT4/G9paaE4mMLBnpcwtKGLSEJgXIyIiknXr18Nf/mKPEkinwTDA74dzzoGPfWzQJQCLPV4WFpWxOxIm1+kkz+vD53BS4HbjMgzaUkleaDpEyrK4oqRCbRxFBqisJv4eeughbrvtts4e6o8++ihPPfUUq1atYtmyZSfsv2rVKpqbm3nllVdwu90AjBo1qi9DFhEREek19957L7fccgsjR47MdihyEgdjUR6v3UddIkau04nH4aAhGed/Dh1kW7idxZXVJ7Tqk/4hmk7zSksjb7W30p5K4TCgyuvngoJipuTm6WKGZJXb4eCCgmLm5hfRnkriMAyCTpd+LkVERPrCmjXw/POQStmLCgMBu/ovFoPXXoMDB+Bv/mbQJf9ebm0iYqaZkpt3wmK4QrcHBwavtzUzK1hApc+fpShF5ExkrV43kUiwYcMGFi5ceDQYh4OFCxeybt26jI/54x//yAUXXMDf//3fU15ezjnnnMODDz5IOp3u9nni8TihUKjLTURERKQ/+MMf/sDYsWP5yEc+wi9+8Qvi8Xi2Q5IMTMviqYZaDiVijPD5KfF4yXO5qfD6qPD62BJu55WWxpMfSPpc3Ezz67p9PNdUTzidIs/lIuBwsisa5ld1+1nf1pztEEUAcBoGBW4PeS63kn4iIiJ94cABO/FnmpCXBz4fOBzgckFurp3s278fnnoq25H2qqZEnK3hdorc7m47YOS5XITTaTZ1tPVxdCLSW7KW+GtsbCSdTncOTj6ivLycurq6jI/ZtWsXv/nNb0in0zz99NMsX76c73znO/zzP/9zt8+zYsUK8vPzO2/V1dW9+jpERERETtfGjRt5/fXXmTp1Kl/+8pepqKjgb//2b3n99dezHZocoyYWYV8sQqnHe8LJscfhIMfp5K32NmI9LEaT7NgYauX9jhAVXi+lHi9+p5Mcl4vhPj8OA9Y0HaI1mch2mCIiIiLS19atg3gccnLs9p7H83jA6YR334VotO/jO0uakwkiZpqcHrqVGIaB12FQr4WpIgPWgJrQaZomZWVl/Od//iezZ89m8eLF3HXXXTz66KPdPubOO++kra2t87Zv374+jFhERESkZ7NmzeL//b//x8GDB3nsscfYv38/F154IdOnT+e73/0ubW1aZZltzYkECdPsdo5frtNFRypFWyrZx5FJTyzL4s1QCy6Hgddx4r9dsdtDKJVkS7g9C9GJSK8yTdi3D9auhf/9X/vPffvs7SIiIpns2mVX+Dl6uDzu89lJv507+y6uPmAA1kn2MS1wqAmByICVtUEkJSUlOJ1O6uvru2yvr6+noqIi42MqKytxu904j7noMnnyZOrq6kgkEng8nhMe4/V68Xq9vRu8iIiISC+zLItkMkkikcCyLAoLC/ne977H8uXL+eEPf8jixYuzHeKQ5Tp8xmtaVsZ2OCnLwmGAS+35+pWUZdGaTOJ3ZD7lOfJvGVLCVmRgSybhhRdgyxZ7RpPTCek0bNoEkyfDggXgdmc7SukliUSC3bt3M3bsWFwuzdaVISqRgD17oL7eXuAQDMK4cXa7Sjl1qVTmSr9jORxgWXZl4CBR4fWR63TRnkpS6D7xWjrY5z0py6LaN7hmG4oMJVmr+PN4PMyePZs1a9Z0bjNNkzVr1nDBBRdkfMyFF17Ijh07MI9Ztbdt2zYqKyszJv1ERERE+rsNGzawZMkSKisr+cpXvsKsWbN4//33efHFF9m+fTsPPPAAX/rSl7Id5pA2yp9DnstNazcJopZUgmpfgKJuTpwlO1yGXemXtDJX/FiWhQUZqwFPqqXFTjJs2QLNmhMoklVvvGG3YcvNhcpKKCuz/wwE4J134M03sx2h9IJIJMIXvvAFAoEAU6dOpaamBoA77riDf/mXf8lydCJ9aO9eePxxePppWL8eNmywq5x/8Qu7daVaz5+6/PyTV4Ynk/aCktLSvompDwRdbqYH82lLJUlZmev+mpIJ8lxuzgnm93F0ItJbstrqc+nSpfzwhz/kpz/9Ke+//z5/+7d/Szgc5uabbwbgxhtv5M477+zc/2//9m9pbm7my1/+Mtu2beOpp57iwQcf5O///u+z9RJERERETtu0adM4//zz2b17N4899hj79u3jX/7lXxg3blznPtdddx0NDQ1ZjFLyXG7m5BcSTqVpSyaxDp8gpy2LQ/EYXsPJBQXFGKr461cMw2BGMJ9IOo2Z4aJGezpFwOlkfCD31A8aicBzzx294Pb00/bfV6+GcLgXoxeRUxKNwnvvgd9v344VCNgt2t57D2Kx7MQnvebOO+/k7bffZu3atfh8vs7tCxcu5IknnshiZCJ96MABePZZe9FRcTEMG2YvdDjSOe211+ybnJpzz7Ur/hLdzHu2LPv3R2UljBjRt7GdZRcVljDSl8P+aIRQ6uj5TcI0qY3HSFsWHyku08JGkQEsq30RFi9eTENDA/fccw91dXXMnDmT1atXU15eDkBNTQ2OY/osV1dX8+yzz/KVr3yF6dOnU1VVxZe//GW+9rWvZesliIiIiJy2z372s9xyyy1UVVV1u09JSUmXbgeSHZcWlZE0LTaEWtgXi3ZuL3B7WFhcxuRctVbqj87NL2RTRxv7YlFKPV78DgcW0JZK0p5KcUFBMZVe30mPA9grvp97zp7xkpd39CJbJGInFqJRuOoqUCcSkb7T0AAdHfYF8EyCQfsCeUMDVFf3bWzSq5588kmeeOIJzj///C4LbaZOncrOQTZ7SyQjy4LXX7ff8yoquraoNAy7es0w7ErnyZOhsDB7sQ4Us2fDyy9Dba399bGf4UwT2tvtbQsWZCe+s6jA7eGGYSN4rrGereF29iXt8xunYVDu8XFxUQkzgwXZDVJEzkjWG6IvWbKEJUuWZLxv7dq1J2y74IILePXVV89yVCJnZtpPp2U7hFO26aZN2Q5BRGTIOjLL73jRaJRvf/vb3HPPPVmISjJxOxxcVVbJefmFbI90EDdN8lwuJuXkkasZQ/1WodvDX1WO4KmGg9REozSaaQwg1+VmQVEpC4vLT71Sc+9ee55OSUnXC0M5OfbXe/bA7t0wceJZeCUiktGRat6e/h9308ZMBpaGhgbKyspO2B4Oh1VxL0NDQ4Nd8VdQ0P17XjBoJ7F27IDzzuvT8AYkjwduvhl+8hOoq7MXczmddtLPsuxK8ssvh5kzsx3pWVHg9vDZymoaEnH2xSKkLYs8l5sx/hzcjqw2CRSRXqCrFCIiIiJZcv/993P77bcTCHQdmh6JRLj//vuV+OuHyrw+yk61Qkz6hQqvj5urRrMvFqEpkcBpGIz0Byj4oK2Ldu60LwJlquhzu4/uo8SfSN8pLrZbeobDdiXu8cJhOznfXUWgDBhz5szhqaee4o477gDoTPb96Ec/4oILLshmaCJ9o60N4vGeK/kMw05ctbT0XVwDXXEx3HEHvPWWfWtrsz/XjR0L8+cPqtl+3Sn1eCn1eLMdhoj0MiX+RERERLLEsqyMq9TffvttioqKshCRyODkMAxG+nMY6c85/YMcWQXeHbdbc/5E+lpuLkyYABs22PP8jk3Mx+P2/8m5c+3koAxoDz74IFdccQWbN28mlUrx3e9+l82bN/PKK6/w4osvZjs8kbPvVCuwLOvU9xWbxwPz5tk3kTORTNpdQurr7crRYNBOIgeD2Y5MhiAl/kRERET6WGFhIYZhYBgGEyZM6JL8S6fTdHR0cPvtt2cxQhE5QUGB3cqzO4mEvY+I9K3zz7crNHbtsqtd3G77/6Nh2EnBuXOzHaH0gosuuoi3336bFStWMG3aNJ577jnOPfdc1q1bx7RpA2fUhshpKymxFzF0dHSfRDjSorK8vG9jk+wyTYjF7L/7fEr8Zsu+fbB2LTQ1QTp9tCXva6/BjBl2+92eFhGK9DIl/kRERET62MqVK7Esi1tuuYX777+f/Pz8zvs8Hg+jRo1S2yqR/mbcOHj33aOtA48ViYDLZScZRKRv+Xxw5ZV24m/btqMXxSdMgNGjj7bilQErmUzyN3/zNyxfvpwf/vCH2Q5HJDvy82HMGHjnHTsBmCmB0Nxs7zd2bN/HJ30vkYCtW+H99+1/e7BbwU6ZYreez9SeXs6Ogwdh9Wr7PKGo6OhnD9OE9nZ49VU7Ka9zfOlDSvyJiIiI9LGbbroJgNGjRzN//nzcuigp0v9VVcG0afb8l2jUbjFoGHaSIZmE6dOhujrbUYoMTW63fZFTMzYHJbfbzW9/+1uWL1+e7VBEsmvePGhogLo6e65pTo79WSQeh9ZWO9Fz4YVqbzwURKPw3HP2oheH4+iitLo6Owm1axdcdhn4/dmNcyiwLHj9dTvBV1FxtNIP7H+b/Hx729tvw6RJPc/pFOlFqv0VERER6UOhUKjz77NmzSIajRIKhTLeRKQfcTjg4ovhwx+2T9jDYTvpl58Pl1xi39RaSUTkrLj22mt58sknsx2GSHbl58NVV9kVXamUneSpq4NQyE44LFpkJxZk8HvpJdixw64uKyuzE385Ofbfi4rs+156KdtRDg2NjbB//9EEXybBoH3usGNH38YmQ5oq/kRERET6UGFhIbW1tZSVlVFQUNBlvt8RlmVhGAbpdDoLEYpIt5xOe0bHOedAS4u9LT9frQRFRM6y8ePH841vfIOXX36Z2bNnk3Ncy+UvfelLWYpMpI8VFMAVV9ifQ+rr7VaCwaDdmUALkIaGlhY7gZSXl7mdp8dj37djB8yZowqzs62tza667en7bBj2ecSRlqwifUCJPxEREZE+9Oc//5mioiIAXnjhhSxHIyKnxemEkpJsRyEiMmQ89thjFBQUsGHDBjZs2NDlPsMwlPiToaewUAmdgSyZtBNGlmUn6bzeU39sTY3d6rOiovt9cnLsatCaGv2cnG3dVfkdz7JOfV+RXqDEn4iIiEgfWrBgAQCpVIoXX3yRW265heHDh2c5KhEREZH+a/fu3dkOQUTkzEWj8O67sHmzPRMO7Dl8kybZ86KDwZMfI5Gw/+wpiWQY9u3IvnL2lJTYczU7Orr/9zNNO/HXU7JWpJepBlxEREQkC1wuF9/+9rdJpVLZDkVERERkwLAsC8uysh2GiMgHE4nAU0/B//2fnSTKzbVviQS8+ir88Y9HW8n35Eh1YE/vg5Zl3z5IJaGcnvx8GDPGnrVpmpn3aWmxKzvHju3b2GRIU+JPREREJEs+/OEP8+KLL2Y7DBEREZF+77/+67+YNm0afr8fv9/P9OnT+dnPfpbtsERETs3LL8PevVBaCkVFdlLO67XnNpaX2605//zn7pNHR4wcebTCrDsdHfY+I0f26kuQbsyda1fz1dVBOHw0KZtIwKFDdvXl/Pl2C1aRPqJWnyIiIiJZcsUVV7Bs2TI2bdrE7NmzyTnuROCaa67JUmQiIkPT/liEjaFWtoXbMYEx/hxm5hUw2p+DobksIlnz0EMPsXz5cpYsWcKFF14IwEsvvcTtt99OY2MjX/nKV7IcoYhID1pbYedOuxWkK8PleKfTTgYePAi1tVjDhnEgHuXd9hB18SgYBqN8AaYG8ynNz4eJE+HNN8HjObGqLx6324jOmmVXo8nZV1AAH/vY0eRuKGRvd7mgrAzmzIHx47Maogw9SvyJiIiIZMnf/d3fAfbFrOMZhkE6ne7rkEREhqx32lv5Y/1B2tMpcpxODOC1tmY2dbRxWXEFFxQWZztEkSHr4Ycf5gc/+AE33nhj57ZrrrmGqVOnct999ynxJyL924EDdqvPnma8+XzQ3Exq/z5Wuw3eCLUQTafxOhyYlsX7HSFeam3k0qIy5l9wAUYkAtu3248NBOw/IxH7z0mT4PAiCekjBQVw1VXQ1AT19XbVX24uDB9uJ3ZF+phafYqIiIhkiWma3d5OJ+n3yCOPMGrUKHw+H/PmzWP9+vXd7nvJJZdgGMYJt6uuuupMXpKIyIDUlIjz1KFaEpbJCJ+fEo+XYo+Xkf4ADuD5pjpqopFshylDkWWBFgJRW1vL/PnzT9g+f/58amtrsxCRiMgHkErZ7R5P1j3AMPiTleallkZ8DgcjfH4qvD6G+fyM8PmxLIvVDXW8GY/CokVwxRVd23mOHGlvu+wyzffLluJimDIFpk61/z2U9JMsUcWfiIiIyCDwxBNPsHTpUh599FHmzZvHypUrWbRoEVu3bqWsrOyE/X/3u9+RSCQ6v25qamLGjBl85jOf6cuwRUT6hfc6QrSmkozw+U9o6Vnk9lATi/JOeysj/IEsRShDTmsrbN4M27ZBMgmFhTB5MkyYAG53tqPrc+PGjeNXv/oVX//617tsf+KJJxiv9mki0s9Emptp2bkDyzQJVlaS7/fbd6RSmVt9AlgWzR43b3gcBF0u8lxd3+sNw6DY46UuHuP/WhqYHszHPXGi/XshlbJ3crlOnlyU05a2LGrjURKmid/ppMLjUyt46beU+BMRERHJonA4zIsvvkhNTU2XRBzAl770pVM+zkMPPcRtt93GzTffDMCjjz7KU089xapVq1i2bNkJ+xcVFXX5+vHHHycQCCjxJyJD0v5YBNfhyufjGYaB3+FgXyyahchkSKqvh2eesduF+Xz2hdwDB2DfPqipgYULh1zy7/7772fx4sX85S9/6Zzx9/LLL7NmzRp+9atfZTk6ERFbx6F69j63Gse+/XjiCcAi4nJRU1JCuc9LWShkz/LL+OAOtpQW0+H1MtzV/Xt8kdtDQyLOzkgHk3Lz7ETfEPud0NfSlsWGthZeb2umPhEjbVm4DQfV/gDnFxQxJSdPCUDpd5T4ExEREcmSt956iyuvvJJIJEI4HKaoqIjGxkYCgQBlZWWnnPhLJBJs2LCBO++8s3Obw+Fg4cKFrFu37pSO8dhjj/FXf/VX5OTkdLtPPB4nHo93fh06MrRcRGSAcx+en9MdE3Dqgo70hXQaXngBmpvtWVCOwxNa8vIgFoMtW+zts2ZlN84+9qlPfYrXXnuNf//3f+fJJ58EYPLkyaxfv55ZQ+x7ISL9U8ehevb898/IbWkj4XYR9/uwDANXMkHw4EGavF7SPj+V7e327LdjP1dEo9DRQdvUSeBy4ejhM4fn8GeW0JEqPzmrTMvimYZaXmltwmkYFLrcuBwO4maanZF2aqIRLi/RLGjpf5T4ExEREcmSr3zlK1x99dU8+uij5Ofn8+qrr+J2u/nrv/5rvvzlL5/ycRobG0mn05SXl3fZXl5ezpYtW076+PXr1/Puu+/y2GOP9bjfihUruP/++085LhGRbGpPJQmlUngdDordnh5XYo/x5/JmWwspy8RlOLrcZ1oWcdNkUk7wbIcsAvv32xV/xcVHk35HHKn+e+89mD59yM0Nmj17Nj//+c+zHYaISEa7//hHgi1thHNywHn0/Tvl9ZH0eMlp76DZ4aAkFsPd3m6/pxsGxOP2+/k55+AeNw6rtbHH57EsCwtwObQgqS+829HGq63N5LvcBI9p0+pyushxumhKxHm+qZ5qv5/hPrWEl/5DiT8RERGRLNm4cSP/8R//gcPhwOl0Eo/HGTNmDP/6r//KTTfdxCc/+ck+ieOxxx5j2rRpzJ07t8f97rzzTpYuXdr5dSgUorq6+myHJyLygTQnE/xfcwPvdoSIm2mchsFIXw4XFZUwLpCb8TGTc4MM8/nZH4syzOvDfTjhkrIsamMxSj1epgXz+/JlyFDV0gKmCR5P5vsDAWhvh3DYrgIcIp5++mmcTieLFi3qsv3ZZ5/FNE2uuOKKLEUmIgJtNXvx1NUS97i7JP2OMAyDaE4AfzTK/nOmMTqYZ7dwtiwoK4OJE6G6mupoGFdbE3EzjdeReXFHezpFjtNFtZJMZ511uMWnidUl6XesI7Og3w61KfEn/cqJ70QiIiIi0ifcbjeOwxeXy8rKqKmpASA/P599+/ad8nFKSkpwOp3U19d32V5fX09FRUWPjw2Hwzz++ON84QtfOOnzeL1e8vLyutxERPqTlmSC/z64l5dbGjGwKHR78DucbAmH+OXBGt7vyNyiOOB08ZmKaqp9AericfZGI+yNRqiNRSnzePl0+XAK3d0kYkR6k9NpXwjurvWsadoVIkOs2m/ZsmWk0+kTtluWlXGWsYhIX2rcugVPMknS6+12H8vpxGFahJub4JJL4IYb4K//Gi67DEaOBIeDsYEcqrx+6uPxjC3IU6ZJSzLJxJwgpZ7un0t6RyiVYn8sSn43ST+wk7o5TvuzptVD23iRvqaKPxEREZEsmTVrFq+//jrjx49nwYIF3HPPPTQ2NvKzn/2Mc84555SP4/F4mD17NmvWrOHaa68FwDRN1qxZw5IlS3p87K9//Wvi8Th//dd/fSYvRUSkX3i5pZF9sSjV/kDnTD6vw0GO08nBeIznGusZF8jtrOg7VoXXx23Vo9kabmdfNIIFVHr9TM4NEnDq1Fn6SFWV3f4tHLZnQB2vowPGjbMr/4aQ7du3M2XKlBO2T5o0iR07dmQhIhGRo8xkEgf02FYcwAKsdPez+VyGg2vKh/F47T5qohEK3R5yXC44PNMvlEoxyh/gspLybo8xmDQnE7zb3kZdPAbAMJ+fqbl5fbYYK2WZmFg4jZ5rp5yGQVJJP+lndPYiIiIikiUPPvgg7e3tADzwwAPceOON/O3f/i3jx49n1apVH+hYS5cu5aabbmLOnDnMnTuXlStXEg6HufnmmwG48cYbqaqqYsWKFV0e99hjj3HttddSXKxh5CIysEXSKTa1t5HncnUm/Y4wDINSj5dDiRg7Ih1Mzs1csex1OJkeLGB6sKAPIhbJoKgIxo+HTZvsGX9+v13hZ5p2G1Cv157vd5KLy4NNfn4+u3btYtSoUV2279ixg5ycnOwEJSJymDe/gKRhQDrdfUW2ZWFg4cq0qOMYw30B/nrYSF5paWRzR4j6w0mvoNPFJcWlXFRYQp7L3dsvoV+xLIuXWhr5S0sjoVSy83Pdm6EWXmxu4JKiUuYXFJ800Xqmcl0ufA4n0XS6x0Vg0XSaEX7vWY9H5INQ4k9EREQkS+bMmdP597KyMlavXn3ax1q8eDENDQ3cc8891NXVMXPmTFavXk15ub0atKamprOt6BFbt27lpZde4rnnnjvt5xUR6S86UinilkmwmwszHocD07JoT3W/0l6kX/jQhyCVgp07obX1aJIvGIQLL7Rbwg0xH//4x/mHf/gHfv/73zN27FjATvr94z/+I9dcc02WoxORYyVNk23hdt7rCNGWSuJ3OpmUE2RKbt6graAfNmcOW195GV84Qiw382IEZyJB0u2mdOa5Jz1ehdfHJyuGc2kyQXMygQGUeXzk9tBycjB5tbWZZxvr8DocVPv8OA7/HjQti+ZkgtUNdbgNB3MLis7K83ekUqxpquf1tmYOxqJEzDSVXh/VPj++436GU6ZJyrKYlVd4VmIROV1D491CREREZAhYsmRJt609165de8K2iRMnag6BiAwaPqcTl2GQME38GVbbpy0LDAOfc2iNuk9bFnujYeoTcZwYjPAHKPdoVXq/5vXC5ZdDXR3U1EAyaSf9xo7N3P5zCPjXf/1XLr/8ciZNmsTw4cMB2L9/PxdffDH/9m//luXoROSIpkSc39bvZ080gmVZeBwOUpbFu+1tlHt8fKK8ilGBwVel6/L68J4zDWv9etzRKEmf7+iiDcvCmUziTSToGDmSkgkTT/m4hW7PkJsxHEmneKmlEZfDQfFxcwwdhkGJx0t9PMb/tTQwIy8fr6N3Z95u7Wjn4ZrtNCUS2M1Z7c+We6IRDsZjTM4JUub1AZAwTWrjMUb5c5jaTTcJkWxR4k9ERESkD82aNeuUL7a++eabZzmaIaquDrZsgf377RPyESNg0iQoLc12ZCJyBvJcbiYEgmwItZDncp3wXtucTFDocjMuMHQSJ3XxGH88dJB90QhJywTA73QyJTePq0orB23lxaBgGFBZad+E/Px8XnnlFZ5//nnefvtt/H4/06dP50Mf+lC2QxORw6LpNL+u28/uaJhKrw/PMd1G0pZFbSzGr+v2c1PVyM7EyWAy9rJFbIvH4N13yWnvIO1wYBngSqdJuVx0DB/OxM/+VbbD7Pe2httpTsap9Pm73afY7aE2HmdruL1X27M3JGL8v73baUzGKXC5cR3+GU6aJm3JBHHT5N2OEKNSKdwOJ4YBY/w5fKpiuD5TSb+jn0gRERGRPnTttddmO4Sh7b334P/+D8Jh8B2+4FBXB5s3w6WXwoQJ2Y1PRM7I/MJidkfD7I9FKfV48TmdpEyT5mSClGXx0eLyIXNhpjWZ4InafRyMRyk//L2wLIuOdIo32lpImCZ/VTnihHmIIv2VYRhcdtllXHbZZdkORUQy2NwRYk80zDCvD/dxIwachsEwn4990ShvhFq4snTwLWownE4mXvtJmqdNp/719aTq6+25fnn5FE2fzpgZM3G4B/dsvt7QlkwCBq4ePp8cSci1JpO9+tyrG+poSia6JP0A3A4HRR4vsXSatlSSSDrNJQXFTM3NY3xOsEuSW6S/GBpnPCIiIiL9xL333pvtEIauhgY76ZdO2xUUx7TfoakJXnwRysqgoCCrYYrI6RvuC7C4oppnG+vYH4+SSsQxDIMit4eLCkuYl392ZsH0R++0t3EwHmW4z9+Z3DMMg6DLjctwsKWjnT3RMGOHUAWkDDzr1q2jqamJj33sY53b/uu//ot7772XcDjMtddey8MPP4zX6+3hKCLSFza2t+A0jBOSfkc4DIOgy8Wm9jYuLSrL2JZ7MCgaO46iseOyHcaA5TAMLHoeR2FZFhZWry9eeq2tGYdBl6TfsXEFXC5SlkXcMrmytHLIzFyUgUnpaBEREREZGrZutSv9CguPJv3A/ntxMYRCsH179uITkV4xKpDDrdVjuKVqNIsrR/C5YSNZMmIc5xcUD6m5du+0t+FzODJeFPM7nSQsk52RjixEJnLqvvGNb/Dee+91fr1p0ya+8IUvsHDhQpYtW8b//M//sGLFiixGKCJgJ2IaE4mTJvP8TicxM01HOtVHkclAM9znx+1wEE2nu90naqbxOpwM76Ed6AeVME3CqRSek3xW9DgMEpZJUyLea88tcjYoLS0iIiLSh4qKiti2bRslJSUUFhb2eBG6ubm5DyMbAmprwePpmvQ7wjDA5bLbforIgOc0DEYHcrIdRlZF02lcRvdrfR1ALG32XUAip2Hjxo1885vf7Pz68ccfZ968efzwhz8EoLq6mnvvvZf77rsvSxGKCNgV5R6Hg1iq+2QN2LP+DAzcQ2ghjnwwo/w5VPv87IqEGe7z4zjuZ8W0LBoSCSbk5DLCF+i153VhV/UlzJ6rDdMWGKD2ntLvKfEnIiIi0of+/d//nWAwCMDKlSuzG0x/FgpBY6P997IyyO2FVnQOh93WszuWZe8jvSqaTlMTi5C2LErcHko93oFVdRWP20njdNpuA1tUlDl5fDzThEOHoKMDvF67vazaAUkfKvN62Rpuz3ifZVmYQKFmDUk/19LSQnl5eefXL774IldccUXn1+eddx779u3LRmgicpxJOUHWNjdgWVa3n/VaU0nGBnLJd+n3j2TmMAyuKh3GL2tr2BeLUuh2E3S6sICOdIrmRIJyr48rSyt79ZzC4XAwLpDLxvZWLNPE6Oa8MG6mGe4LUO5Ri2np33TmKSIiItKHbrrppox/l8OiUXjlFbvlZiRiJ1hycmDSJDj/fLti73SNHAl799oJvuNPEk3TvlVXn1n80iltWbzc0shrrc20pBKYlkXA6WR8IMhlJeUU9/eTZdOEt96Ct9+2E9GmCT6f/XM0f77dMrY7tbX2z3FtLSQS4HTa7WRnz7Z/lgdS4lMGrFl5BWwLtxNJpwg4u576NyUT5LncTMnNy1J0IqemvLyc3bt3U11dTSKR4M033+T+++/vvL+9vR23EtiDSsI02RpuP/z+lSbocjE5N4+xgZweq5jl7NsWbmdNUz010QgA1b4AHykuZ2KuvahxerCAN9paaEomKMnwOa8jlcIAZuf13PVEMktZJjvCHbzf0U5HOkXA6WRCTpCJOcFBV31W5fPz18NG8mLzIbaGO9iXjAKQ43RxXn4RHyoqpdzr650ni8dh1y7Yu5cPOyw2F+XSYUEwQ6eYSCqFgcGHCktxDLLv+RkzTTh4EHbsgPZ2cLvtc+sxY8Dfey1Z5dQp8SciIiKSZYcOHeLQoUOYZteWa9OnT89SRFmSTMJzz9knC8EgHFnh39EBr79u/7lokZ1EOR0TJsA779hVWKWlR6v70ml7W0kJjBvXO69F+FNjPWtbGvA5HFR4vDgNg450mo3trTQlE9xYNZK8/rza+9VXYf16+6S1uNj+uYtEYMsWaG2Fa66xf06PV18PTz8NbW12crCoCFIpaG6GNWvsxPOUKX3+cmTomZKbx6y8Qja0NRNypAi6XJiWRWsyhcfh4LKSsv6fgJch78orr2TZsmV861vf4sknnyQQCHDxxRd33v/OO+8wduzY0zr2I488wre//W3q6uqYMWMGDz/8MHPnzu12/5UrV/KDH/yAmpoaSkpK+PSnP82KFSvw+XynfUzpqjYW5bf1BzgYj2JZFk7DIGVZvN7WzGh/Dp+sGE6R+wwWgclpMU2T/9y3i1famoibJg4MDGBXNMyrbU2cn1/MF6vHUOXz89GScp5pqGP/4Uotr8NByrRoSSVJmxbnFxYxLZif7Zc04DQl4vyu/gB7omHSloXLMEhbFhtCLVR5/XyyoopK7+BKrlR4fSyuHEFDIk7j4Xl6pR5vxqTyaTtwwP583tQElsV5LhcLRg7jhYoSmlMpAh4vLqeDtAURM4Vl2Qurriit6L0YBoNoFP78ZzuBmkzaXU7Sadi82T4XuvRSe/Gk9KkzSvwlEgl2797N2LFjcaltjYiIiMgHsmHDBm666Sbef/99rONaUBqGQbqHgeaD0q5d9q2kpGtlX16e/fX27XbCZNSo0zt+Xh5cdhk8/7ydnDGMo60/S0rs+wK9NydiKDsUj7G+rZmg00nBMRfogi4XfqeTfdEIb4ZauKSoLItR9qClxU4S+/32z80ROTl21V9dHbz3nl2Ferw337QTg5WVR1cJu912srmx0U4mjht3ZtWrIqfAZTi4tnwYVT4/G9paaE7GMTCYmBNkXkERk3IyJK5F+plvfvObfPKTn2TBggXk5uby05/+FM8x75+rVq3isssu+8DHfeKJJ1i6dCmPPvoo8+bNY+XKlSxatIitW7dSVnbi76Zf/OIXLFu2jFWrVjF//ny2bdvG5z//eQzD4KGHHjqtY0pXrckET9Ttoy4eo9Lrw31MNU3cTLM90sGva/fxuaqRJ1Qxy9n1X7U1vNjSiMswKHa5O1sgWqZJh5nmpZZGPIbBrSPGMi+/iHyXm3WtTdTEIrQmkzgNgwqPj/Pyi5idX4hT1X4fSCSd4ld1+9kTDVPh9eJ1HF0EmTRNamIRflW7n5uqRnb53D1YlHq8lJ6NhUpNTfDss/ZivZIScLlwALdEkpQfauHPwQANWETcHhyGQZHLw4WFxXymohqXqv2OSqft5OnWrfaix2Or+9Jp+/znuefg6quhQgnTvnRavykjkQh33HEHP/3pTwHYtm0bY8aM4Y477qCqqoply5b1apAiIiIig9Ett9zChAkTeOyxxygvL1fLm+3b7URJpoSIz2cnY3buPP3EH8Dw4bB4sX2cujr7+Sor1YKkl22LdNCRTjHCd+L31GUY+J0ONoZaWVBY2j9/7vfssav7Mp2cOp32z+OWLTB3bte5kO3tdjvZvLzM7TwLCuyLDPv32z9zImeZy3BwQUExc/OLaE8lcRgGQaerf/6/E8mgpKSEv/zlL7S1tZGbm4vzuKr/X//61+Sexhzghx56iNtuu42bb74ZgEcffZSnnnqKVatWZbym9corr3DhhRdy/fXXAzBq1Ciuu+46XnvttdM+pnT1ZlsLtfEYw33+ExJDXoeTYV4fe6Jh3usIcV5+UZaiHHpaEgn+r7kBp2GQd1xbXcPhIOhwEEomeaW1mWsrqijx+Jicm8eknCD1iTiRtF1lXuk98d9VTs2m9jb2RsNUeX0nJJzcDgfDfX72xSK8FWrl0mItMjhlmzbZ55fHLtYDHMDVHTGuag7xrpmidd555FQNZ1qwYNC1VO0V+/bZ59ZFRfY50rGcTigrs8cfvPOOEn997LR+Wu+8807efvtt1q5d26WlwcKFC3niiSd6LTgRERGRwWzXrl3867/+K/PmzWPUqFGMHDmyy23ICYfttiDdcbnsZMyZCgRg2jT46Edh4UKYOlVJv14WSdszXLpLLngdTqLpNKnjKl37jVjM/rO7C1Rutz27L5U68XGplH1/Ji6XPf/iyPFF+ojTMChwe8hzuZX0kwEpPz//hKQfQFFRUZcKwFORSCTYsGEDCxcu7NzmcDhYuHAh69aty/iY+fPns2HDBtavXw/Yn+GefvpprrzyytM+phyVNE3eam8l4HR2mxxyOxw4DYM321r6OLqh7YXmQ0TSaXJ6aLWf43QSMVP8uamhc5thGFR4fYwJ5DLcF1DS7zRZlsWboVbcDqPbKjOnYZDjdPFWqIXkcaMjpBuRiL3oNDe328/7Do+H6W3tfGjnXmbnFynp153t2+3KvuOTfkcYhr0octcue2669JnTqvh78skneeKJJzj//PO7nDRMnTqVnTt39lpwIiIiIoPZRz7yEd5++23Gaa6cLS/PHgjenVQq80w16XdyD7fgMi0LR4aT6aiZptTtxdVfLwIdaflqml0r+o5IJCA//8REtd9/NCnozdCSKJm0V76qpayISNY0NjaSTqcpPzJL+LDy8nK2bNmS8THXX389jY2NXHTRRViWRSqV4vbbb+frX//6aR8zHo8Tj8c7vw4N4Qui4XSKcDpNwNHzHOeA00lzKkH68Pw/OfsaE3Es6LG1odPhAAyaEvFu95HTk7IsWpMJ/I6eL+H7HU7C6TRRM92lTa50IxyGePzk55Yej10VKN1rbj75CIMj3Xs6OrqOUZCz6rQSfw0NDRn7k4fDYa0eFBERETlFP/rRj7jpppt49913Oeecc3AfVyV0zTXXZCmyLBk/3p4NEIuduGIwErETKmPHZic2+UAm5ebx5+ZDtCSTFB93Ipg0TRKmybn5hf333GH0aHueXyhkt+c8ViplJ/YmTz4xKZiba7fwfOcd+/HH3m9Z9glvUZHdclZERAaMtWvX8uCDD/L973+fefPmsWPHDr785S/zzW9+k+XLl5/WMVesWMH999/fy5EOTC7DgQNI03MngLQFHsM4vfZlclrshJ+FZZqds/0yszT37CxwGIY9+93quZLPxMIwwEE//Wzd3ziddiXaySokTbPnjjRytKNJT0zT/n7rPaJPndZP7pw5c3jqqae44447gKMtfH70ox9xwQUX9F50IiIiIoPYunXrePnll3nmmWdOuM8wDNLpdBaiyqLRo2HiRHj/fbtyKifH3t7ebq/InDEDqqqyG6OckiK3h4sLSni+qZ66eIwClxunYdCRTtGWTDEuJ5dZeQXZDrN7eXkwZw68/DI0NNhfO512ArqjA6qrYcqUzI+dPduuXK2rs6sCvV670q+tzU5oX3CBLiCIiGRRSUkJTqeT+vr6Ltvr6+up6Gb+0PLly/nc5z7HrbfeCsC0adMIh8N88Ytf5K677jqtY955550sXbq08+tQKER1dfWZvLQBK8fpZLgvwLZIO3mubtplY1cGnpNb3H8XDg1CU3PzWNN0iLhl0U0jP2LpNE7DwZQcVfL0NqdhMCGQy/q2Zorc3VdVtSVTTMoN9tiSNeva2+052rGYvaBz+HAoLu6+tf7ZlJ9vL8ZraOi+RaVl2eegZzJffigYOdL+d7Ws7v8t29vt73lxcZ+GNtSd1hnngw8+yBVXXMHmzZtJpVJ897vf/f/Zu+8wucrz4P/fU6bvzGyv6gV1JBCSQFSDQFSDcWzsYEOwg2MnxImV2C/EBgecmMQkWLHDG2IbjPnFeY3tYGJjI8ACgekgmnrv2l6m13PO749Hu9JqZ1dttbPl/lzXXNKeOXP23p2Zs2ee+3num40bN/Laa6/x0ksvDXaMQgghhBCj0l/+5V/ymc98hrvvvrtPaagxyTDgssugrAw2boSuLrU9FILFi+Hss2WW4AhyUXkVAdPk9a52WrMZbMfBb5hcUF7BR8qr8RvDPPl19tlqIOD991UJG9tWCemzz4ZFi/ov11leDtdcA2+9BXv2HO5dOX68SibK4IEQQpywRCJBoHtC0Clyu90sXLiQ1atXc8MNNwBg2zarV6/mjjvuKPiYZDKJftQ1SHfPQcdxTuqYHo8HT6Gy0GOQpmmcHS5lezJOPJ+npMAEma5cFo9usGA4TxwahRaFyqh1eziQSanVlke9D2zbJmHlqfV4WVJaXqQoR7f5oVI+iEXoyuUoLdBHOp7PY2gaZ4eGaTWNXA7eeEN9vkskDm/3etV18UUXqaoZQ8kwVJ/31asLV5sBNWkvEFBVaUT/pk2Dd99Vn5cKJfYyGVUtZfbs/vugi9PipD5tX3DBBXzwwQfcf//9zJs3j+eee46zzz6b119/nXnz5g12jEIIIYQQo1J7eztf+cpXJOl3JLcbzj0XFixQHx40TX2AOFbfADHsaJrGOeFyFoRKacqkydsO5W73gDP5hxVNUwMCM2eq2cCWpWaqHs/ARGUlXH21Sl4nEur1W1EhiWshhDhJNTU1fPKTn+Rzn/scF1xwwSkfb8WKFdx6662cc845LF68mJUrV5JIJLjtttsAuOWWW2hoaOD+++8H4LrrruPBBx/krLPO6in1effdd3Pdddf1JACPdUwxsDklYRaXJni9q4OElafU5calaWRtm45cFoBLy6uZ5JM+uUNJ13U+N24y/7ZnGx35HD7dwHfoeiZl26Rsi5Dh4nPjJkupz9Nkii/AhWWVvNjRQsrOU2a6ces6OcehM5cl5zicV1rOnJJhuOLStmHNGli3TiXRamrU9bDjqEoamzapa+Vrr1UT7IbS7Nlw4ICKweNR/f5MUyWqIhH1/wsvhKqqoY1rpCkthQsuUM9zd8UTr1d9dorFIJWCM86AM88sdqRjzgkn/nK5HH/2Z3/G3XffzQ9/+MPTEZMQQgghxJhw44038uKLLzJV+tb15fVCfX2xoxCDwNR0xnlH8CCdYUA/ZdqOqbS0b49AIYQQJ+y//uu/eOyxx7j00kuZNGkSn/vc57jllluoP8lrhZtuuonW1lbuuecempqaWLBgAatWreqZjLV3795eK5u+8Y1voGka3/jGNzhw4ABVVVVcd911/OM//uNxH1MMzNA0rqmqp8rl5a1IB63ZDJbj4NI1Grw+lpRWcFawdHiuaBrl5gTD/M2kGfyscS87U3G68nkA3LrG7ECIT9aOY1YwXOQoRy9N07isopoyl5s3u9ppzKoJdaamUeX2sKi0nMXhcvTh+N7Yu1cl1kpLeyf2NE0lAj0etc+GDaoyxlAyTVi2TCX21q9XvbhtW61Ka2hQE1GnTRvamEaq2bPV5/f33oPGRpU41TSVBDz7bHWTibxDTnMcZ+DOuQWEw2Hef/99Jk+efDpiOq2i0SjhcJhIJEIoNAxnQgyhSXf+ttghHLfd3j8udggnZN7kCcUO4bitu3VdsUMQw8RIOifAyDovjKRzAsh5YSivFf7xH/+RlStXcs011zBv3jxcR5W++PKXv3xav/+pGgvXVXnHJm3ZeHQdl8xiFkIIIU7IYF8rtLa28v/9f/8fjz32GJs2bWL58uV87nOf46Mf/SjmCO+fOhauq45XzrbZn06RsS18h/r/GcMxqTEG7Uom2J6MAzDVH2CKf4hLNI5xluOwP50kZVl4dINxXt/w/oyyapUq8VlX1/8+7e2qtcOnP128UpDZLDQ3q7Kkfj9UV0uljpPhONDSolZzmqb6PUpJ60F1ItcKJ3VVdMMNN/DUU0/xla985aQCFEIIIYQQ8KMf/YiSkhJeeumlPn2SNU0b9om/0SyWz/F2VwfvxbpIWRYuXefMYJhF4XIq3fLhRQghhCiGqqoqVqxYwYoVK/j+97/PV7/6VX73u99RWVnJF7/4Re688078/fVgFSOGS9eZ7B+cno5icE32B+S5KSJD05joG0G//8bGY5fwDAQgHle3srKhietobrfqxy1Ojaapcq5iWDipxN/06dO57777ePXVV1m4cGGfBssySCWEEEIIcWy7du0qdgiigGg+x08P7mV3KoHfMPDqBlnbZk1HK5sTMT5VN546zxD3oBBCCCEEzc3N/OQnP+Gxxx5jz549/NEf/RGf//zn2b9/P//8z//MG2+8wXPPPVfsMIUQQgghiuqkEn+PPPIIpaWlrF27lrVr1/a6T2anCyGEEEKIkWxNRwu7UnHGeXyYR5R4KXNc7EuneLa1mVsbJkqPGSGEEGKIPPnkk/z4xz/m2WefZfbs2fz5n/85n/nMZyg9oo/q0qVLmTVrVvGCFEII0VtdnSr1OVDP60RClfoskbKxQgymk0r8yex0IYQQQoiTs2LFCr71rW8RCARYsWLFgPs++OCDQxSV6BbL51gfixI2Xb2SfgC6plHpdrMrleBAJsU478gqJWY5DjuTcbYkYqRsi1LTxeySMPUeryQxhRBCDGu33XYbn/rUp3j11VdZtGhRwX3q6+v5+te/PsSRCSFOJ9uyaNyzi86NG3Ha20HXMMdPoGbOXMqrqosdnjhK3rHZloizMR6lM5fFO6GOM9qamZ3NUFKoXUI+D5kMzJ5dvP5+4qTE83k2xCNsTcbJWBblLjdzgmGm+gOYmvRHHA5OufOx4zgAMlgghBBCCHEc3nvvPXK5XM//+yPXVsXRlcuRsiwq3O6C9/t1gzY7S2cuxzjvEAd3CtKWxa9aDrAxFiXr2BiahuU4vNbVztLSCi6rqEGX15wQQohhqrGx8Zi9+3w+H9/85jeHKCIhxOmWSafY+rvf4tu+nZJcjrxpojkOxp59tL77Lm1LlzJ98blouiQZhoOuXJYnmw+wIxnHchzcuo5laKyfPpk/dHRyfVsX03QTdB0cB5JJiERgwgSYM6fY4YsTsDUR49ctB2nLZjA0DUPT2JFMsDbayXR/kBtrGwiZksgttpNO/D3++OM88MADbNu2DYAzzjiDr371q3z2s58dtOCEEEIIIUabF198seD/xfBg6hq6ppF3bNz0HUSwcNA1DdcIS5I929bE+9Euqtxu/Ib6COA4DpF8jjUdrZS53JwTLi9ylEIIIURhwWCQxsZGqqt7r/Bpb2+nuroay7KKFJkQ4nRwbJutz64iuGkTqZIgmbLSw3faDu5oFO3ll9nl8zFl/llFi1MoWdvmf5r3szURp9bjwaMbPfdZbg9Nms4vXS5u2baL+lRG3eH1wqxZcNFF4JP+6SPF/nSSXzbtJ2HlafD6MI74XJy2LDYmojhNDp+pn4hLkvJFdVKJvwcffJC7776bO+64g/PPPx+AV155hS9+8Yu0tbXxla98ZVCDFEIIIYQYC/bs2UMikWDmzJnocpFcFDVuL/UeL3vTyZ4E2ZE6cznKXW4m+gJFiO7kdOSyrItFCJuuXj+TpmmUutyk7DRvdnVwVqis1wc3IYQQYrjorjZ1tEwmg7ufVfpCFJRKwa5dEI+rlUe1tVBfr/4vho22pka8W7eSDgSw/UeV2dA1sqVhvG3t5F59FStvY1gWeDxq9VhZWXGCHsM2J6JsTySo83hxH/VeMgyD+poa9pYEeKuymhtyjirrOW4cVFSAfP4YUd7s6iCSzzHB6+tTpchrGNR5PGxLxtmajDGnJFykKIee7TjsTSXZm05iOw4hl4sZgSCBAmMKQ+WkvvP3v/99/uM//oNbbrmlZ9tHP/pR5syZw9///d9L4k8IIYQQYgCPPvooXV1dvXr8feELX+CRRx4BYMaMGTz77LOMHz++WCGOWbqmsbSskoNN+2nJpKlwezA0Ddtx6MrlyNg2l5aX4zOMYx9smNiXShK38ozzFp5JW2q6aM1maMtmqPGMoPqlQgghRr3vfe97gJqs8qMf/YiSkpKe+yzL4uWXX2bmzJnFCk+MJLYN778P772nygtqmio36HJBXR1cfDFUVRU7SnFI66aN+DNZsqFQwft1y6Ykm6Vk5y7ynREMv189n34/TJsGF16oEoFiSHwYiwD0Sfp10zSNsMfDBo/GZROnEZQykCNSVy7LpkSUUtPVb2sSj27gOA4fRiNjJvHXlEnzdMtB9qaTZGwbDdDQKHW5WFpawflllUVpq3FSib/GxkaWLl3aZ/vSpUtpbGw85aCEEEIIIUazH/zgB/zZn/1Zz9erVq3ixz/+MY8//jizZs3ijjvu4N577+VHP/pREaMcu+aWhEhX1/FCewsHM+meVQZB08WyimrOL6sscoQnpnuNRH8fNbRD+9gUXk0hhBBCFMt3v/tdQK34e/jhhzGOmHjjdruZNGkSDz/8cLHCEyPJO+/Aa6+pRF91NXS/ltJp2LsXfvtbuO46tQJJFF0+GsXWNdD7XsHqtk1lSwv+RArHgXSwBE9VtUr8JRLwwQfqeV2+XD3f4rRrz2bxGQOvmvUZBp25HLF8XhJ/I1TcypOxbCqOsdLeaxi057JDFFVxtWYz/L/GvTRl0lS7PT0ThC3HoSOXZVVbEznb5tLKmiGP7aQSf9OmTePnP/85f/d3f9dr+xNPPMH06dMHJTAhhBBCiNFq27ZtnHPOOT1f/+///i/XX389N998MwDf/va3ue2224oV3pinaRqLwuXMCoTYmowRy+fx6QZnBEoodY28cmI1HvUBJGFZlJh9L/+jVp6wy0WFS2ZFCyGEGF527doFwEc+8hGefPJJyqSEnzgZnZ3w7ruqp1j4qBUoXi/U1EBTE6xdC1dcUZwYRS+6y0SzC09K88cS+BNJsi4XBg5adz85TYOSEpXs274dpk5VPeTEaefSNax+SjJ3sxzVK11aC4xchqaha8f3XLvGyPP8h45WGjNpJnh9vVb1GZpGldtDZy7Lq13tzA2GqR7i6jonlfi79957uemmm3j55Zd7evy9+uqrrF69mp///OeDGqAQQgghxGiTSqUIHVG25rXXXuPzn/98z9dTpkyhqampGKGJI5SYJmeHRv4AY63byzR/CR9GI3h0vVeT9ZRlkbYsLi2v7rc0jxBCCFFsL774YrFDECPZ9u1qJVhdXeH7dR2CQdi5E7q6oLR0KKMTBfjGjcf5cB3kLTCPKLHvQEkshqNpYFvYpoH/iBLAwOESnxs3wsyZ0kNuCMzwB9mTSuI4Tr8lICP5HPUeH5VumWw4UlW5PVS5PbRk0/22vnAch4xtM6MkOMTRDb2uXJaNcVX6tL9SnqWmi73pFOtjES4dCYm/j3/847z55pt897vf5amnngJg1qxZvPXWW5x11lmDGZ8QQgghxKgzceJE1q5dy8SJE2lra2PDhg09k6kAmpqaCB89G1mMSZbjsDMZZ08qSd5xqHS7mVUSOqEm4ZqmcU1VHfF8nl2pBKam4dZ10paNpsFZoVLOKx1+Za3asxk2J2JE8zl8usH0QJB6j7ffwQQhhBCjy4oVK/jWt75FIBDo1Re5kAcffHCIohIjUksLmObACaBAQO03AhJ/juOwP53iQCaF7TiEXS6m+4OjahLX+Flz2Pb66/g6O0lVVPSU/NRtG1cuh6XpmPkc2YoK3IV6+fn90N4O+byU+xwC84Jh3oh00JrNUl3g+UhaeSwHFobKi7riL2NbbE3EieVzGJrGBJ+fWrd8vjhepqZzTriM/20+SNKy8B+V/HMch5ZshrDpYu4Y6O/Xms2QtC3qBkjoaZqGS9M4kEkPYWTKSSX+ABYuXMh//dd/DWYsQgghhBBjwq233spf/MVfsGHDBl544QVmzpzJwoULe+5/7bXXmDt3bhEjFMNBNJ/jyaYD7EjGyTo2oPrxVbo8XFdTz4zA8c+iLHW5+WzDRNbFIqyPRYlbeab43cwPljKrJIipDZ+BIsdxeK2rnTUdrUTzuZ4ehGs6WzkrWMrVVXW9Vi32cxDIZNS/Xq/M9BZCiBHovffeI5fL9fy/PzJgK8aS5kyaZ1qb2JVKkLEtNDQ0DardHi4qr+KsYOmoeE+4PR5Kr1hO7OnfEGhtJV0SwPJ40fIWei6HZtukg0FCdfXFDlUA1R4vV1bW8nTrQfalUpS7XHgMA8ux6crlyNo254TLOTtcWpT4HMfhzUgHr3S20Z7NAg4Oqu/gVH8JV1XWUiErEY/LwlAZe1NJ3ot1EctrlLpcGJpO2rLozGXxGQZXVdXKys5h4KQSf7/73e8wDIPly5f32v7ss89i2zZXXXXVoAQnhBBCCDEafe1rXyOZTPLkk09SW1vLL37xi173v/rqq3z6058uUnRiOLAchyebDrAxEaXW7cF7RJPwpkya/2naz580TKLe6zvuY/oNkyWlFSwZhqv7jvRBLMKq1ibcusb4Q70SHMchbuV5vasdj25wZVVt4Qc7DuzYAevXQ3Oz2lZdDXPmwPTpkgAUQogR5MjynlLqU5ySmhrYvFldJ/R3LZBIgM8H5eVDG9sJaMmk+enBvTRn01S63VTrbjRNI2fbtOeyPNV8gLztsLh0+P4MJ6Jh6jSab/w4LW+9gWf3HtxdXTiaRtbjwW0YhKZMwdVf/+1kEiZOVCs9xZBYGC6jxDR5vbOdPekEXfkcuqZR5fJwTriMxaXlRZts+FJHK8+3N+PSNOo8Hkxdx3EcEpbFuliEzlyWz9ZPHJH93IeaS9f5WE0DDV4f70Q6aMtmsXFw6zozS0IsLa1g+glMUB3JqtweAoZJLJ/r97XjOA45x2HcCXxuHywndfa78847+ad/+qc+2x3H4c4775TEnxBCCCHEAHRd57777uO+++4reP/RiUAx9uxKJdiRjFNzRNIPVJPweo+XvekU70Y7TyjxNxJYjsMbXe04OFS4D5dM0TSNoOki7zi8G+1kaVkFIfOosk2OA2+/DW++qco6dfd72bMH9u2Dzk5YvFiSf0IIMQL913/9FzfeeCN+v7/YoYiRaNo0eOcdiEQKl/G0bYjFYN48OKIP93DzYkcLTdkUE7z+Xv2kXLpOrcdLSzbD6vZmZpYE+14njVA14ydQM34CnW1tJDrb0XQDf2cX3j/8QZWEKCSTUf/OmiXXfUNsRiDIGf4SWrIZ4lYel6ZT5/Eeu1rHadSSSfOHzjZ8hkH5EckZTdMoMU18hsG+dIpXOtu4tlpWkB4Pl65zflkli8PlNGbS5BybEsOk2u0ZFSuOj1epy83sQIjXu9oI9dPnrzOXo8QwmRsc+tKnJ/Wu27ZtG7Nnz+6zfebMmWzfvv2UgxJCCCGEEGIs251KkHXsgk3TNU2jxDDYFI9hO/2NeIxMbdkMTdk0pf30YgmbLmL5PHtSyb53NjerQT23G2prVeKvpETN8vd41H2Njaf5Jxg9unJZXu9q57m2JtZ0tHAgncIZZa83MYLF4/Dhh/Dqq/DWW9DUpJL/YtT6yle+QnV1NX/8x3/M7373OyzLKnZIYiQpLYVzzoFc7nDfN1DnjVRKXUNUVcGiRUUNcyBt2QxbE3HKXe6Cg8sAlS43kXyODbHoEEd3+pVVVjJu+gwapk7DO38+TJ0KbW0qYdt9/ncc9XV7u6r0MHVqcYMeozRNo8bjZaq/hAk+f1GTfgDrYxHiVp6yfpLhhqYRNk3WxSLE8rkhjm5kc+k6E3x+pvpLqBmjvdgvLK+kwetnXzpFwsr3fF7KOzYt2Qwp2+LCskqqilD69KRW/IXDYXbu3MmkSZN6bd++fTuBQGAw4hJCCCGEEGLMOlZCT9c08tj9TnQeqWzHwXYcjH4+NKqtDlah38+2bWrwrq6u733BoEr6bd0K9cN7Jm/SyrM5EWN/KgVAvdfL7JIQfmNoSlU5jsNbkQ5Wt7cQPTT44QAvGa2cWVLKNdV1uIs8gCPGuI0b4bXXIHpoYNtxVHJ/+nT4yEdU8l+MOo2NjaxatYr/9//+H5/85Cfx+/184hOf4Oabb2bp0qXFDk+MBAsXgssF776rEkagzh9uN0yeDBddBGVlxY1xAM3ZNAkrz3hX/9UedE31+zuYSQ1hZEXgcsEVV0AgoK7/mpoO3+f3q+d66VK1nxjz9mZSuHVtwKRU0DBpzmZozWYIjpLVsmJoVLo9fLpuPL871Hu13c6ioYEG5S43F1RUsqRI5ZdP6tPj9ddfz1//9V/zq1/9iqmHZk9s376dv/mbv+GjH/3ooAYohBBCCCHEWFPp8qADecfBLPAhNZ63mBkI9psgG6nKXG6ChlrV53H3Xe2YtC08ulF4xmRbmxq8K/Q70TR1X3v7aYh68OxPJ/mfpgM0ZVK9kro1bi8fq21gku/0T7LcGI/yu9YmdA3GHdVj8c1IOx5D5+qqAslVIYbCnj2wZo0qy1dTA7p+eMXO+vVgGLBsWbGjFKeBaZpce+21XHvttSSTSX71q1/x3//933zkIx9h3Lhx7Nixo9ghiuFO02D+fJg5E3bvVivDDENVCaitHf4lIZ3+K1seaZj/FIPH64XLLlNJvn37VHlPj0f19RvG5VpFETgOx3xnDPf3vxjWqj1ebm2YyP50in3pJHnHIWy6OCMQLFjBZ6icVOLvO9/5DldeeSUzZ85k3LhxAOzbt4+LLrqIf/mXfxnUAIUQQgghhBhrZpYEqXR7aM6kqT+qbEosn0PX4Ozw8J2VfrK8hsFZoTDPt7cQPJTk62Y5Dm3ZLLMDIeo93r4PdrsPl+4qxLKG9UqgeD7PL5v205RJU+/1YmpqVZ3lOBxMp/mfpv18ftzkfhvHH6+sbbMlEeNAWq0GqPV4mVUSxKMbOI7DG5F2co7NOM/hFQVH9lh8L9rF0tKKU45DiBPmOPDBB2pwt7b28HZNUys8bFut/Dj7bCgvzsxqMTT8fj/Lly+ns7OTPXv2sGnTpmKHJEYSjwdmzCh2FCes0u3BbxgkLIsSs/Bwru04WA7UFLpOGq1KSwv3bRTikHqvj42JGI7j9LvqL57P4TfMXj0AhTgRmqYx3udnvG/49CI+6VKfr732Gs8//zwffPABPp+P+fPnc+GFFw52fEIIIYQQYpjLZrNks9k+23VdxzxiYKLQPt00TcN1RDmeE9k3l8v123vsdO0L4D4iiXQi++bzeWzbHnBfv2Hy0ep6fr5/N7uiUfyGgaFBMm+ja7CktILpbm+vD7DHOq7L5TqpfS3LGrCX0onsa5om+qEykf3tuygQZm8sytZUEtMw8BkGmVyOZDZPg9fLstIKcrlc3+NOngxbt2Jls1hHl6LM5yGbhfHjMW27JwbbtskPkCw0DAPj0CzN073v+13tHIjFqPd6IZen+9G6YdDg9bIvnWJdLMKSkv4bwx95XMdx+vyemjJpftW0n4OZNLYGummiA7VuL9dVVOPTDXZHo5ToOvkj3oOarmOYJmHTxb5Ukm2RLuaHSgvGcCLvezlHFN73eM4Rx7vvyb7vh+U5Ih6HvXvVKo98HlPXD+9r21geD3R2qpU8JSXHf9wBYhhO54jj2bfQ+/5k9z3y/Xkq+w70Xj1R3Sv9fvrTn7J69WrGjx/Ppz/9aX75y18O2vcQYriqdnuY6i9hXSxCwDAKJjA6czlCpovZJbLiTYhuc0vCvN7VTjSfJ1yg/KvtOHTl85wXloltYnQ5ocTf66+/Tnt7O9deey2apnHFFVfQ2NjIN7/5TZLJJDfccAPf//738XiGvlmhEEIIIcRIY1kWjz32GKtXr6alpaXPIOsLL7xQpMhOzL/+678WvP6bPn06N998c8/XDzzwQL8Dh5MmTeJP/uRPer5euXIlyWSy4L719fV84Qtf6Pn6oYceoqurq+C+VVVV/MVf/EXP1z/4wQ9obW0tuG9paSl//dd/3fP1j3/8Yw4ePFhwX7/fz9e+9rWer3/605+ye/fugvu6XC6+/vWv93z9xBNPsG3btoL7Avz93/89ANMDQare+YCN779HazaDjUPQcFHn8fKe28P7msbf/d3f9SQBnn76ad5///1+j/vVr361px/3s88+y9tvv93vvn/9139N6aHZ06tXr+a1117rd98///M/p7q6GoA//OEPrFmzpt99b7/9dhoaGgB44403eP755wvul3dszv34jTQF/HTls8Q3b6Pj9Tdxebz8UO9bLuWP//iPOWPqVKirY91bb/HUzp2qfBeolX7JpOrzF43yCZeLOXPmALBp0yZ+8Ytf9BvvDTfcwIIFCwDV2uC///u/+9336quvZvHixQDs3buXxx57rN99L7/8cs4//3xA9a364Q9/yLpYFy3ZDKGj+opMP3cJZ5y3BJem8e7e3ax+6rf9Hnfp0qVcccUVAEQiEVauXNlzX862eTfaSTSfJ2iaTJl/JnMv+wh522ZPZwdfWvl9ZpYEeT/ahUfXcR2RPB03exbzl1+OrmnYuTw//Jd/pd5buMfQ7Nmz+eQnP9nz9be//e1+45VzhHKy5wiAJ598ko0bN/a776g6R2Qy8OGHYJpgmvzJxRczqaoKgLU7d/K7999XycGdO3uvCOTQOeKMMwBYt24dTz31VL8xfOITnxiW54j+XHLJJVxyySUAtLa28n//7//td9+BzhFHW7RoEddccw2gEm4PPPBAv/suWLCAG264AVBJ7iPf95lMpt/HnYhPfepTPP300/j9fj75yU9y9913c9555w3KsYUYCTRN45LyKg6mU+xLp6jxeHoqI1iOQ0cuS9a2uaKiRlYtnW7xOOzapcpMmyY0NEB1tZSLHKbqPF6WhCt4qbOVvONQ5nKhH3quUpZFSzZDrdvLBeWVvR7XmcuyNREjZVm4dZ2p/pKxtZpWjHgnlPi77777uOSSS7j22msBdcF8++23c+uttzJr1iweeOAB6uvre30QEUIIIYQQhf3VX/0Vjz32GNdccw1z584dsOG4GJtKXW6mB4JM86vVK2PlNWJqOgtCpUyaMAnLcXinNcozvvUDP8jjgSuvhP37YdMmVfYPVA+w0lKYPFkNzgxTtjNw9xFd08gPsGLsWFqzGWL5PCHT7BnsADB1nXqvjzesPJFcDo+uk3VsXOh9jtE98OEvYq8KMYa5XOp9nk4Xfi9blhp09cqg3GhkGAY///nPWb58ec+qRSHGmnFeP5+qm8DTLQc5mEn1ui4oc7lZVlHDeaUVRYxwlLMsePNN1VM2Hld/cxxH/W0aPx4uuUT6Cw5DmqZxeWUNbl3jja4O9h8qd+9AT0Lvuuq6nh7iGdvi+bZm3o92EbfyaGjYOAQMg5mBEFdX1fVbbleI4URzBqo3cpS6ujp+85vfcM455wDw9a9/nZdeeolXXnkFgF/84hd885vfHHDGYbFFo1HC4TCRSITQGD8ZT7qz/9nCw81u7x8XO4QTMm/yhGKHcNzW3bqu2CGIYWIknRNgZJ0XRtI5AeS8MJTXCpWVlTz++ONcffXVg3K8hx56iAceeICmpibmz5/P97///Z7VBYV0dXXx9a9/nSeffJKOjg4mTpzIypUrjzue7t9Va2trwd+VlPErvK+U8TvxcnsntG8uh7V3L7S0qDurq9VM7EP3D9cyfi+2N/N8Wwvjvb17OuqGgabr7EmnuLSsiksHGNAbqIzfEwf3sj4eoeHQSr3u8p3d++6PxZjiDzDB6+f59hZqPO6elQSarqMZBvvSKab7A3ymelyv5OGRpNTnYXKOOPF9j/m+f+89ePllKCvD9PkO75vPYzU2Qn09fPzjh1f8Hu9x+9l3OJ0jjmff4VjqMxqNUlVVJWMwx0HGq8TxshyHHck4B9IpLBzKTDczAkFJRpxOtg0vvQTvvw8+n6okoesq8ZdKQVeX+ht03XV9yk2L4SOaz7E5HiNq5TDRmODzM8kX6LmuzTs2/9O0n3ejXYRNV8+EOcdxiFt52rM5ZpSU8Om6CfgNeb+JoXci1won9Art7Oykpqam5+uXXnqJq666qufrRYsWsW/fvhMMVwghhBBibHK73UybNm1QjvXEE0+wYsUKHn74YZYsWcLKlStZvnw5W7Zs6SmxdqRsNsvll19OdXU1v/zlL2loaGDPnj09pdtOhNvt7jUQPdB+J3LM4+Uq0KthOO9rnsCgzHDY98iB4hGxr8uFMXUqTJ16zH11XT/u19rp3vfsimrWJuO02xY1LndPosRxHFpzWUKGyfxQ6XEfV9O03vu6XLjcbswCj9c0DbfHjWOaXFxTT7NjsSkRw7At/IZBzrZI5LLUe7xcW92A9wRaO5yu972cI4bPvkP6vj/7bGhrg61bIZFQg6/5PEYqhVFdDcuWqW2DFMNwOkccjz7v+2Gw74m8V4/2ve99jy984Qt4vV6+973vDbjvl7/85ZP+PkKMNIamcUYgyBmBYLFDGTsOHlQr/UIh8PsPb9c09bXbfXifc88tXpxiQCHTxeLS8n7v3xKP8WEsQrXbg++IawVN0wiaLjy6wbZEnA+iEc4rO/bq2saM6tG9I5nAchzqPF7mBcNM9ZdgjJFKLmNFazbDumgXW5Nx8o5DldvNmcFSpvlLerVQGEonlPirqalh165djB8/nmw2y7vvvsu9997bc38sFjuhDzRCCCGEEGPZ3/zN3/Bv//Zv/Pu///spl3B88MEHuf3227ntttsAePjhh/ntb3/Lo48+yp133tln/0cffZSOjg5ee+21nuu3SZMmnVIMQoiTV+X2cE1VHb9pOcjedKqnnGbSsigxTK6sqqWun756x6PB42V9PILjOH3ON47jkLZtxvn8eA2Dm+rG8360i/eiXXTmsgQNkwtKKzk7XEaZ9A0SxeRywRVXwMSJsHEjRCIq0bdgAcyaBWVlxY5QDKLvfve73HzzzXi9Xr773e/2u5+maZL4E0KcXlu2QC7XO+l3JNNUf482bYKzzlLlP8WI816sC9uhV9LvSG5dx63rrI12sri0vN/kneM4vNrVzovtLcStPF5dR9c09qeTvBftZG4wzPXVDf1+HzGyvBPp4Nm2ZqJ51TbBOPRcfxiLMCMQ5MaacUVZkX1C3/Hqq6/mzjvv5J//+Z956qmn8Pv9XHjhhT33f/jhh0w9jpm1QgghhBBj1Y033tjr6xdeeIFnnnmGOXPm9JlA9eSTTx7XMbPZLGvXruWuu+7q2abrOsuWLeP1118v+Jhf//rXnHfeefzFX/wF//u//0tVVRV//Md/zP/5P/9HeucIUSTzQ6VUuj28F+1kezIOwFmhMhYES5ng62eg6TjNDYZ5PdJBazZLldvdK/nXkcsSMEzODIYB8OgGS0orWBwux8LBQBsz/SVHGsdxiFl5srZN0DR7yrOOai4XzJ0Lc+ao0mu6rlZciFFn165dBf8vhBBDrrHx2Mk8v1/1/otGoapqaOISg8Z2HPanU5SYA19LlRgmHbkssXyO0n4mxL0X6+LZ1ibcus4Er6/XdXTKsngv2oWp6Xy8pkGusUe4TfEoT7c2AvR5rtOWxfpYFNjPzfUTh3yV5wkl/r71rW9x4403cvHFF1NSUsJPfvKTXmUbHn30Ua644opBD1IIIYQQYrQIh8O9vv7Yxz52ysdsa2vDsqxeJdlBVWvYvHlzwcfs3LmTF154gZtvvpnf/e53bN++nT//8z8nl8vxzW9+s+BjMpkMmUym5+toNHrKsQshemvw+nr68A2mao+XKytr+W1rI/vSKQKGAWgkrDxew2B5RQ3jvL2Ti5qmYSKDEcPVzmSc17ra2ZVMYOMQMEzODpZyblnF2Og7o2l9evmJ0eu+++7jb//2b/EftdomlUrxwAMPcM899xQpMiGEEOKwvGPzamcbaA4VBcpd+wyDCpeb9fEI55VWnJbrfjE0HMfhta42MrbFeG/fSZpew6DG42FbIs6uVIJp/qHt/3lCnwYqKyt5+eWXiUQilJSU9JkN/otf/IISaWAqhBBCCNGvH//4x8UOAQDbtqmuruYHP/gBhmGwcOFCDhw4wAMPPNBv4u/+++/vVeZdCDGyLAyXUel2826ki+3JOA4Os0rKOStUyhRfoNjhiROwIRbhyeYDJKw8pS4XpqaTsPI8297MnnSSm+rGj43knxgz7r33Xr74xS/2Sfwlk0nuvfdeSfwJIU6v+npoaRl4n2QSAgE4aqKnGBl0TWOc18eGWGTA0vYxK0+t20vQLNzubE8qSXMmTYW7/xWiAcOgPZdlcyIqib8RrDGTZm8qRcUArxefYdCazbAxHhnyxN9JdRYMh8MFS0CVl5efUuNmIYQQQoix5NJLL6Wrq6vP9mg0yqWXXnrcx6msrMQwDJqbm3ttb25upra2tuBj6urqOOOMM3pd082aNYumpiay2WzBx9x1111EIpGe2759+447RiHE8DDRF+BjtQ387eQz+OrkGfxR7Tim+kukzNAIkrIsVrU1HZpd7CNkuvAbJlVuD3UeL5sTMd6JdBY7TCEGVaH+pAAffPAB5eXlRYhICDGmnHEGuN2QSBS+P5+HVEr1m5Wx8RHrrFApuqaRtKyC92dtm5xtc3a4rN+yjbF8Hstx8Oj9p100TUPXIJrPDUrcojhiVp6sY+M9Rql9l67TmRv651qmAAohhBBCFMmaNWsKJtnS6TR/+MMfjvs4brebhQsXsnr1am644QZArehbvXo1d9xxR8HHnH/++fz3f/83tm2jH/pQsnXrVurq6vqdyOXxePBIo3ohRo5kErZuhZ07IZeD6mqYPh0apJ/ISJO1bTbFo2yIR9iZTLA7lWC8148DvYqxunUdn67zbrSTpWUVmNpJzfUddDnbZlMiyvpYhEg+T6npYl4wzIxAENcAA2NClJWVoWmqz+gZZ5zR69xlWRbxeJwvfvGLRYxQCDEmNDSo/rLvvaeuqUIh1WPWcVTCr6tL7TNvXrEjFadgZiDEgmApa6OdBE2TsOlC17SensqduRwzA0HOCpb2ewyXrv5OWY4zYE832wH3MLlOEyfHpWkYQN5xcA/wXOcdG28Rrncl8SeEEEIIMcQ+/PDDnv9v3LiRpqamnq8ty2LVqlU0NDSc0DFXrFjBrbfeyjnnnMPixYtZuXIliUSC2267DYBbbrmFhoYG7r//fgC+9KUv8e///u/81V/9FX/5l3/Jtm3b+Pa3v82Xv/zlQfgJhRBF19YGq1apslSGoW4HDsCGDXDOObBkieqRJoa9pJXnl0372RSPomka8XyeuGWxK5UgYuWY7Av0GljyGyaxfJ60ZVNiFn9A6XD8MQA8us7eVJJ18QhzSkJ8vGYcXunVJ/qxcuVKHMfhc5/7HPfee2+vXslut5tJkyZx3nnnFTFCIcSYoGlw4YXg9cK6dYfLfjqO2jZzJlx0kSr1KUYsQ9O4vqaBgGnyXrSL/elUz30Bw2RxuJzllbUDXrdM9AYImy4i+Rzl/ZSAzNo2pqYxeYhLP56IxnSK59ubeTfaScqy8BkGC0NlXFFRS43XW+zwhoUGr49yl5uufI7qfkq75h0HHJjmDw5xdJL4E0IIIYQYcgsWLOiZvV6opKfP5+P73//+CR3zpptuorW1lXvuuYempiYWLFjAqlWrqKmpAWDv3r09K/sAxo8fz7PPPstXvvIVzjzzTBoaGvirv/or/s//+T+n9sMJIYrPsuD3v1eDUtXVKunXLRaDt96CykqYNq14MYrj9vv2ZjbEo9R6PHh0g5ZMmkg+h1vTac9m8egG44/oD5NzbFy63jPjvNheaG/pFX+3tGXxYSxCpcvD8qrCZalHO8tx0EFW4A7g1ltvBWDy5MksXboUl6twTyUhhDjtDAPOPRfOPBN271aVFUwTxo2DigqZUDVKuHWdq6vqWFpawbZknJRl4dZ1pvpLqBqgb1+3EtPkzFApL3W0EjDMPiU/bcehKZNmnNfP9GGa+Hu9s41H9+8mZuXQ0TA0jVg+z29bm/hDZxufHzeZJaUVxQ6z6Dy6wcJwOc+0NvYkR4/kHHquq9xeZpVI4k8IIYQQYtTbtWsXjuMwZcoU3nrrLaqqqnruc7vdVFdXF+ynfCx33HFHv6U916xZ02fbeeedxxtvvHHC30cIMczt2QNNTWoQ6uhzSTCoBqo2bICpU2WQapjrymVZF4sSNs2epFnIdGFqGrYGJhrt2Qx1bi+mrkpRRfN5zi+r6JVkK5ZoPseHsQihI+Lv5jUMSgyT92NdnF9WSYk5NoYncrbNuniE96KdtGYzuDWDecEQZ4fKqDiOAcWx6uKLL+75fzqd7lMqPRQKDXVIQoixyu+H2bOLHYU4zUpdbhaFT66H7CXlVbRkMmxKRPHpOqFDJUMTVp5oPk+128MNNfXDstz59kSMR/bvIm7lKTNdvSYP27ZNZz7Hj/btpNrtZbJfVrieV1pBYybFB9EuXLpO2HRhHOoTGcnlKHe7uaGmHr8x9Ne5Y+PKWgghhBBiGJk4cSKgLpyFEGLQtbWBbUM//Trx+6G5WfWo6W8fMSw0ZzPErTwNnsMllbyGQZXbQ2MmjaFpZC2LlG3hRqMlk6HiFAaqBltzJk3MylPvKVwSKmyaNGcztGTTlJjDc9b7YMrZNr9qPsD7sS40wG8YxOwcv29v4cNYhJvqxjPO6y92mMNSMpnka1/7Gj//+c9pb2/vc79lWUWISgghhOjLb5h8qm48b0U6eDfaSWcuh42DTze4sKySxeFyqvu5Niq2Z1obiVl5yo9K+gHouk6Z6aIjn2NVWyNfmiDVQ9y6zsdrxjHB62dttJO2bBYbB69usKS0nHNLK6g/ojLHUBoWib+HHnqIBx54gKamJubPn8/3v/99Fi9efMzH/exnP+PTn/40119/PU899dTpD1QIIYQQYhD9+te/Lrhd0zS8Xi/Tpk1j8uTJQxyVOFHt2Qx70kksx6HS5WGiz48uq6hEMR3v609epyOGc9TX47w+NFRiMHOojJDfMBjn9XNNVR11nuIMMBSi0Tf+bs6h+zXGxmvxnUgn78W6qHS5e5WDsh2H/ekUv24+yJ9NmNqrZ6NQvvrVr/Liiy/yH//xH3z2s5/loYce4sCBA/znf/4n//RP/1Ts8IQQQohevIbBReVVnFtaQVs2g41Dqeke1hUO0naeD2IR3JreJ+nXTdd1XJrOe9EusraNexiuWhxqLl1naVkli0vLac1msByHkOkiZBa3PHnRX2lPPPEEK1as4OGHH2bJkiWsXLmS5cuXs2XLFqqrq/t93O7du/nbv/1bLrzwwiGMVgghhBBi8Nxwww1omirNdqTubZqmccEFF/DUU09RVlZWpChFfzK2xXNtzXwQ7SJu5QE142+C18811cNr4F2MMdXVqudMJgOeAqUDEwk44wyQXlnDXoPHR8gwieRzlLsOr87UNY3xPj+GpuEAV1XWUuPxMsVfMqySRnUeHyHTRSSXo6LA6tJIPkfY5aam0Ot0lLEch3eiHbg0rU8PGF3TqPF4OJBJsSMZ54zA0PeBGe5+85vf8Pjjj3PJJZdw2223ceGFFzJt2jQmTpzIT3/6U26++eZihyiEEEL04db1oq34OlGRXJ6cY2Me41rS1DQytk0in8ct1UN6mJo+rMYAip6SffDBB7n99tu57bbbmD17Ng8//DB+v59HH32038dYlsXNN9/Mvffey5QpU4YwWiGEEEKIwfP888+zaNEinn/+eSKRCJFIhOeff54lS5bw9NNP8/LLL9Pe3s7f/u3fFjtUcRTHcXi6pZFXOtvQNY1xXh8TfH7CpottyThPNO6jM5c99oGEOB3GjYP6emhvh3z+8HbHga4ulfCbM6do4YnjV2KanBUqI5bPk7Tyve6L5/PkHYfLK2q4oLyK6YHgsEr6gYr/7FApCatv/GqbxcJQaVH6ngy1eD5PVy5HST8/q0c3sByHtmxmiCMbGTo6OnrGf0KhEB0dHQBccMEFvPzyy8UMTQghhBgV/IaBhobdb60GxcZBB3xm0VNLYgBFvbrOZrOsXbuWu+66q2ebrussW7aM119/vd/H3XfffVRXV/P5z3+eP/zhDwN+j0wmQyZz+MI5Go2eeuBCCCGEEIPgr/7qr/jBD37A0qVLe7ZddtlleL1evvCFL7BhwwZWrlzJ5z73uSJGKQrZn07xYSxChat3uRafYTDe62NfOsV7kU4urawpYpRizDIMWLYMnn0WDh5UCT/DUEnAQAAuuAAO9RoVw99HKqqI5LOsi0Voy2YxNY284+DSdRaHyzm/rLLYIQ7okvJqIrkcH8YitGazuDSNnOPg1nQWhcu5sKyq2CEOCUPT0DT6HUzrXv0/3JK3w8WUKVPYtWsXEyZMYObMmfz85z9n8eLF/OY3v6G0tLTY4QkhhBAjXtB0MdkXYFMiykCdl7O2zdySMF599E/cGsmK+uy0tbVhWRY1Nb0HRGpqati8eXPBx7zyyis88sgjvP/++8f1Pe6//37uvffeUw1VCCGEEGLQ7dixg1Ao1Gd7KBRi586dAEyfPp22trahDk0cw/ZknLRtUV2gtIl+qIzbB7EIH6moRpNBXFEMpaXwsY/Bzp2wezfkclBZCdOnq3/FiOHRDf6odjxnh8rYGI8Szecpc7mYXRJiki8w7HuKunWdG2vHsSBUyqZElEguT+mh+CePgPgHS8AwmOQLsD4WIWiYff42xK08vkP7iL5uu+02PvjgAy6++GLuvPNOrrvuOv793/+dXC7Hgw8+WOzwhBBCiFHhIxVVbEvGieVyBAu0BYjmcrh0nY+U99+iTQwPIyotG4vF+OxnP8sPf/hDKo/zw+pdd93FihUrer6ORqOMHz/+dIUohBBCCHHcFi5cyFe/+lUef/xxqqrUiofW1la+9rWvsWjRIgC2bdsm1y7DUMa2AfpN6rk0jbRjYQNGwT36ZzkOecfGpeljZkBcnCZuN8ycqW5iRDM0jemBINNHaO+3kR7/YNA0jSXhcnYk47RkM1S5PeiHevombYuOXI7F4XKq3aO/3+HJ+MpXvtLz/2XLlrF582bWrl3LtGnTOPPMM4sYmRBCCDF6XFBayZZ4jDWdbXRkM/h0A0PXsWybpG1hajqXlVdzfrlMJBzuipr4q6ysxDAMmpube21vbm6mtra2z/47duxg9+7dXHfddT3b7EODLqZpsmXLFqZOndrrMR6PB88YaBQuhBBCiJHnkUce4frrr2fcuHE9yb19+/YxZcoU/vd//xeAeDzON77xjWKGKQoIm2r2o+04BZNzKctigs9/QiXb2rMZ3o128kEsQta2CZkuzg6VclaoDJ9xoulDIYQQw830QJDrqut5rq2Z/ekUAA7g1Q3OCpVydVWdrBI/Dul0mokTJzJRShaLoZRIwIEDqmy2z6f66RZYDTPS5GybXakE8XweU9eY6A0QHgU/19Fsx2FfOkl7LouORp3HS7XbI+fc0yGXU++VZBJMU/WdLhmocOTQyTs2u5IJYlYeA40JPj9lrr4VXMYyXdf5/LjJjPf5eaG9hcZsmoxloWsw0evnssoalslqvxGhqIk/t9vNwoULWb16NTfccAOgEnmrV6/mjjvu6LP/zJkzWbduXa9t3/jGN4jFYvzbv/2bzIYXQgghxIgyY8YMNm7cyHPPPcfWrVt7tl1++eXoumqU3X2NJIaXWSVBXuxw0Z7LUnXU6oy0ZWE5DmeFyo77eI2ZFD9r3EdTJk3AMHBpOi3ZNL9uOciWRIyb6sbjN0ZUsQ4hhBAFnB0qY5q/hI3xKF25HG5dZ6o/wASvXwagB2BZFt/+9rd5+OGHaW5uZuvWrUyZMoW7776bSZMm8fnPf77YIYrRKpOBN96ArVshHlfbNA3Ky2H+fJg3Dw5dt48kjuPwbrSLVzvbaM6msR0HB9Xja14wxKXlNb36WI9k25Nx1rS3sDedJHtoAYnPMJjuD7Ksoppqj7fIEY4SjgPr18N770FHh/oaVNJv+nQ491zwFud37TgOH8QivNLZRlMmhXXo9V5imswOhFhWWUPIHH0J75Ol6zpXVtVxRUUNO1MJonlVpn2S198zTiGGv6I/UytWrOCHP/whP/nJT9i0aRNf+tKXSCQS3HbbbQDccsst3HXXXQB4vV7mzp3b61ZaWkowGGTu3Lm4C/RYEUIIIYQYznRd58orr+TLX/4yX/7yl1m+fLlcTI8ApS43l1VUYzuwP50ins+TsixaMhlashnmBsPMD5Ye17Fsx+F3rY00ZdKM9/qodHsIu1zUerzUerxsTsR4tVP6PAohxGgRMl2cW1rBlVW1XFpRzURfQJJ+x/CP//iPPPbYY3znO9/pNfYzd+5cfvSjH53UMR966CEmTZqE1+tlyZIlvPXWW/3ue8kll6BpWp/bNddc07PPn/zJn/S5/8orrzyp2MQwkc3CqlXwzjtgWVBdDbW1UFEB0Si8+KJKCnYnOEaQVzrb+FXzAdpyqvTweJ+fcV4f4PBKZxtPNO0laeWLHeYp25KI8bPGvexIJgibLib4/Iz3+vDqBh9Eu/jpwb00Z9LFDnPkcxx480144QWIRFRivLZWvWdsG9auhWeeUYn0Ingr0sGTzftpyqSocLt7Xu86Gm9E2vl/B/cSy+eKEttwpus60wJBzg6XMcVfIuMUI0zRp27cdNNNtLa2cs8999DU1MSCBQtYtWoVNTU1AOzdu1deVEIIIYQYtVavXs3q1atpaWnpKWHe7dFHHy1SVOJ4LA6XEzRdvNHVzv50CgeHsMvFR0LVnFtajvs4r2H3pZPsSSV7+j0dya3rBAyD96MRLiyrwislP4UQQoxBjz/+OD/4wQ+47LLL+OIXv9izff78+WzevPmEj/fEE0+wYsUKHn74YZYsWcLKlStZvnw5W7Zsobq6bwmzJ598kmw22/N1e3s78+fP5xOf+ESv/a688kp+/OMf93wtrWdGuA0bYMcOqKxUfXO7maZK/sVianXT5MlQV1e8OE9QUybNmo5WvLpO+RE/l65plLncBAyTrYk4b3S1c2lFTREjPTUZ2+KZ1kZSlsU4r7dngoWmaQRNk4BhsC+d4vn2Zm6umyATME5FczO8+65a0RcKHd6u6+prrxd27VLvqbPPHtLQ2rMZft/egqFp1B6xulPXNEpdLkoMg52pBK92tnNlVd/WY0KMVEVP/AHccccdBUt7AqxZs2bAxz722GODH5AQQgghxBC49957ue+++zjnnHOoq5O+PiONpmnMLgkxKxCkK58j7ziETddxJ/y6teeyZG0bXz+PKzFMIvk8XfkctZL4E0IIMQYdOHCAadOm9dlu2za53Imv0njwwQe5/fbbe6pNPfzww/z2t7/l0Ucf5c477+yzf3l5ea+vf/azn+H3+/sk/jweD7W1MnA8KliWSlK4XL2TfkcqKYHGRtiyZUQl/tbHuohbeSZ4fQXvd+s6fsPgvWgX55dV4tFH5vXnlkSM5kyaWo+34OcsXdOocLnZkYzTlE1T5yn8+xDHYetWSKX6fx+43eq2YYMqjzuEfSQ3xKNE87l+X++mrlNiGHwQ6+LC8koC0l5BjBLyShZCCCGEKJKHH36Yxx57jM9+9rPFDkWcAu3Q7OiTZWoaGuAAhVK/Fg66BoYkhoUQQoxRs2fP5g9/+AMTJ07stf2Xv/wlZ5111gkdK5vNsnbt2p62MqDKmS1btozXX3/9uI7xyCOP8KlPfYpAINBr+5o1a6iurqasrIxLL72Uf/iHf6CioqLgMTKZDJkjyt5Fo9ET+jnEaRaJqFtJSf/7aJpaybRv39DFNQh2JhN4dH3ASYch06Qzl6M1m2Gc1z+E0Q2exkwaG3ANMCkvYBh05LI0ZiTxd0r271fvhYE+r5SUHH5fVVYOWWi7Uwlch8ov9ydkumjJZmjJZJjsl3SJGB3klSyEEEIIUSTZbJalS5cWOwxRZJN8AYKmi658jvICCcTOXI6p/gAVp5BcFGJYsizV68XlGtKZ30KIkeeee+7h1ltv5cCBA9i2zZNPPsmWLVt4/PHHefrpp0/oWG1tbViW1dNipltNTc1xlQ196623WL9+PY888kiv7VdeeSU33ngjkydPZseOHfzd3/0dV111Fa+//jpGgRX7999/P/fee+8JxS6GkG2rvmXHmnil62rfEcQCjlWfQkPDccAeee0Le9jH0XtR0zQ0tOPaVwzAso79Xum+f4h/15bj9GmncDRN03AAG3kdiNFDmucJIYQQQhTJn/7pn/Lf//3fxQ5DFFnIdHFOuIxE3iKSy+Ec+jBsOw4tmQwuTefc0opjfmAVYsRIp+Gdd+CnP4XHH4ef/ATWrIH29mJHJoQYpq6//np+85vf8Pvf/55AIMA999zDpk2b+M1vfsPll18+pLE88sgjzJs3j8WLF/fa/qlPfYqPfvSjzJs3jxtuuIGnn36at99+u98WNnfddReRSKTntm+ErRob9YJB8PlU+cKBpNNQVTU0MQ2SOo+X9DGSlQkrj88wKB3BE3PKXW40Bk4Api0LU9MKTr4TJ6CqSr0XBpJMqlWBA62iPQ1qPF4ytt3zGauQhJXHpxunVMVFiOFGVvwJIYQQQhRJOp3mBz/4Ab///e8588wzcR31wfrBBx8sUmRiqH2kvJqsbfNutJN96cMDTGHTxbLKGmYHQkWMTohBlErBM8/A7t2q14vXC/k8rF0LO3fC1VeD9McSQhwhn8/z7W9/m8997nM8//zzp3y8yspKDMOgubm51/bm5uZj9udLJBL87Gc/47777jvm95kyZQqVlZVs376dyy67rM/9Ho8Hj8dzYsGLoePxwIwZ8OabEAqplX1Hy2TU9pkzhz6+U3BmMMzaaCcJK1+wn5ntOETyeS4oqyRkjtzE36ySEKvbW+jIZal0932vOY5DWy7DBG+Aib5AgSOI4zZjhup1mU6ra7uj2bZK/C1erBLqQ2heSZg3uzqIW3mCBV7PtuPQlcuxKFwuCWAxqkjiTwghhBCiSD788EMWLFgAwPr163vdN1APAjH6uHSda6rqWBQuZ1syTtq2CBkuZpYER/SAixB9vP8+7NqlZoYfOdkhFILmZnjpJfjEJwoPsAohxiTTNPnOd77DLbfcMijHc7vdLFy4kNWrV3PDDTcAYNs2q1ev5o477hjwsb/4xS/IZDJ85jOfOeb32b9/P+3t7dTV1Q1G2KIYzjxT/c1qboaKCjVhBVSpwlQKurpU0u+o3pPD3SRfgPnBUt6OdGC5HIKG2fPZI2PbtGQy1Lg9nBsuL3KkpyZkuriwrJJVbU20ZzOUudw9FTTyjvo5fbrJRyqqpZf2qZowAaZPh02bIBwGv/9wac9sVlV1qKqCefOGPLRxXh9nh0p5vasd21H9K7tf71nbpjmTpsLlZmlp4X6sQoxUkvgTQgghhCiSF198sdghiGFE0zRqPF5qPAVmyQoxGmSzakDI5+vb00/ToKxMDa4eOADjxxcnRiHEsHTZZZfx0ksvMWnSpEE53ooVK7j11ls555xzWLx4MStXriSRSHDbbbcBcMstt9DQ0MD999/f63GPPPIIN9xwAxUVvQeI4/E49957Lx//+Mepra1lx44dfO1rX2PatGksX758UGIWRRAKqZXoq1dDU5NaoQ4q8efzwdy5cPHFUKCH43CmaxrXVddhahofxrrYm0uhAQ5gahrjvT6ur2mgehRck55fVokDvNLZxr704Z9TByrcHq6qrGVGIFjcIEeibFZVati/H3I5VRp3zhwwTdi+HSIRdW3nOGpbQwNcdhmUlg55qJqmcXVVHaam8260k73p3q/3eq+Pj1bXU+8d2pWIQpxukvgTQgghhCiy7du3s2PHDi666CJ8Ph+O48iKPyHE6BOPqxUSgX7KaXk8alA1EpHEnxCil6uuuoo777yTdevWsXDhQgJHnUc++tGPntDxbrrpJlpbW7nnnntoampiwYIFrFq1ipqaGgD27t2LftTK4y1btvDKK6/w3HPP9TmeYRh8+OGH/OQnP6Grq4v6+nquuOIKvvWtb0k5z5GuogI+/nGV4Ni/XyU8/H6YMgUqKw+vahphPLrB9dX1nFdawaZElFg+j0vTmeTzMy1QgqmNjpX3uqZxUXkV84OlbIxHac9l0IB6r4+ZgRC+EZa0HRb274cXXlCr+BxHJb7zeVXVYcoU+OhH4eBBSCTURK9x49R13VD/ri1LvV9NE5fLxTXVdSwuLWdTPEokn8PUNCb6Akz3l+CSShNiFJLEnxBCCCFEkbS3t/PJT36SF198EU3T2LZtG1OmTOHzn/88ZWVl/Ou//muxQxRCiMFjmqqEp2UVvt+2D+8nhBBH+PM//3OgcP9jTdOw+juvDOCOO+7ot7TnmjVr+mybMWMGjuMU3N/n8/Hss8+ecAxihDAMVc5zhJX0PJaxVG0i7HJxXpmUcjxlLS3w7LMQi6nEd/c1W3f5202b1NfLlxdvJWw0Cps3q1jSaXXtOXEizJpF1bhxVJVXFScuIYaYpLOFEEIIIYrkK1/5Ci6Xi7179+L3+3u233TTTaxataqIkQkhxGkQDEJdnRqQKTR4HotBSYmaGS7EcBSJqHJ/kUixIxlzbNvu93YyST8hhBAn4YMPVG/L6ureE7U0Ta2ELS9XpT737y9OfE1N8KtfwR/+oCpNGIaaWLZ+Pfz61/DOO4WvQYUYhWQqpRBCCCFEkTz33HM8++yzjDtqkHv69Ons2bOnSFEJIcRpommwYIEq/9Ternr6GYYagOkuA7pkiUr+CTGcNDfD2rWwZ48qZ2aaavXAwoVwqDSkEEIIMarFYrBjh5rI1V+JW69XJQa3bh36FbKpFDz/PHR0QG2tWunXLRRSk3beeENdf06bNrSxiX61ZTNsTsSIHiq/Ot7rZ/ooKjdcTPIbFEIIIYQokkQi0WulX7eOjg7pByOEGJ0mTYLLLlN9/lpbobFRzc62bZVEWbKk2BEK0VtTEzz9tCoZ5nJBOKz+3bRJbW9qKnaEo9oLL7zA7NmziUajfe6LRCLMmTOHl19+uQiRCSHEGBOLqZ55Pt/A+7lcKvk21HbuVNeWVVW9k37dwmFVbn7dOln1NwzkbJvftTbyH3t38JuWg7zU0crq9hb+6+Ae/nPvTvalksUOccSTFX9CCCGEEEVy4YUX8vjjj/Otb30LUH02bNvmO9/5Dh/5yEeKHJ0QQpwmM2bAhAmwe7da6ed2q6/Lyood2aByHIeDmTQ7k3FyjkO5y82MQBBfsXreiBPnOPD662qVQF3d4RUOLpcqadbUpFYPXH99/6sfiiBp5dmSiNGZy+HWdab6AtR6vGjDKMbjtXLlSm6//XZCoVCf+8LhMH/2Z3/Gd7/7XS666KIiRCeEEGOIrqu/dd09mfvjOMXp77d9u4pxoO8dCqlJZ52dqiypKArHcXimrZHXO9sJmi4meH091ygZ22Z/OskTTfv4TP1EasdAD9LTRRJ/QgghhBBF8p3vfIfLLruMd955h2w2y9e+9jU2bNhAR0cHr776arHDE0KI08fng1mzih3FaZO2LH7b2si6eISUZfWU2ql0e7i6qo5ZJX2TGGIYamtTpWlLS/sm9jRNrR44cEDtV1VVlBCPtiEe4ZnWJtqzGQBswG8YzCsJc011HR59ZCWeP/jgA/75n/+53/uvuOIK/uVf/mUIIxJCiDGqokIlzuLx/pNmjqNWBU6YMLSxASQSamLOQExTlezOZIYmprHKttV1Uj8TjvanU6yNdFHqchE0ez9nHl2nwetjbyrJa51t3Fgrvb9PliT+hBBCCCGKZO7cuWzdupV///d/JxgMEo/HufHGG/mLv/gL6urqih2eEEKIk+A4Dr9tbeStSAflLjdVLjeappF3bJozGX7VfICAYTLB17fUsxhmkknI5VTirxCvV5U+Sw6PclS7kwl+1XSAtG1R5/VhahqO4xC38rwZ6UDXNG6oaSh2mCekubkZ1wADuaZp0traOoQRCSHEGOVywezZ8PLLKrnndvfdp6tL9WqePn3Iw8PvV6U+B9Ldp1faagy+ZBK2bVOl0GMx9XuePBlmzlQ9F4+wLh4hbVtUF3oNAbqmUeZyszEe5dJcllJX4f3EwCTxJ4QQQghRROFwmK9//eu9tu3fv58vfOEL/OAHPyhSVEIIIU5WUzbN+niEcpeLoHn4I7ep6dR7vOxNp3g70iGJv5HA41Elw3K5woOEuZy6f5gMIL4ZaSdu5Rl/RMksTdMImi4c4MNYhKWlFVSPoLJZDQ0NrF+/nmnTphW8/8MPP5TJUkIIMVTOPFOthN++XSXagkFVXjObVUk/04QLLyxO+fZp01SfP8vqv9xnNDoqy8sXXUcHrFqlSqB3J1ZTKVi7FjZuhKVLYf78nhWATZk0Hl0fsAR5wDRozmTokMTfSSvQ6VIIIYQQQhRTe3s7jzzySLHDEEIIcRJ2JROkLIsSo+88W03TCJkmWxMxMrZVhOjECamuVreuLlW+7EiOo7Z371NkSSvP9mSCsOkqOJAWNEySVp5dqUQRojt5V199NXfffTfpdLrPfalUim9+85tce+21RYhMCDFWOY5DYybFtkSMPakEuWP1vBtNPB648ko491y14q+tTSV7YjGor1f3zZ1bnNimTlVlt1tbC/chjERUQvDMM4+rL6/tOBxIq+d5bypJ3hlDz/OJyGbh2WdV78TqavUchEIqudrdH/mVV1RS9hAdcHD6PybqMksDNEZef+LhQlb8CSGEEEIIIYQQgyR/KEHU3yxmU9PI2Q4528EjU3GHN12HRYvULPbWVjWI5XKplX6dnWoAdNEitV+R5R0H23Fw9ROLpqmhs/zRCcxh7hvf+AZPPvkkZ5xxBnfccQczZswAYPPmzTz00ENYltWncoIQQpwum+NRXutqZ28qSdaxMdCocLs5J1zOknB5v+fgUcXjgfPPh7PPVkk/y1Kr/2pri/v30OeDyy9XSaimJlWO2+NR8SUS6v/nnqsShANwHId18QhvdLVzIJ0m59gYmkaN28uicBnnhMsxjiNxOGbs2qV+39XVfVdaapoql97UBB9+CFOmgKYxyRdgUyKG4zj9Xi9H8zmCpouaYVJVYSSSxJ8QQgghhBBCCDFIyl1udE0jZ9sFBwDjlkWt24uvvzJUYniZMgWuuALeeAPa2w+XEKuoUAOIU6YUO0IAAoZJ2HTRnstQYvYd6snaNrqmUT7CymXV1NTw2muv8aUvfYm77roL54jE+vLly3nooYeoqakpcpRCiLHgnUgHv21tJG3ZlLtdVOhu8o5DZy7Lb1saacyk+FhNA6Y2BpJ/oBJtkycXO4reamvhYx+DLVtUr7lUSiUj586FWbNg3LgBV/s5jsMfOtt4vq0ZG4dylxu3rpOzbVqyaf63+SCt2QxXV9WhS/JP2b5d/U4LXHv0CIXUisCODqioYG4wzCtdbbTnslS6+yb28rZN3LL4SLgCf4EKGuL4yG9OCCGEEEIIIYQYJNMDJVS7PTRnMzR4vL1mMqcsi7zjsDBcJrPFR5Jp09Tg5v79kE6rVQTjxvXfQ6gIDE1jYbiM37QcJG1ZeI+IzXEcmjMZ6j1epvlLihjlyZk4cSK/+93v6OzsZPv27TiOw/Tp0ymTHk1CiCHSkknzbFszDjDe5+vZbmgaNR4vSSvPu5EuJnj9LCmtKF6gQiWZFi2ChQshk1EJKZfruB66N53kxY4WPIbea6KMYRjUGgaxfJ43ujqY6AswLxg+XT/ByBKPD5z0A1UWNh5X11BApdvDpeXVPNPWRGMmTcWhBKvtOMTyeTrzOab6ApxfJu+lUyGJPyGEEEKIIXbjjTcOeH9XV9fQBCKEEGLQeXSDa6vr+WXjPvamUwRNE1PTSFh58jbMD4U5OyQJixHHMGDixGJHMaBzwmXsTiVYH4tg6joBwyBvO8SsPOUuN9dU143oMnRlZWUsWrSo2GEIIcagdbEI0XyOCV5fwfv9hklEz/FutFNKQQ4Xuq5WJZ6AD2JdJC2LiT5/wfuDpklXLse7kU7mloT6LVM5pni9qhrCQPJ5dR3lPpxMPa+0Aq9h8EpHG83ZNLaj+v6VGCZLwuVcXllD0Dy+hK0oTBJ/QgghhBBDLBweeHZgOBzmlltuGaJohBBCDLZp/hJuaZjEO9EONsZjWI5DvcfH2aEyzg6Vjejkixi+PLrBJ2rHM9VfwtpIJ135HC5d58JQJeeEy6n1eIsdohBCjEhbkjG8uj5goidsumjOZmjLZqiR8+2I4zgOW+JxSo6xmj/sMtmXThK38pKYAlXyfMeOw6XQC4lGoa5OlUk/RNM0zg6VMa8kzM5Uglg+h6npjPf6qChQ/lOcOEn8CSGEEEIMsR//+MfFDkEIIcRpVu/18VFvA1dV2uQdB4+uSz8Ycdq5dZ1zSytYHC4nY9uYmiaJZiGEOEU52znmKj5D07AdB+tQL1IxsthAHvu4nucstjzP3aZOhXffhdZWqKnp20MxHlf/zp2rVmEexaXrzAgEhyDQsUeu/oQQQgghhBBCiNPEpev4DEOSfmJI6ZqGzzAk6SeEEIOg0u0mbdkD7pOyLDy6QfBY/c7EsGRoGuWmm+QxylamLAufYeI35HkGwO+HZcsgHIbGRujqglRKJfyam9X/Fy6EmTOLHemYI1eAQgghhBBCCCGEEEIIIUQBZwZLQYOMXTj55zgOkXyeOSUhKf84gp0VKiPvOOT7eZ5txyFhWZwVDOOWiTWHNTTAxz4GS5aoPn7ptCr9OXkyXH01nH9+wdV+4vSS1LQQQgghhBBCCCGEEEIIUcCMQJBp/hI2J2LUuj14j+hlZjkOjZk05S43i8PlRYxSnKq5wRBro352p5LUeby9knt526Yxk6bG7eGsUFkRoxymysrgggtg8WKV+DMMtRpQKl4UjST+hBBCCCGEEEIIIYQQQogC3LrOH9WO43+a9rM9GcfKOrh1nbzjYDsOVW4PN9Q0UO/1FTtUcQr8hsknasfzP0372ZNOYjvqec45NqBR6/Hx8doGKtyeYoc6fLnd6iaKThJ/QgghhBBCCCGEEEIIMdhyOfWvacrKl5HCtiGfVyuWjljZFzJdfLZhIjuSCTbEInTlc3h1nTMCQWaVhAhIz7dRodLt4XPjJrM1GWNTPEY0n8OvG8wsCTEzEOy12lOIo+UdG8txcGs6WpHP+XJGEkIIIYQQQgghhBBCiMFgWbBzJ2zcCM3Nalt5OcyeDdOmyWqY4aqrC7Zsgc2bIZNRSb+pU2HmTKitBcDUdGYEgswIBIsbqzitXLrOnJIwc0rCxQ5FjACO47A9GeeDWITtyRi2A2HTxdmhMuYFw5SYxUnBSeJPCCGEEEKI0ci2obEREgnweKC+HlyukzuW40BbG3R2qkGQ+nrwSSkjMbLkbJvdqQQp2yJouJjg82PI6ouRoaMD2tvVapnaWigpKXZERRPN59iXTuI4UO32UO3xFjskIcSRcjl48UWV9APV4wrgwAHYtw+2boUrrji8XQwP+/fD88+rvzder0rOZrOwdq1KBF54IcyZU+wohRDDjOM4/L69mVc628nYFkHTREejOZvmqZYDvBvt5JN146kqQnlYSfwJIYQQQowSDz30EA888ABNTU3Mnz+f73//+yxevLjgvo899hi33XZbr20ej4d0Oj0UoYrTbd8+eO01aGlRpYo0Tc00X7RIzVo+kWRHZye8/LIaEMlk1GODQZg3D845p1cJJCGGqw9jXaxpb6U5m8ZyHFyaTr3Xy2UVNZwhs/aHr1gMXnkFdu2CdFqdf0pK1Hns3HNPfjLDCJS1bV5ob+HdaCexfA4H1YtoRqCE5ZW1lLpkBZEQw8Lbb8P69VBa2nuSVDCoEkk7dsBLL8GVV0rpz+EiFoPf/16t+Kur6/28hMPqWvill9T/x40rWphCiOHn3WgXazpaKTFMajyHk3thXOQdh73pJE827edz4ybj0vUhjW1ov5sQQgghhDgtnnjiCVasWME3v/lN3n33XebPn8/y5ctpaWnp9zGhUIjGxsae2549e4YwYnHaHDgAq1bBwYNqkKm2ViX9urpg9Wo1a/l4xWLw29/C9u1q9nNtLVRVqdnsr72mbkIMc+tiEX7VfICWbJoqt4cJPj/lbhd700l+0bSfHcl4sUMUhaRS8MwzatWM263OP9XVqoTe22+rFTW2Xewoh4TtOPym5SAvdrTg4NDg9THe68Oja7wb7eKJxn0krXyxwxRCJJOwYYNK+BWqjOB2q4Tgrl2qkoIYHrZtUyv9qqv7JmM1DcrK1OST7lWcQggBWI7Dm13taEC4wGQ0U9Oo83jZm06yrQifNyTxJ4QQQggxCjz44IPcfvvt3HbbbcyePZuHH34Yv9/Po48+2u9jNE2jtra251ZTUzOEEYvTwnFUSaJYDGpqVIlPUKtiqqrU/W+/rRJ3x2PDBtWbpqZGlaTSNLXCr7QUAgE1o72j47T9OEKcqrxjs6ajhZxtU+/14T4009ajG4zz+Ijlc7zc0YrjOEWOVPSxdataaVxdrc43mga6rlZchMOqD1NjY7GjHBJ7U0k+iHVR4XJT5nKjaxqaphE0XdR7vOxKJVgXixQ7TCHEvn0Qj0Mo1P8+Pp9KIu3ePWRhiWPYskVdK/e3Gqd7tfmuXSq5K4QQwIF0iqZsmvIBqi64dR3Lcdgcjw5hZIok/oQQQgghRrhsNsvatWtZtmxZzzZd11m2bBmvv/56v4+Lx+NMnDiR8ePHc/3117Nhw4YBv08mkyEajfa6iWEmElED5eFw4fJRpaUqUXfgwLGPZdtqdaDXW7icZ0mJGvyQgSsxjO1NJWnOpKlw9/1ArmkaFW43e9NJmrOZIkQnBrR1K5imuh3N51Ml88bI+WdLIkbGtikp8Ltw6TqmpvGhJP6EKL7ukvkDlXPrvj7LyN+dYSOZPHbpaJdLlc+XtgjHxXIcklae3BhZmS/GppRtkXOcnomF/XHpOtEiVGaQHn9CCCGEECNcW1sblmX1WbFXU1PD5n7KOs6YMYNHH32UM888k0gkwr/8y7+wdOlSNmzYwLh+elfcf//93HvvvYMevxhE6bQqg9ff4IVpqoTe8Qw2WZYaWO/vWJqmbjJwJYaxng/kWuEP5G5NJ2LnSFvWEEcmjimRGPj8o+uqHOgYkLDy6AO0AvPoOrH8ca7kFkKcPm63qq5g2/0n/7pXmB/RC0oUmc937L8n+byaCFdgIpE4rCOX5cNoF+9Fu0jaFoYGMwMhFgRLmeQPFDs8IQaVV9cx0cg5Nh6t/773edsmaAx9Gk5W/AkhhBBCjEHnnXcet9xyCwsWLODiiy/mySefpKqqiv/8z//s9zF33XUXkUik57Zv374hjFgcl0BADZT3l4zLZlXyz+8/9rFMUx2vv2N1z+A9nmMJUSRBw4VH10n3M+M8bVu4daPgSipRZOFw/+ef7oH1kpKhjalISl1uLId+S9KmbJtylyQRhCi68eNVf+VYrP99UimV9JswYejiEgM74wz192agst/xOEycOGb+7pyMvakkP96/i2famohYOQwN8o7DG13t/OTgbl7rbJPS6mJUafD6qPF46RygjUbOttE0jTMCwSGMTJHEnxBCCCHECFdZWYlhGDQ3N/fa3tzcTG1t7XEdw+VycdZZZ7F9+/Z+9/F4PIRCoV43McwEgzB5MkSjhxNz3RxHlfmsqoL6+mMfS9Ng1iyVLCz0YSYSUYnBKVMGJ3YhToNxXh/jvD7astk+g02249CRyzHdX0LFAL05RJHMmKHOW4WSf/G4WqExderQx1UEMwNBAoZBJN+3TFTasnCA+aHw0AcmhOitpARmzlQrlgudu3I56OpSCaTq6iEPT/Rj+nRVDr+lpXDyr6tLrfSbPXuoIxsx4vk8/9O8n7ZshvFeH9VuDyHTRbnLzQSfHx14tq2Zrcl4sUMVYtCYms6icBl5xylYecFyHA5m0jR4fMyQxJ8QQgghhDhRbrebhQsXsnr16p5ttm2zevVqzjvvvOM6hmVZrFu3jrq6utMVphgq55wDlZXQ1KQGx3M51bukqUmtzlu6tHDPvkJmzVKDU62tKtGXy6lyoi0tquTR4sUq2SjEMdiHer0MdUlNXdNYVlFDyDTZm04Rz+fJ2jbRfI696RRVbg8Xl1ehFeqJKYpr+nSYNg3a29WgazarBtLb2tQ5bf58da4bA+o8Xs4rrSBu5WnKpElbFhnbpi2boTmbYU5JiDklJ5n46/4bIeVuhRgcS5ao66euLmhuVtdiiYS6lmprU9dVl1xSuBezKI5wGJYtU4nbxkb13CWTaiJdY6NKBl5wgXruREEb4hGaM2nqvT70Aq/tCreHrG3zdqRDVv2JUWVRuJwLyiqJ5y32pZJEcjni+TwtmQz7UykaPD4+XjvumH0ATwepZyKEEEIIMQqsWLGCW2+9lXPOOYfFixezcuVKEokEt912GwC33HILDQ0N3H///QDcd999nHvuuUybNo2uri4eeOAB9uzZw5/+6Z8W88cQg6GiAq69Ft5+G3bvVoMXpqlW5i1cqMpQHS+fD66+Gt55B7ZsUcfSdaipUYPuM2eeph9CjBaW4/BetJO1kU7aclk0YKo/wOJwBZOHqNfLFH8Jn66fwMsdrexKJYjl87h1nYWhUi4qr6LO4xuSOMQJcrngiivUOW3zZjUAq2lQVgZnnglz546ZgXPtUAI7bLp4s6uD9lwWG4eQ4WJpaQUXlFWd+IBSayusXw87dqiJHCUlajXLnDnSe0yIU+F2w+WXw6RJsHGjSvaBqrgwe7Zazez1FjXE0y6VUudsXVcr6frr1zqcTJwIH/sYbNqkrnlzORX/vHkqkdtPD3ShrItFMDUNY4C/y6UuFzuTCTrzOcql0oIYJXRN48rKWib5Arwb7WRPKknetgm7XHykopoFwVLCRToHSuJPCCGEEGIUuOmmm2htbeWee+6hqamJBQsWsGrVKmpqagDYu3cv+hGDgp2dndx+++00NTVRVlbGwoULee2115gtJWxGh4oKuPJKNeiSTKpBqLKykxsk9/vhoovUSsJoVK0WLC8//lWDYsyyHIdfNx/k7WgHOlBimtiOw3vRLrYm4ny0up75odIhiWWSL8DEej9tuSwpy6LENGXQaSTweNQq5bPPPjzxoKJiTJ5/dE1jSWkFC8NltGQy2DiUu9z4jZMY1jlwAJ555nDJZtNUv981a2DfPvX3Q5J/Qpw8l0sl+WbNUpUSHEcl+4qw4mNIdXbChx/C1q3q59Y0VRlizhyVQBvu55WKCrWyb8kStcrc5VLX0OKY4lb+mBNQ3LpGwrJJWRaMgFywEMdL1zRml4SYFQiSsi1sB7yGjqkV95wviT8hhBBCiFHijjvu4I477ih435o1a3p9/d3vfpfvfve7QxCVKKpQSN0Gg9+vbkIcp/WxCO9EOyhzuQgckZwImy6asxmeaWtisj9AyBya0R9N06hyD/NBR1GY1wvH2bN2tDM1nXrvKaxStSx46SWIxaCu7vCEkEBADXTv2KEG7hctGpyAhRjLNE1VTxgLWlvVhILWVnU+CYVUwjMWg5dfPjypYCT8PlyukbFKcRgpMUzasgX6Wh4hZzuYmo63SAlwy3HYnUqwPhahPZfFpelM85cwJxgasmtRMbppmnZyE7JOk1E+1UQIIYQQQgghRDG8F+3CgV5JP1AfiqvdHrpyWTbGo8UJToixau9e1ae1vLzvKnC3W63I2bhRlbkTQojjYVnwwguqrGltreqZ130+qahQ/Vh37oQ33yx2pOI0mRMMk3cc7AH693Xlckzy+YtScSFp5flZ414e27+b17va2Z1KsDkR5amWA/zH3h1siEWGPCYhTjdJ/AkhhBBCCCGEGFSO49CUTRPopySjfijh0JnLDmVYQohoVK3C6a98nc8HiYQqEy2EEMdj3z5oalJJvkKruVwu1Ud061aIx4c+PnHazS0JUe32ciCdLpj868hmcek6i8LlaEPcn9dyHH7VfIAPYxFKXS4m+PzUerw0eH2M9/qIW3mebD7AzqS8NsXoIok/IYQQQgghhBCDzq3p5AeY+e0AriL3vhBizDFNlfjr771pWWrg3hw+paqEEMPcgQOQzw/cD6+kRE0qOHhw6OISQyZouvh4bQMVbjf70ilasxli+RyduSx7U0ksHJZVVDMzEBzy2HanEmyOx6h2e/AdNSFN1zRq3R4SVp7XutpxBrhuFWKkkU9ZQgghhBBCCCEGlaZpzAuGSFpWwZnfKcvCrelM8QeKEJ0QY1hDg+rXWmjVTXc/rvHjVY8uIYQ4Htls39LBR+teCZjPn/54houBJlmMQhN9AW5rmMTyihpKDJOc46CjsThczmfrJ3JBWeWQr/YD1XM669h9kn7dNE2j3OVmRzJO6zH6FPYYQ89rfxzHkUTpMCdTuIQQQgghhBBCHJvjQHs7ZDIqcVBaOuBA34JQGe/HIhxIp6jxeHHrOo7jkLQt2rJZ5paEmOST5IIQQ6q0FGbNgrVr1dclJep9bFnQ0aHe2/PnFzVEIcQIEwgcTnL1d12Qy6n7/P6hjW2oOQ7s3w+bN6sSqI6jSqDOmgVTpqiyp6NYhdvDpZU1XFxRTdq2cGk67kLlX4dQey6L5xgx+AyDrnyOqJWnur+dOjpUudqtW1WyOxCAGTPgjDPU39IxIGfbbEpEeT/aRWMmjY7GFH+AM4NhpvpLekr5i+FBEn9CCCGEEEIIIQa2bx+8/TY0NqrZ+i4XTJgAixdDdeEhkiq3h5tqx/O/LQdoyqSxHAcH8OoGC4KlXFddLwMEQhTD0qVqMHrTJtWXC9SAfGkpXHghjBtX1PCEECPMlCnwzjuqN2h/q4UjESgvV6uORyvbhldfhQ8+UIkhn0+dW3fvVrfJk+Hyy0d/8hMwNI2AMTzSDi5NxzrGyjTLcdABk36uS7dvhxdfVH1yvV5VDrutTV0Xr18PV1wBtbWDH/wwkjzUC3FjPIrjQMA0cBx4O9LBB7EuloQruLKqFkOu7YeN4fEOFEIIIYQQQggxPO3ZA6tWqd48paUq6ZfJwJYt0NIC117bb/Jvgs/PF8dPZduh8kmGpjHJ56fB4ytKuSchBOo9fMklcOaZsHevWokTDKpBaY+n2NEJIUaaigqYPh0+/BAMQyVGunWXELZtOOus0b3i7YMP1GrqQED9TrqFwyoRuH27+vmvuurYpVHFoJkWKGFDPILtOP1OOIvkc5S53NQd+drt1tQEq1era9+6ut7PnW1DczM8+yx8/OOjduWf4zg83dLIuliEGrcH7xFlUytwE8vneKWrjZBpcmF5VREjFUeSxJ8QQgghhBBCiMIsC15/Xc3ir609PNhhmmrGemOjWgl4zTX9HsKl68wuCQ1RwEKI41Zerm5CCHEqNA0uvlhVBNi2DTo71SQCx1HJEp8PzjsP5s4tdqSnTzarEn+mWTj543aryVM7d6pE0ShfHTaczCkJ8YeOVpqzaWrd3j4TzzK2RdKyuKisCo9eoA/gxo2qL+7RST9QvStratRzunUrnH32afxJiqcxk2ZTIkqFy90r6dctaLpI2zZvRjpYFC4vuI8YesUtsiuEEEIIIYQQYvhqalKr+srK+g52aJqaxb53L3R1FSU8IYQQQgwDbrcqd3j99SrBV1qqVr0tWaJWQi1aNLpXue3fr66FwuH+9/H5VCJ09+6hikoAIdPFNdV1eDSDvekU8Xwey3HI2jYt2QxNmQxzS0IsLavo++B0Wq3U7O6HW4iuq5WcW7ac3h+kiLYmYiQti8AACb0y00V7NsuOVHwIIxMDkcSfEEIIIYQQQojCkkk1g7+/8n8ejyoTmEwObVxCCHGKHnroISZNmoTX62XJkiW89dZb/e57ySWXoGlan9s1R6x2dhyHe+65h7q6Onw+H8uWLWPbtm1D8aMIMTwYBkycqBKAN98Mn/40XHCBWhE1mpN+oBJEtq1W/PVH09QtlRq6uAQAc0rC3Fw/kXnBMCnbojGTpj2bJWSYXFVVyyfrxhde7ZdOq+tgt3vgb+B2q5L4x+glOFIlbQtgwDL9pq7STEnLGpKYxLFJqU8hhBBCCCGEEIV5vWogL5stPOiRzapBrkI9UYQQYph64oknWLFiBQ8//DBLlixh5cqVLF++nC1btlBdoGfpk08+STab7fm6vb2d+fPn84lPfKJn23e+8x2+973v8ZOf/ITJkydz9913s3z5cjZu3IhXzpFCjG5ut0rqWZa6buqP4xw7iSROi8n+AJN8flqzGWJWHkPTqPN4Cyf8urndakVfPj/wwfN5taJzlCa43brOsX4y23FwcPDoss5suJBnQgghhBBCCCFEYfX1qlRXoVKejgORCDQ0qFKgQggxQjz44IPcfvvt3HbbbcyePZuHH34Yv9/Po48+WnD/8vJyamtre27PP/88fr+/J/HnOA4rV67kG9/4Btdffz1nnnkmjz/+OAcPHuSpp54awp9MCFEU9fUQDEIs1v8+mYwqCTl+/NDFJXrRNI1qj5ep/hIm+QIDJ/1A9bMeP171+OuP46iVgdOnD26ww8gUXwCXrpMaYDVfJJ8jbLqY5AsMYWRiIJL4E0IIIYQQQghRmGGo/jwul+r1l80eHuBoblaDXOecM2pnOAshRp9sNsvatWtZtmxZzzZd11m2bBmvv/76cR3jkUce4VOf+hSBgBrg3LVrF01NTb2OGQ6HWbJkSb/HzGQyRKPRXjchxAnq6oJ16+Cdd9S/xXof+f0wa5YqfZ7J9L3fsqC9XSUIx40b+vjEyZszR10HRyJ973McaGuDUAhmzBj62IbIJF+Ayb4ALdkMecfuc3/asojm88wPlRIyXUWIUBQipT6FEEIIIYQQJ86yYP9+1c/C41GDGP31gRMjW/cM5rfeUoNW+bwaABk3Ds49V634E0KIEaKtrQ3Lsqipqem1vaamhs2bNx/z8W+99Rbr16/nkUce6dnW1NTUc4yjj9l939Huv/9+7r333hMNXwgBagLSq6/Ctm0q2aZpKgnj98PMmbB06dCX1Fy0SCUit25V5SFLSg739Eunoa4OLrtM3SdGjokT1fXuG29AU5N6Xk1TTYZLJCAQgI98BMrLix3paaNrGtdX1/NE4z72pJP4dIMS08B2IGblyDswLxjm0vK+pbJF8UjiTwghhBBCCHFidu+G116D1lawbTWoEQ6rlV9z58rqr9Fo+nSYMgUaG9XgVSAANTUyeCWEGHMeeeQR5s2bx+LFi0/pOHfddRcrVqzo+ToajTJeSgAKcWy5HDz3nEr6BYNQW3s48RePw9q1KiFzxRVqotJQcbvV95wwATZuVJOlQF0zLVoEs2erpJEYWTQNFi6EykrYsAH27VOvQdOEBQvU81pbW+woT7sKt4fPNEzk3Wgn70a7iOVzaEC9x8fZoTLOCpXhls8Fw4ok/oQQQgghhBDHb/9+ePZZNbu6vFwNcuTzqvzNiy+qfebNK26M4vQwDClPJfqKx2HHDlXqStfVCtBJk4Z+pYUQx6myshLDMGhubu61vbm5mdpjDN4mEgl+9rOfcd999/Xa3v245uZm6urqeh1zwYIFBY/l8XjwyEp5MYpZjkPOtjF1DVMbxITA1q3q705lZe+/NZqmEoFut0oKTp2qVv8NJZdLXQfPmaP+Ptq2SvwNZQJykGVtm2Q+j980x25iR9PUtc2kSSqpnM2C1ws+X7EjG1Ih08Ul5dWcX1pJNJ9D1zRCpgtDJn0OS5L4E0IIIYQQQhwfxzk8i7p7djWoGa8VFWpm89q1qseFDPoLMfrt3KkS/kf2vXn/fXV+WL58VJe9EiOX2+1m4cKFrF69mhtuuAEA27ZZvXo1d9xxx4CP/cUvfkEmk+Ezn/lMr+2TJ0+mtraW1atX9yT6otEob775Jl/60pdOx48hxLDVns3wQbSL92MRUraFqWnMKQkxP1jKeJ//1A7uOGo1na73f63ZnVDftEldkxYjKaHrqu/bCLYhFuHZtiY2xKPkHQdT05gdCHFFVS3zguFih1c8gYC6jWEuXafCLRNXhjtJ/AkhhBBCCCGOT1cXHDigynoWGkQJh1Xyb/9+VRZSCDF6tbXB6tVq9e+RZV/zeTh4UK0M/qM/GtGrHMTotWLFCm699VbOOeccFi9ezMqVK0kkEtx2220A3HLLLTQ0NHD//ff3etwjjzzCDTfcQEVFRa/tmqbx13/91/zDP/wD06dPZ/Lkydx9993U19f3JBeFGAt2JuP8T/MB2rIZ/IaBR9fJ2javdLbxXrSLq6pqOSd8CpNC0ml1rXmsxIvfr0rSd/clFifkmdZGnmjcR8q2cGs6hqaRtW3einawLh7hj2rHcW11fbHDFEIMQBJ/QgghhBBCiOOTzYJlqRV+hZimKmmUzQ5tXEKIobd5M0SjUFfXeyKAaUJ1NTQ3w65dcMYZxYtRiH7cdNNNtLa2cs8999DU1MSCBQtYtWoVNTU1AOzduxf9qJJ2W7Zs4ZVXXuG5554reMyvfe1rJBIJvvCFL9DV1cUFF1zAqlWr8Hq9p/3nEWI46MplebL5AB3ZLOO9PvQj/jaUOy5ac1l+19pIucvNFP8Q9bpznKH5PqPIhliEJxr3kbVtKkwX2hHnQse26bLy/LJpPxN8fs4MlhYvUCHEgCTxJ4QQQgghhDg+gYAqq5TJFC6vlMmoQf8xXv5GiDFh507V36bQ6t/uSQCNjZL4E8PWHXfc0W9pzzVr1vTZNmPGDJwBkgiapnHffff16f8nxFixLhahNZvpk/QD9f6ocrnZl06xNtp58ok/j0eVkW5sHPh6M5mE8eNltd9JWNXaRMq2+iT9ADRdpxST9lyO51qbJPEnxDA2RjtyCiGEEEIIMQxkMtDZqQYnRoKSElXCMxZTg/pHchz1s1RXQ72U/hlsOdumPZuhK5cdcOBZiCHjOIfLe/bn6POEEEKIUevDWASPrvdJ+nXTNI2w6WJrIk48nz+5b6LrMGvWwBUmMhn17+zZxenvN4JlbZuNiShuTe+T9Oum6TpuXWdjIkbyZJ9HIcRpJyv+hBBCCCGEGGrRKLz/PmzdqgYtDAMmT4azzoKqqmJHN7BzzoGmJjXTOhhUK35yOfUzBYNw/vnq5xGDImvbvNHVzrvRTiL5HDoa471+lpSWM6skVOzwxFhWVwfr10Npad/7uhN+R/VBE0IIMTo5jkPcyuM+xoQQt64Ts/KkbIuSkx2WnjEDduxQt1BIrfzTNDUhJZFQ16RnnAHTpp3c8cewWD5H3nEwjpEwNTUNy7GJWXn8/bUAEEIUlaz4E0IIIYQQYihFIvCb38Dbb0M+Dz6fGqxYtw5+/WuVUBvOysrg2mtVkhLU6r9cTg2wXHONKqskBkXOtvll035+19pIVy5LwDBw6zpbEjGeaNzH25GOYocoxrJZs1TJ30ik93bHgdZWlRA82UFX21b9RIUQQowImqYRMAxyx1jpnXVsTE3De6wV4wNxu2H5cpg3T11LNzUdvlkWzJ8Pl18uZT5PQsA0MDQN6xjVJVRyUCdoSNJPiOFK3p1CCCGEEEIMpbffVgMTNTWHV8Z5vaqMZlMTvPIKfPzjxy6hd7rYNhw8CC0tKiFZXa1W9hwZT1kZXHYZnHuuKlPq8ajVflJOaVB9EOtiXSxCtduD94hVlEHTpCWb4fm2Zqb7Syh1Fei3KMTpNm6cOge8+aaasOD1qqRfOq1WYFx6Kfj9J3bMgwdhwwbYu1edi+rqVKm2yZPl/CKEEMPcmcFSftvaiO04/Zb7jObyLAiFCZqnmJTz+eCKK6CjQ/3NyGTU36EJE9R1qjgpXt1kdiDI25FOHNsuWO7TsW1yjs1cf1hW+wkxjMm7UwghhBBCiKESj6uyRMFg33KYmqYGKrpnLBejT15XF7zwAhw4oFbxgZotPW6cGsQPh3vvHwiomzgt3o12Ymj0Svp1q3S52Z9OsSkR47xSKacoikDTYOFCNYlh82aVtDMMtRp45kwoLz+x423eDGvWqMkEfr86/rZtsGsXLFoES5ZI8k8IIYaxecEwb3S1czCTpsHjRTvqnN2WzeA1dBaGT/Dvw0DKy0/8740Y0BVVtayPR+my8pRi9kr+ObZNxLLw6AaXV9YUMUohxLFI4k8IIYQQQohcDvbsUYkv01SJroqKwR9kjsfVjORCPbFAzVTu7FT7DbVMBlatUkm/8nIVC6jVOzt3qt/R9der1X3DhOM4NGXT7E4myTk2lW4P0/0luIq1WnIQWY5DRy6Lr59+id0z6SPdCdpRyHEcWrIZdqYS5GybCpeb6YHgMfsHiSGkaaq876mW+I1E4OWXVcm22trD595QSJUTfucdaGiQUsJCCDGMlbncfKymgSebD7AnnaLEMPDoBnnHJpbP4zcMrqysZZq/pNihigGcGSzlYzUN/Kr5AB35HC5Nx6Vp5B2HrGPj0XU+VtPA2WFZWSnEcCaJPyGEEEIIMbbt26dWmbS3qzJ1jqOSXtOnw0UXDW6iy+VSicV8vnDfkXxeldQsRk+S7dvVip3qahVjN69XbTtwQCUAZ80a+tgKSFsWv21tZH08Qsqy0NDQNKh1e/lodT2T/CN7JaIOuDWDmF04sec4Dg6M2iRYxrZ4prWJD2JdvZ7fGreXa6rrZNBwtNm2TSX46ur6TrgIBlUp0c2bJfEnhBDD3PRAkNsaJvF+rIsPol1kbBtD11gSruCscCmTfCP7+mysuL6mgYleP8+2NbMlGcNybAxNZ0FJiCsqayXpJ8QIIIk/IYQQQggxdrW2wrPPqgHnykqV8HIcVWruww/V/y+/fPBW/pWXq7J4e/eqhNrRx41E1GrAhobB+X4nYudOlXQs1Kuje9uuXcMi8ec4Dr9uOcjaaCflLheVLjeappG1bRozaX7etI9bGyZR4/EWO9STpmka84NhnmtvLtgrJ2FZeHWD6aMwAeY4Dr9taeTNSAdlRzy/OdumOZvml437uKVhEvVeX7FDFYOlvV2VCe3vXOv1QnPz0MYkhBDipFR7vFzhqeXSimrSlo1b10ftRKXRbEG4jAXhMpL5PLF8nqBpSk8/IUYQOesKIYQQQohhryOX5Q8drfyqeT9PtxxkUzxK3rFP/cAbNqhkW03N4eSWpqm+deGwWoXS2nrq36dbd08sjwfa2tQKPwDLgo4OsG04+2xwuwfvex6vbLZv38EjmaYqBzoM7E+n2BCPUuFyEzRdPT1k3LrOOK+XtmyGtdHOIkd56s4Kl1Hr8bI/nSJtWYBKikVyOdpzWeYFw4wbhcmvpmyadfEIZS4XoSOeX5eu0+Dx0pnP8Xako8hRikFlmur81x/LKjwpQQghhjHLcWjPZmjLZsgNdI4bpUxNp8Q0Jek3wvlNkxqvd1Qn/WzbZm8qwZZ4jLZsutjhCDEoRu87VgghhBBCjAprI50829ZEJJ9D18B24PWudqb4A/xRzXjCJ1sWM59X5S0DgcKrTPx+iEZVKdDq6lP7IY40aRIsWwZvvHG4vCiocnYLF8K8eYP3vU5ERQXs3q3iOfr34TgqMVheXpTQjrYjFSdtW1QXSJBqmkbQNFkfi7C8shZjsPs0DqFyl5tP1Y7nN60H2ZdKkc9mcICAYbK0tIIrq2p7kmKjyc5kgpRlUenq//ndmIhylV0ng4mjxfjxsG6d6iV69DndttX5Z+rU4sQmhBAnKGNbvBvpYm20k/acmjQVNF2cHSplYaiMoFmEku5CiD5s2+Z3bU281NFKczaN44ChaZwRKOHKyjopaSpGNEn8CSGEEEKIYWtHMs7TrQdxHIfxXl9PucOMbbElEedXzQe4pWFinzKIx8Wy1K2/VW7dx8wV7rF2Ss44QyUA9+5VZUU9HpgwAXxFXL01fbpaARmPqyTkkWIxVWrvjDOKE9tR8raDBv0mvUxNJ+84WI4zohN/AHVeH58fN4U9qQSt2QympjPR56fSPYi9J4eZ7lUR/T+/GpYDecfGLUVsRofJk1V/v/37Vdnl7qR+Pq9WR/895gIAAGW9SURBVFdUDJvzz4CSSTWhZN8+lbCsqVHn1jIZOBRirEhaeX7RtJ9N8ShuXSdommhANJ/jmdYmNsaifKp+AuUFJrcIIYaObdt8f8923op0YOPg1Q10XSPv2HwQi7A1EeeP6ydwRWVtsUMV4qRI4k8IIYQQQgxb70Q6SFkW472+XkkAj25Q4/awMxVnbyrJJH9A3ZHNwoED6t+SEjWQ3N+KIJdLlfNsaVH7Hs2yVPIvHD4NPxlqYHvatNNz7JNRX6/KjL79thq87v6dxOPqd7h4MdQO0gffri71ewe1mrK09IQeXnpoRVB/ib2ElWe8149rhCf9uhmaxhR/CVNGYT+/QkoP9fTL2zZmgfdv0rKodnvx6gOUphUji8sFy5fD88/DwYPq/AvqHFxZqVZJn65z8WBpaoLnnlOJSl1XsW/dCh98ABdfPDISl0KIU/b79mY2xqLUej14jvg75TdM8rbNnnSSXzcf5NaGiaNy1b4QgyGez7MzFSdr2/h0g8n+AH5jcNMYv25V/aTduk6gVxlTg4Bt05nP87PGfczwB5nY/VlTiBFEEn9CCCGEEGJYytgWO5MJQqZZcGDEZxi0ZjPsTSeZ5PPD+vWwdq1KKtm2GkiuqYHzz4eGhr7fQNdh9mxobFS96zxHrKByHFWGs7RUrUQZCzQNzj1XlfNcv/5wb8MJE2DuXLVq5VQHqFIpeOUV2LFDJRdBlVSdOhUuuOC4VzzOKglR7nLTkk1T6/b2en2kLAsLWBgukwG1EWpmIEiVy0NzNkO9p/fzm7YscrbNwnDZya30FcNXaSnceKNaCd3UpM7DFRXqHFyMvqcnIp1WScu2NvV3pzth3f235MUX1c83mGWjhRDDTlcuy7pYlLDL7JX062bqOlVuN7tSCfamk0z0STJBiCNlbZs1HS28F+2iK58DB8Ch3OXhnHAZF5ZXYmqnXu3Btm1e7mhVJfQL9C7UdJ1S06Qzn+O59mZu90855e8pxFCTxJ8QQgghhBiWHAdsOObgvu04qjfUmjVqsLWiAkxTJfMOHIBnnoFrry28Wm3WLFWSbetW9Ri/X600icfV/y+6SJW4HCs0DWbMUCtTUim1zec79YQfqJKpzz2nyuAFg4efj3gcPvxQJQKvvrpvf68CAobJ1VV1/Kr5APvSKUKmC0PTSFh5co7DgmCY+cHSU4/5eDiOSlRs2aKSFaYJU6bAzJknvJJRKF7D4KqqWn7VfIC96RRh08TUdOJWnqxtMy8YZmFISieOSoahEn0jbcLFjh0q6Vdd3XuVuaapv0mNjbB5syT+hBjldqYSxPI5xnn7n8jk0w1a7Sw7kglJ/A0DjuOwP51iRzJOxlGry84IBKlxe2QC2RDLOza/at7Pu9EuSgyTeo8XQ9PIOw5duSzPtjXRlcvx0Zr6Uy7lvz2VoDWXwWf0n0TUdR1D0/kw2nVK30uIYpHEnxBCCCGEGJY8uk6tx8uOZJyw2TcZlLVtDE2jFg3eeedw0q/nAB618qKxEd57D666qu83cbngiivUisANG1QvO11XK9zmzlXlL8ciTVOJz8G0a5e6Hdm/C1QS0ONR9+3erVYWHoe5wTAlhslbkQ62J1UpoBq3l4XhMhaGynD1V+J1MDkOvP66Wmmaz6ufw7bVa27jRlW6sNBqU3FMs0pCBA49v1sTMTK2TZXbw8JQGeeEy3EPxfMrxPHqXqFYqGespqkJJHv3Dn1cQoghlT3Uo3agSWuapqEBOcceoqhEf7pyWX7TcpDtyQRp20JDLTB7saOF2SUhrqmqG/TykqJ/62IRPohFqHZ78B3x99TUNCrdHhJWnrXRDmaUBJldEjql75Wy8tgOGMe4ntSBjLxXxQglZy8hhBBCCDEsaZrGwlAZu5JxYvkcwSOSf7bj0JxJ0+D1M629EyIRqKoqdBAIhWDPHpXUCwb77uNywYIFMG+eWiVoGL3LforBsXOnGhgvVLLP7Vb37dhx3Ik/gEn+AJP8AZKHPrz7DOOUZwCfkJ07VdLP41EJzW6Oo3oYrl4NN90kr6eTNMHnZ4LPr8p7OjZ+wxza51eIwaJp6rwghBjV/IahetQ6DmY/f68cx8FBrfwTxZOw8vy8aR87kgkq3W6qddVf2HEc4laed7o6SVsWn6qbMDSTycY4x3F4N9oJ0Cvpd6SAYdKRzfJetPOUE39lLjeGBjnbHnAyWd5xKJHkrxihhsWZ66GHHmLSpEl4vV6WLFnCW2+91e++P/zhD7nwwgspKyujrKyMZcuWDbi/EEIIIYQYuc4MhllaVkk8b7EvlaQ9m6E5k2ZfOkWV28MNNfWYuZzauZ8PibhcajVWJjPwNzMMtcpNkjSnRzKpymD2xzQhkTipQ/sNkxKzCEmhTZvUa+vohHJ3eb/2drWSUZwSr2EQPFTOVYhhqbuEp2X1vc9xVOnk8eOHNiYhxJCb5i+hzHTRlcv2u0/MyhMwTGYGCkxGE0Pm/WgXO5MJ6j1eAsbhfuKaphE0XdR6PWyKx9gYjxY50rEhYVk0ZtKEBvqsAJSYJnvTSfKnuApvgi/ABK+ftG3h2IWPlbdtHBwWhctP6XsJUSxFT/w98cQTrFixgm9+85u8++67zJ8/n+XLl9PS0lJw/zVr1vDpT3+aF198kddff53x48dzxRVXcODAgSGOXAghhBBCnG66pnFlZS03109gQaiUEtNFjcfLVVW1fG7cZMZ5/RAIqPKc3QnA/7+9Ow9vqkr/AP692ZMm3du0lC4sBQq0rFILKA6LxYUBRWUYBEREB2HAQUZBBUQF1BkRtxE3llH4wbghIwwI1SpgESg7lLKUnS7Q0r1N2uT8/rgSiU1LgbZp0+/nefJA7j335s29TXp633ve83sWi5zMq+vSlXR9vL2rP0eAvM7Hp+HiuVk2m1zSs7qfK5VKvuCfl9ewcRFRw2vTBvD3By5elMv9XiEEcPmy/D3RoYP74iOiBmFQqtDLxx9lNhuKKiurrC+z2XC5ogKdjd4I1jajOaQbGZsQSC24DK1CUe1oPq1CCUjAHs7v1mCEAORCuNVTQAJE3QyiHxwYCo1CgQJb1eSfzW5HQWUF/NQaDArk/LzUNLl9rOrChQsxYcIEjBs3DgCwePFirFu3DkuWLMGMGTOqtF+xYoXT848//hhffvklkpKSMGbMmAaJmYiIiIgajkKS0MHojQ7VlXQJC5NHV126JI+6uHpUkN0OFBcD3bsz8edu0dHyvHelpVXPxZXRgNdR5tPtJElOOLu4sFelHRF5NoMBGDQI+O47eb4/tVr+7Fut8s0pt90GhIS4O0oiagC3+Qeh2FaJHQV5uFxhhZdSCQkSSmyVUEgSunr74u6gUHeH2awVV1aioLICXtco4eilVCLTWgabEKw6UM/0SiV81WpctFpgqmHUX7GtEpF6Q7WldK9HX/9AZFvLsTbnAvIqK6CSFFBIcnlPuwB8VRo8GdEWgRom6alpcmviz2q1IjU1FTNnznQsUygUGDhwIFJSUmq1j9LSUlRUVMDfn8NuiYiIiJoltRro3fu3C64+PvKy8nKgsFC+2Nqtm7ujpPBwoFMnYP9+ueyd0SgvLy6WL4536dK0SuEpFEBUFLBvn/wz9/sLEFarXD42lBf3iJqFsDBg+HDg2DF5XlmbTf78t2/veg5aIvJISknC3UGhaO9lwv6iApwsK4EQQCuDF7p6+6K9lwkqye0F2Jq168kZSb8+qH4pf53b/ZucC6iw212OxLTa7bALgR7e/o7SrDdreEhLdPAyYfOlbBwuKUKFsMNXpcQtPv64MzAEZo7MpSbMrYm/S5cuwWazwWw2Oy03m804cuRIrfbx7LPPokWLFhg4cKDL9RaLBZar5nMpLGRtZiIiIiKP07o1cM89wK5dcvnF0lJAowG6dgV69gR8fd0dYb06X16GA0UFyLKUQaNQoJ2XCR2N3jA0psnoFQrgjjsAPz/g4EGgoEBe7uMDdO4sJ/6qKbfUaHXsKF/kz82Vy/xdib+iQh6BGhnZtJKZRHRzvL2BHj3kBxE1WwpJQrSXCdG/zuMnhKizRAXdPKNShWCNFmfLS2GsaXRZZSXiTL5Q8Nw1iK7evjhQVICMshIEaTTQK5SQJAlCCJTabLhotSLGaEJnUzVVYG5QJ5MPOpnk6QbsdjsUTe3vEaJqNKIrAdfv1VdfxapVq5CcnAydznUGfsGCBZg7d24DR0ZERETU8N577z384x//QFZWFrp06YJ33nkHvXr1uuZ2q1atwsiRIzF06FCsWbOm/gOtL+HhQMuWQH6+PK+f0fjbqDIPJYTAz/m5SMrNQYmtEhqFAjYhsL+oAC11BjwU0rJxzSGjVMplV2Nj5XmvADkRqFa7N64bFRoK9O8P/PijPNpUoZAnHVEogIgIufSfUunuKImIiMiNmPRrXBSShO4+fjhVVoJymw06F321kspKKH8tzUoNw6BUYURoOL7JuYCM0hJctFsd63QKJbp6++KPwS3k+RfrCZN+5EncmvgLDAyEUqlEdna20/Ls7GyEXKP+/T//+U+8+uqr2Lx5M+Li4qptN3PmTEybNs3xvLCwEOG865aIiIg8zOrVqzFt2jQsXrwY8fHxWLRoERITE5Geno7g4OonJD916hSmT5+O2267rQGjrUeSJCeSmomjpcX47lI2VBIQodM7LixVCjvOlpfi6+zzGB/eqvGVlFKr5fkYPUG7dnIC8PhxeeSfSiUnoCMjm25Ck4iIiMiDdTH5Ir2kCAeKCuCtUsFHpYZCkmATAvkVVpTYbLjVNwDtfh212agUFso3OarVrsvN/54QcqWNigpApwNMdfOe7EIgt8KKSmGHUamCSXXz/V5ftQZjWkTiTHkpjpcWo9xuh16hRDsvI8K0eibRia6DWxN/Go0GPXr0QFJSEoYNGwZAHlKblJSEyZMnV7vd66+/jnnz5mHjxo3o2bNnja+h1Wqh1WrrMmwiIiKiRmfhwoWYMGECxo0bBwBYvHgx1q1bhyVLlmDGjBkut7HZbBg1ahTmzp2LLVu2ID8/vwEjprqwu+AyrMIGs9bgtFwlKRCi1eFMeSlOlJagfWO8aOFJTCbOI0lERETURGgUCjxgbgk/lQb7ivJxrrwMACBBgq9ajd6+gegXEARlY0o0nT4tl8s/exaorJSrSrRoIZfMb926agJQCPnGtIMH5akQ7Hb5BrXISHmbGxwYYxMCewvzkVqYh0xLOexCPp4dvbzRy9cfYTr9Tb1NSZIQqfdCpN7rpvZD1Ny5vdTntGnTMHbsWPTs2RO9evXCokWLUFJS4rhoNWbMGISFhWHBggUAgNdeew2zZ8/GypUrERUVhaysLACA0WiE0cNLORERERG5YrVakZqaipkzZzqWKRQKDBw4ECkpKdVu99JLLyE4OBjjx4/Hli1brvk6nDu5camw23GqrASmaubx0/5a9vN8eRkTf0REREREV9EplbgnOBS3+QfiRGkxLHY7DEol2hiM8GpM82QDwIEDwJYtv01noNfLyb+MDODMGeDWW+V5za8k/4QAtm8Hdu6UE34mk5z0s1qBtDTg1Cl57u2YmOsKwyYEvs25gB0FeZAA+KjVUEkSymw2bC/IxZGSQtwf0pJ/exA1Am7/FhsxYgQuXryI2bNnIysrC127dsWGDRtgNpsBAGfOnHGqr/v+++/DarXigQcecNrPnDlz8OKLLzZk6ERERESNwqVLl2Cz2Rz9pyvMZjOOHDnicputW7fik08+wd69e2v9Opw7mYiIiIiIPIm3So1u3o14qoCsLGDrVjmZd/XUWBoNYDDIpT9/+UUuox8ZKa/LyAB27apa2lOjAby8gLw84KefgKAgIDCw1qGkFlzGLwV58FWpYVT9llbQKpTwUalxwVKOtdnn8UREG3jXQelPIrpxbk/8AcDkyZOrLe2ZnJzs9PzUqVP1HxARERGRBysqKsLo0aPx0UcfIfA6/tDj3MmNi1qhQKTeCweK8uGr1lRZb7XboZQkhGp1Ne9ICKC4GLDZ5AsBnJeOiIiIiKhxSE8HSkvlOaVd8faWS3kePiwn/oSQ/19Z6TqpJ0mAv7+8TXp6rRN/NiGwsyAPSklySvr9tlv5745z5WU4VFyIBN+A63mXRFTHGkXij4iIiIhuXGBgIJRKJbKzs52WZ2dnI+Tqu0J/deLECZw6dQpDhgxxLLPb7QAAlUqF9PR0tGnTpsp2nDu58enh44f0kiLkVVjhp1I7Jry3CYFMSzmi9F6I9qqhHP7Jk8C+ffIf/kLIpYM6dgTi4uQ7gomIiIiIyD3sduDECXlkX03zDRqNcsnP8nI54Xf+vLysOpIkjwY8fhzo06dWoWRbypFjtcC3hpF8CkmCSpJwhIk/Irdj4o+IiIioidNoNOjRoweSkpIwbNgwAHIiLykpyWVVhQ4dOuDAgQNOy1544QUUFRXhrbfe4ii+JqSdwYiBAcH4Pi8HZ8rLHPP62YRAS60e95vDoJIUrjc+dAhITpbn+jCZAIVCLhX0009ySaHERI7+IyLyABV2O9JKCnGgqAD5FRXwUasRa/RBjNEbGkU1vyOIiMj9bDY5kadU1txOqZT79BUV8jZ2O3CtGzZVKrm93S7/HXANVmGHTdihqikBCUAlSSj/9aZSInIfJv6IiIiIPMC0adMwduxY9OzZE7169cKiRYtQUlKCcePGAQDGjBmDsLAwLFiwADqdDp07d3ba3tfXFwCqLKfGTZIk9PULRJTeCweKC5BZXgaNQon2XiZ0NHq7LMMDQC7t+fPPVecK0esBiwU4dkwuFRQb2zBvhIiI6kW5zYYvss/hcHEhhAC0SgXOW8pwqKgQMUYTHghpCYOSl4aIiBollUoe7ZefX3M7q1Wu1qHTyYk8tVru0+tqKPlvscjzAtbyBhCjUgWNQoFyux3qGrax2EWNowKJqGGwd0dERETkAUaMGIGLFy9i9uzZyMrKQteuXbFhwwaYzWYAwJkzZ6DgXf0eSZIkhOsNCNcbar9RRgZQVAT8+vPhRKuVLwCkpQGdO9dcVoiIiBq1H/JycKCoAGaNFrqrRoxY7DYcKiqEvzoH9wa3cGOERERULUkCYmLkKh3VjcwTQp4DMDb2t2od0dFAaqo8/5+rvvyVkYQxMbUOJUCtQWuDEQeLCmBUKh1TDFzNardDkoBYk0+t90tE9YOJPyIiIiIPMXnyZJelPQEgOTm5xm2XLVtW9wFR41VUJP9bXTJYr5fvLLbbr11aiIiansJCec6g4mL5ImFEBBAaykS/hymurMTewnyYVCqnpB8AaBVKeKtV2F9UgNv9g+DN0RlERI1Tu3Zyif6cHCAoyLlvbrcDFy8Cvr7yPN1XdOokV/C4eFHe5urf7zabvK/gYKBt21qHIUkS4n38kVFajByrBcEarVPyr8JuR6alHG0MRrTzMt3EGyaiusDEHxERERFRc6PRyP8K4fpCf2WlXFaIo0SJPIsQwMGDQEqKnPS7smzXLqBNG6B//2vPCURNRo61HMW2Spg1rs+pt0qNTEs5si3lTPwRETVWJhNw553Apk1ywk6plPvyFRVyn93PDxg4EPD3/22boCBg0CAgKUmeu1utlsuGWq1y4i84WJ7P28vrukKJ9jJhSHALrL+YhTPlZdApFFD+OqefEEAbgxceCGnJ+WOJGgEm/oiIiIiImpvwcPnifmlp1T/47XagrAzo2pWjfxorm00erZWeDly+LI/QbNdOfuj17o6OGrOTJ4GffpL/bzbLyX0h5M/84cPyhcGBA90bI9UZCfJ3uKhmvRDVrSEiokYlJAQYPhw4fhw4ehQoKZH7fG3bymU9TS5G2EVFAQ8+KG9z7BhQXi4n/Nq1k7e7wT5jN28/tNQZcKAwH0dKi2Cx2xGp1qCLyRcxRhO0ClYLIWoMmPgjIiIiImpuzGb5j/4DB+REn9EoJ/ksFiAvDwgMdC4XRI1HRYV89/aRI3LCRquVy7KePSvPy3jXXYAP51UhF4QA9u2T7/YPCfltuSTJI3ztdvnCYI8e8uiBauRXWHG2vAwCAmaNrkqpL2o8QrQ6+Ko0KKisQKCLUX8FlRXwUanRQscbBoiIGj2DAYiLkx+15e0NdO8uP+pQkEaL/oFm9IeL+cKJqFFg4o+IiIiIqLmRJKBfP3l0z5EjcgkgSZJLB7VsKa/z9XV3lOTKvn3yyCw/P0Cn+215ZSVw/jzw44/AkCEcrUlVFRcD2dmuRwUA8ujfrCzgwgWXib9ymw2bcrOxrygfxZWVAACDUologwl3B4XCR81SkY2NXqlETx8/bLyUheLKShhVv10CKrFVosRmw62+AfBS8tIQERERkSdh746IiIiIqDnSaIA77pBLep4/L5eP9PMDwsI4t19jVVEBHDokn7urk36APG+Lr6888i8nRx7VSXQ1m00e1Vfd51uS5IfNVnVTIbAm5zz2FObDR6VCS50eEoBiWyX2FOWjyFaJh1tEwMAEUqPT1y8Qlyus2FOUj7wKK1SShAohoJEU6Onjj37+we4OkYiIGqPKSuD0aSAjQy4JrtcDrVoBkZHyzYNE1KixV05ERERE1Jz5+nJ0X1NRWAgUFcmlWV3R64GCAiA3l4k/qspkkh8FBa7n9bFY5FG/Lkb7ZZQW41BRIYI0Gqfknkmlhk6hlNcXF+IWH//6fAd0A9QKBYaZw9DV2xeHiwtRWFkBb5UaMUZvtNJ7QcHRwURE9HuXLwPffQdkZso3DalUciLw0CEgNBQYNAjw5+98osaMiT8iIiIiIqKmQKGQH3Z7ze14IZ9cUSqBTp3kcrAWizw/5BV2uzy/Z3i4POr3d9JLimAVdpcj+tQKBZSShINFBUz8NVIKSUJrgxGtDdXcNEBERHRFaSnwv//JSb+gIOfRfRUVwLlz8vqhQ6u/GY2I3I41fIiIiIiIiJoCHx/57uqiItfri4sBg0G+E5vIldhYoH17ID9fnu+vsFBO+GVlAYGBcvlfF6VAS2w2qGpIKGsUChTZKusvbiIiImoY6elyv8BsrlrSU62Wl2dnA0ePuic+IqoVJv6IiIiIiIiaAoUCiIuT/19YCAjx27rycjkhGB3N0q1UPbVaLs91553y6D6lUi7/2acPMGyYfGe/C34qNSrtAuLqn7mrWGx2BKg19Rg4ERER1Tu7HTh8WO4vKJWu2yiV8nzThw5duwoFEbkNE39ERERERERNRUwMEB8P2GxyCabsbPnfoiKgQwegb193R0iNnVoNdOwIDB8OPPooMHo0cOutgLd3tZt0NHnDoFKisLLqqL4ymw2SBMSZfOsxaKK699577yEqKgo6nQ7x8fHYsWNHje3z8/MxadIkhIaGQqvVol27dli/fr1j/YsvvghJkpweHTp0qO+3QURUdyoq5AoSOl3N7XQ6oKRELh1ORI0S5/gjIiIiIiJqKiRJTvy1aQOcOCGP/NNqgagoeQSXizKN1HxY7DakFRfhbHkphABCdTrEeHnDqKrmT/9a/ryEafW41ScAP16+iDK7DT4qNSQARbZKlNls6Obtixijqe7eCFE9W716NaZNm4bFixcjPj4eixYtQmJiItLT0xEcHFylvdVqxaBBgxAcHIwvvvgCYWFhOH36NHx/N8K6U6dO2Lx5s+O5qrrPHhFRY6RQyH3Na43ks9vlttWNCiQit2MPhIiIiIiIqCmRJLkkYzVlGT2aEPIox+xs+XlgoDynIROeyLKU44usczhfXgY7BCQAEoBAjRb3mcPQ2mC84X1LkoRBgWb4qtXYUZCHS1YrBAR8VGr08wtCb79AqCSeA2o6Fi5ciAkTJmDcuHEAgMWLF2PdunVYsmQJZsyYUaX9kiVLkJeXh59//hnqX+e8ioqKqtJOpVIhJCSkXmMnIqo3arV8I1laWo2VAFBSArRrJ5f8JKJGiYk/IiIiIiIiavyKi4EffgBOnwasVnmZWg20bAnccQfg5+fW8NypzGbD51lnca68DC20Oqh/TYTahEDmrwnB8S1bIUCjveHXUEgS4n0D0MPHDxetFggBBGg00Cp4tz81LVarFampqZg5c6ZjmUKhwMCBA5GSkuJym7Vr1yIhIQGTJk3CN998g6CgIPz5z3/Gs88+C+VVI16OHTuGFi1aQKfTISEhAQsWLEBERES9vyciojoTEwMcPy73u4wubhoqKZFH+sXENHxsRFRrvCWPiIiIiIiIGreKCmDjRuDoUcBgAEJC5JF+RiOQkQFs2ACUlbk7SrdJKy7E+fIyhF2V9AMApSShhVaHSxUW7CvKr5PXUkkKhGr1aKHTM+lHTdKlS5dgs9lgNpudlpvNZmRlZbncJiMjA1988QVsNhvWr1+PWbNm4Y033sArr7ziaBMfH49ly5Zhw4YNeP/993Hy5EncdtttKCoqcrlPi8WCwsJCpwcRkdtFRgLdugGlpcDFi/LNVkLI/166JCcEu3WTy8wTUaPFEX9ERERERETUuJ06BZw9K5f2vLqslE4HBAcDmZny3emxsW4L0Z1OlpVAAqByUfJUIUnQKZQ4WlKM/gHmqhsT0TXZ7XYEBwfjww8/hFKpRI8ePXD+/Hn84x//wJw5cwAAd911l6N9XFwc4uPjERkZif/85z8YP358lX0uWLAAc+fObbD3QERUK5IE9O4N+PgABw7IyT6bTR7lFxAg97U6d2aZdaJGjok/IiIiIiIiatxOnpTvNnc1l4xKJV+MasaJv0ohIElStesVkgSbEA0YUdNlFwJHS4qwv6gAWdZyGBRKdDL6INbkA6OKl1A8QWBgIJRKJbKvzBX6q+zs7Grn5wsNDYVarXYq6xkTE4OsrCxYrVZoXHw3+fr6ol27djh+/LjLfc6cORPTpk1zPC8sLER4ePiNvCVqCDabnACpqJBHnvv5yQkSIk+kUMh9qo4dgawswGIBtFq54oKSo/2JmgL2WomIiIiIiKhxs1prvrNcpZIvSjVTYTo9dhdehl0IKH53IVoIgTKbDZHeBjdF13TYhMC6ixewI/8ybMIOnVKJi8KOY6XFSC28jBGh4Qi6iXkSqXHQaDTo0aMHkpKSMGzYMADyiL6kpCRMnjzZ5TZ9+vTBypUrYbfbofj1u+jo0aMIDQ11mfQDgOLiYpw4cQKjR492uV6r1UKr5c9To2ezAYcOAQcPArm5gN0uzy8bFgZ06cJyh+TZlEr5Z52ImhyOySUiIiIiqmeZ5WX47lIW/n3+FFZnnsHugssos9ncHRZR0+HrC1RWyqP+XLFY5PJTzVRnozf81BpkW8shfneM8iqsMCiViDP5uie4JmR34WVsz8+Dt0qFcL0BQRotQrV6tNTpcba8FN9kn4edIyc9wrRp0/DRRx9h+fLlSEtLw8SJE1FSUoJx48YBAMaMGYOZM2c62k+cOBF5eXmYOnUqjh49inXr1mH+/PmYNGmSo8306dPx448/4tSpU/j5559x3333QalUYuTIkQ3+/qiO2GxAcjLw/fdy0s9kAvz95ZFPGRnA+vVyUpCIiKiR4Yg/IiIiIqJ6IoRASn4uknJzUGSrhFYhoVII7CnMR4TOgAc5eoSodqKjgf37gaIiwNvbeV1JiTz6ol0798TWCPiqNRgSFIpvci7gTFkZDColJAClNhv0SiXuDAhBhJ4j/mpiEwK7CvKglFClpKdSkhCs0eJ0eSlOl5WilcHLTVFSXRkxYgQuXryI2bNnIysrC127dsWGDRtgNsvzYJ45c8Yxsg8AwsPDsXHjRvztb39DXFwcwsLCMHXqVDz77LOONufOncPIkSORm5uLoKAg9O3bF9u3b0dQUFCDvz+qI0eOyHOcmUxyec8rVCr5eV4esHWrXP6wGd98QkREjQ8Tf0RERERE9eRoaTE2XsqGSgIidXrHHFyVdjtOlZfg6+xzGN+yNZScI4aoZsHBQM+ewPbtQHY2YDTKcysVF8ujALt1A5r53FidTD7wV2uwpygfx0qKYAMQa/RFN29fRDFRdU1FlRW4ZLXCpFS7XK9XKnHRakGWpZyJPw8xefLkakt7JicnV1mWkJCA7du3V7u/VatW1VVo1BjY7cDhw/LvGkM1N074+QGZmcDRo0BCQsPGR0REVAMm/oiIiIiI6snugsuwChvMWucLRiqFAqFaHc6UleJEaTHaeZncFCFREyFJwC23yCU/DxwALl6UE36hoUCnTkBMTM1zADYToTo9QnV6ICjU3aE0OVfmRhRwXcrzSglVBe/TIGoeCgrk3zWmGvpokvRb2U8m/oiIqBFh4o+IiIiIqB5Y7XacKiuBSem6y61VKFEpBM6XlzHxR1QbkiSX84yOlst7CgF4eTHhR3XCpFQhTKfH8dJimFRVR/2V2GzQKZVoqWPJVKJmwWaTR/1d63eMUinPQUtERNSI8C8kIiIiIvJohZUVOFBUgL2F+ThfXuYYtdEQ5FeqeXhIw0VD5CEkSS71aTIx6Ud1RpIkxPv4QyVJyLVanX5XWOw2XLJa0c5gQgutzo1RElGDMRgAjQawWGpuZ7EAPj4NExMREVEtccQfEREREXmkCrsdSbk52F14GYWVFQAAnUKJVgYv3B0UiiCNtl5fXy1JiNAbcKioEL7qqqNHLHY7lJLEi8hERI1ER6M3BgWYkZx3EWfKy6CSJNiEgFKS0NHojSHBoY65WonIwxkMQNu2wJ498o0mrj77lZXy6PMOHRo+PiIiohow8UdEREREHkcIgfUXM5GSnwujSoWWOj0kAKV2Gw4XF6KoshJjwiLh7aKcW12RJAk9vP1wtKQIlyus8FWpHReMbUIgy1KOKL0X2noZ6y0GIiKqPUmScJt/EKK9TDhUVIDcCit0CiWivYyI9jJCJXGEKVGzEhsrz9+XkwMEBTmPMq+okOcAjIgAWrd2X4xEREQuMPFHRERERB7ngqUce4ry4adWO83V5KVUQadT4mx5KfYU5qOff1C9xtHBy4T+/sH48bI8ekSnUKBSCNiEQJhWj/vMYbyQTETUyIRodQjhaGwiCgoC7rwTSEoCsrPl+fyUSjnpJ0lAZCQwaJBcEpSIiKgRYeKPiIiIiDzO0ZIilNpsCFJXvRCjlCToFArsa4DEnyRJ6OcfhFYGLxwoKsAFSxm0khIdjCZ0MvrAqGJ3nIiIiKjRiogARowAjh8HTp6U5/Tz9pbLgEZGAi7KuRMREbkbrzQQERERkccpt9sgAdXOxaRRKFBqr4RdCCjqeb4mSZIQqfdCpN6rXl+HiIiIiOqBwQDExckPIiKiJoB1hYiIiIjI41yZu88uhMv1ZTYb/FSaek/6ERERERERERE1JCb+iIiIiMjjdPAywaRS4XKFtco6i90GG4Bu3n4NHxgRERERERERUT1i4o+IiIiIPE6ARos7/INhtQtcKC9Dqa0SFrsNl6wWZFksiPEyoYu3j7vDJCIiIiIiIiKqU5zjj4iIiIg8Uh/fABiVKmzPz0WWpRx2CJiUavT2DUAfvyBoFUp3h0hEREREREREVKeY+CMiIiIijyRJErp6+yLW5INLVgtsQsBPrYFeyYQfEREREREREXkmJv6IiIiIyKMpJQlmrc7dYRARERERERER1Tsm/oiIiIiIiIiIiIiam+Ji4ORJoLQUUCqBsDAgJASQJHdHRkREN4GJPyIiIiIiIiIiIqLmwmYDduwADhyQk39XaDRy8u+OOwA/P7eFR0REN4eJPyIiIiIiIiIiIqLmQAhgyxZgzx5ArwfMZkChkJeXlwMZGfIIwCFDAG9vd0dLREQ3QOHuAIiIiIiIiIiIiIioAWRlAQcPAkYj4OMjJ/0AubznlURgVhawb5974yQiohvGxB8RERERERERERFRc5CeDlgsgJeX6/VKJWAwyO3Kyho2NiIiqhNM/BERERERERERERE1B9nZgFYrj/CrjpeXXO6zoKDh4iIiojrDxB8RERGRh3jvvfcQFRUFnU6H+Ph47Nixo9q2X331FXr27AlfX194eXmha9eu+PTTTxswWiIiIiIiIiIiqmtM/BERERF5gNWrV2PatGmYM2cOdu/ejS5duiAxMRE5OTku2/v7++P5559HSkoK9u/fj3HjxmHcuHHYuHFjA0dORHXFLgTOlZfiWEkRMi1lEEK4OyQiIiJqbFq0kEt91tRPKCmRR/35+jZYWEREVHdU7g6AiIiIiG7ewoULMWHCBIwbNw4AsHjxYqxbtw5LlizBjBkzqrS/4447nJ5PnToVy5cvx9atW5GYmNgQIRNRHUovKUJybg4uWMpRIezQKBSI0nlhQEAwwvUGd4dHTURhZQVKbTZ4KZUwqdTuDoeIiOpDdDSwfz9QXAyYTFXX22xymc/YWECna/j4iIjopjHxR0RERNTEWa1WpKamYubMmY5lCoUCAwcOREpKyjW3F0Lg+++/R3p6Ol577bX6DJWI6kFacSG+yDqHUnslAtVaaBQKlNttSCspRLa1HKNaRKCljsk/ql5meRm25l9CekkRKuwCGoUCMV4m9PULRLCWF32JiDyK2Qx06QLs3AlUVgLe3oBSKY8ALCsD8vPlUYFdu7o7UiIiukFM/BERERE1cZcuXYLNZoPZbHZabjabceTIkWq3KygoQFhYGCwWC5RKJf71r39h0KBB1ba3WCywWCyO54WFhTcfPBHdlEphR1JuDsrtNrTU6iFJEgDAS6mCQafEmfIy/Jh3EX8OjXCsI7raufJS/F/mWVyyWuCrUsOgUqLcbsf2glycLC3GGL03giSFfGHYwARyo2SxyBfqJQkICJAv4BMRVUeSgN695dF8+/YBFy/+VvZTpwPatwduvx0wGt0bJ7lfURFw5gxgtQIaDRAR4XqUqAcqqqzAsdJilNls0CoUaG0wwl+tcXdYRLXGxB8RERFRM2UymbB3714UFxcjKSkJ06ZNQ+vWrauUAb1iwYIFmDt3bsMGSUQ1OlNWiixLGQI1miqJPUmS4K9W40RpCfIqrAjQaN0UJTVWQghsvpSDS1YLwnV6KH79GdIplWiflQ3z4SOoKCqGUGkg6fVyebiePXkxuLGwWoHdu4G0NLlknyTJ83HFxQGdOwMKhbsjJKLGSqGQv887dQJOnZJLe6pU8ki/wED5+4SaL6sVSEkB0tPl+R4BOTns5QV06AAkJMiJQA9UYbfjh7wcpBZcRqGtEhACAoBRqUJnkw/uDDTDoGRKhRo//pQSERERNXGBgYFQKpXIzs52Wp6dnY2QkJBqt1MoFGjbti0AoGvXrkhLS8OCBQuqTfzNnDkT06ZNczwvLCxEeHj4zb8BIrphJTYbKoWAVuF6hI9WoURxpRUlNhsCGjg2avwyLeU4VVaCQI3GkfQDgPCTpxC3aw8kawXyDAb4mUzQW61AaiqQnQ3ce6988Y/cp7IS2LwZOHJEHqHj7S1flL18Gfj+e6CwEOjThxfviahmej0QE+PuKKgxufL7JS1NvtEnOFhOFNvt8k0mu3bJ/955J6D2rPmAbUJgbc4F7CzIg1GlQphWB4UkwS4ECisrkXI5FwWVFfhTaHi1fW+ixoK3fxERERE1cRqNBj169EBSUpJjmd1uR1JSEhISEmq9H7vd7lTK8/e0Wi28vb2dHkTkXgalEipJgsVuc7neYrdDrVDAwNJ/5EJhZQUsdjv0V128Ulss6HDgMCS7HQUB/ijVqmFVKeXEUnAwcO4ccOCAG6MmAMCJE8DRo4C/P+DnJ4+80GrlkToGA7B/P5CT4+4oiYioqTl+XP79EhAg/+6/Mnpc8WvZ74AA4NgxuZ2HOVpShN2FlxGg0cBf/dtNUQpJgq9ajRCdFkeKC7G3MN+9gRLVAhN/RERERB5g2rRp+Oijj7B8+XKkpaVh4sSJKCkpwbhx4wAAY8aMwcyZMx3tFyxYgE2bNiEjIwNpaWl444038Omnn+Lhhx9211sgohsQqTcgRKvHJasV4sr8PL8SQiCvwoo2Bi8EcE4SckGrkBPHFcLuWGbOzIJXcTGKvU2wQ0ABCcoro8ZUKnl0yJEjQEWFm6ImAHL5NUBO9v2e0QiUlcnJQSIiotoSQh7pB7j+/XL18sOHf5sb0kPsLcyHTQh4VVPKU6tQQqWQsLvwMmwe9t7J87DUJxEREZEHGDFiBC5evIjZs2cjKysLXbt2xYYNG2A2mwEAZ86cgeKquX5KSkrw5JNP4ty5c9Dr9ejQoQM+++wzjBgxwl1vgYhugEpSoH9AML7MOofzljIEqLXQKhQos9twyWqFv1qD2/2Cqsz/RwQA4Xo9grVaZFvK0UKnBwDoysoBAEKhgMVmg1Gpcr4AptUC5eWAxeJxJb6alIKC6udXkiRAqQSKiho2JiIiatoqKoCLF+WR4zXx8gIuXZL7Ajpdw8RWz+xC4HR5KUyqmtMlJqUal6xWFFdWwof9IGrEmPgjIiIi8hCTJ0/G5MmTXa5LTk52ev7KK6/glVdeaYCoiKi+dTR6QwppiR/zLuKCpQwVQkArKRDj5Y3+AcEI11/j4g01WypJgdv9gvBV9nlkWcoRoNagQq2GEAJllZVQSgqEanVwShtXVMgj/6pLOlHDMBiAvLzq19ts8uhMIiKi2hJCfiiaa5HAa4/ik35tJWrRlsidmPgjIiIiIiJq4mKM3mjnZcKF8jKU2W0wKVUI0eo40o+uKc7kAxsEknNzkG21oNDPB620GviXlcMnMBB+V5eJtduBkhKgRw8m/tytXTvg9GmgslJOxF6trEwejdmqlXtiI89iscg/ayUl8s9aaKg8xxd/vxB5Ho1G/nyfPy+Xja5Oaan8XVBdOdAmSCFJaKHVI624CH41DOQrslUiUK2FScXRftS4MfFHRERERETkAZSSxNF9dN0kSUJ3bz90Mnojo7QEpTYbfIvKEbJ7DxTFpYC3Sr7z32IBLl+WLwjGxbk7bI9iFwIZZSVIKy5EQUUFvNVqxHiZ0Npg/G1+xd+LjpbnWjxzBvDxkUcACgEUF8uPTp2AsLCGfSPkWex2YP9+YM8eID9fXiaEXNYvMhK47TbA29utIRJRHZMkICYGOHsWsFpd3+RjtcrfDx07etwNAN28/XCkpAjlNht0SmWV9RV2Oyx2O3r4+FX/+5mokWDij4iIiIiIiKiZ0yqUiDH+ehG/722AlxHYt0+e60cI+eLflYv9/v7uDdaDVNjtWJtzAXsL82EVdqglCZVCYGd+Hrp4++KPwS2gcVVyTacDBg8Gtm4FTp4ECgvl5V5eQM+eQEJCMy7VRjdNCGDnTiAlRR49Ghgoj/YTQh7pc+SI/DN3772AyeTuaImoLkVHA8ePy48rN5ZI0m+f/4ICoHVreeS5h+ngZUJnow/2FeXDT62GSamCJEkQQqDEZsOlCiuiDUZ08/Z1d6hE18TEHxERERERERH9RqGQy3l26iSX+6qslC/+mc0ed3e/u/2YdxE7C/IQoNHAS/nbJZoSWyV2FeTBR6XCoMAQ1xubTMBddwG5ufJDoZDPERMxdLNyc4Hdu+V5Iq8e1SdJcnJZpwMuXAD27pVvBiAiz6HRAHfeKX/OT5yQk/xXEn86ndw3uP12jyz5rVYocL85DHqFEgeLC3Cmoswxp59BqURXky/uDQ6FQcmUCjV+/CklIiIiIiIioqp0OqBNG3dH4bFKbZXYXXgZXkqlU9IPALyUKpQrbdhTmI8+foE1X2QMCJAfRHXl2LHf5vByRamURwGlp8s3CRhYZprIo+j1QGKifBPA6dNyuW+tFoiI8Pg5PnVKJe4LCUNfayCOlRSh1GaDRqFAW4MRoZw/m5oQJv6IiIiIiIiIiBpYlqUcBZUVCNZoXa73UamRbbXggqUcbQ3GBo6OmrULF+TRPDVd4DYa5Xk/L19m4o/IUzXjG0uCNFoEVfP7magpYMF3IiIiIiIiIqIGJn79t9rUiiRBABBCVNeCyL34s0lERNQoMfFHRERERERERNTAzBodjEoVCm2VLtcXVVbApFQhRKtr4Mio2QsOBioqak7slZbK5QB9fBouLiIiIqoVJv6IiIiIiIiIiBqYUaVCF29fFFVWotxmc1pXbrOhsLISXbx9YVKp3RQhNVvR0fJ8XiUlrtfb7UBRkdzOyDK0REREjQ3n+CMiIiIiIiIicoP+/sHIq7DicHEhYAU0CgUsdjskCehs9MYf/IPdHSI1R2YzEBsLpKYCNhtgMgGKX8cOlJfL8/oFBwNdu7o1TCIiInKNiT8iIiIiIiIiIjfQKZUYERKOIyVFOFCUj4LKSvioVOhs8kGMlzfUChZqIjeQJKBPH0CtBg4cALKz5WVCyMsiIoA77gD8/NwdKREREbnAHiQRERERERERkZuoFQrEmnzw5xaRmBjRBn9uEYk4ky+TfvXsvffeQ1RUFHQ6HeLj47Fjx44a2+fn52PSpEkIDQ2FVqtFu3btsH79+pvaZ6OmVAIJCcCf/wwMHAjceivQty9w333A/fcDgYHujpCIiIiqwRF/RERERERERETUbKxevRrTpk3D4sWLER8fj0WLFiExMRHp6ekIDq5aXtVqtWLQoEEIDg7GF198gbCwMJw+fRq+vr43vM8mw2gE4uLcHQURERFdB94+RkREREREREREzcbChQsxYcIEjBs3Dh07dsTixYthMBiwZMkSl+2XLFmCvLw8rFmzBn369EFUVBT69euHLl263PA+iYiIiOoLE39ERERERERERNQsWK1WpKamYuDAgY5lCoUCAwcOREpKistt1q5di4SEBEyaNAlmsxmdO3fG/PnzYbPZbnifFosFhYWFTg8iIiKiusDEHxERERERERERNQuXLl2CzWaD2Wx2Wm42m5GVleVym4yMDHzxxRew2WxYv349Zs2ahTfeeAOvvPLKDe9zwYIF8PHxcTzCw8Pr4N0RERERMfFHRERERERERERULbvdjuDgYHz44Yfo0aMHRowYgeeffx6LFy++4X3OnDkTBQUFjsfZs2frMGIiIiJqzlTuDoCIiIiIiIiIiKghBAYGQqlUIjs722l5dnY2QkJCXG4TGhoKtVoNpVLpWBYTE4OsrCxYrdYb2qdWq4VWq73Jd0NERERUFUf8ERERERERERFRs6DRaNCjRw8kJSU5ltntdiQlJSEhIcHlNn369MHx48dht9sdy44ePYrQ0FBoNJob2icRERFRfWHij4iIiIiIiIiImo1p06bho48+wvLly5GWloaJEyeipKQE48aNAwCMGTMGM2fOdLSfOHEi8vLyMHXqVBw9ehTr1q3D/PnzMWnSpFrvk4iIiKihNIrE33vvvYeoqCjodDrEx8djx44dNbb//PPP0aFDB+h0OsTGxmL9+vUNFCkRERERERERETVlI0aMwD//+U/Mnj0bXbt2xd69e7FhwwaYzWYAwJkzZ5CZmeloHx4ejo0bN2Lnzp2Ii4vDlClTMHXqVMyYMaPW+yQiIiJqKG6f42/16tWYNm0aFi9ejPj4eCxatAiJiYlIT09HcHBwlfY///wzRo4ciQULFuDee+/FypUrMWzYMOzevRudO3d2wzsgIiIiIiIiIqKmZPLkyZg8ebLLdcnJyVWWJSQkYPv27Te8TyIiIqKG4vYRfwsXLsSECRMwbtw4dOzYEYsXL4bBYMCSJUtctn/rrbcwePBg/P3vf0dMTAxefvlldO/eHe+++24DR05ERERERERERERERETUeLg18We1WpGamoqBAwc6likUCgwcOBApKSkut0lJSXFqDwCJiYnVticiIiIiIiIiIiIiIiJqDtxa6vPSpUuw2WxV6p2bzWYcOXLE5TZZWVku22dlZblsb7FYYLFYHM8LCgoAAIWFhTcTukewW0rdHUKtFUrC3SFcF1uZzd0h1Bo/C3RFU/pOAJrW90JT+k4A+L1w5f0L0XR+xtzlyjFq7j8zRERE5Br7VbXHfhURERHV5Hr6VW6f46++LViwAHPnzq2yPDw83A3R0I3ycXcA1y3N3QHUms/Epnd0iYCm9r3QdL4TAH4vXFFUVAQfHx6LmhQVFQFgv4qIiIhqxn7VtbFfRURERLVRm36VWxN/gYGBUCqVyM7OdlqenZ2NkJAQl9uEhIRcV/uZM2di2rRpjud2ux15eXkICAiAJEk3+Q6oKSssLER4eDjOnj0Lb29vd4dDRG7G7wS6QgiBoqIitGjRwt2hNHotWrTA2bNnYTKZ6qVfxc+le/H4uxePv3vx+LsXj7971eXxZ7+q9mrqV/Ez0TjwPDQePBeNA89D48Fz0TjU93m4nn6VWxN/Go0GPXr0QFJSEoYNGwZATswlJSVh8uTJLrdJSEhAUlISnnrqKceyTZs2ISEhwWV7rVYLrVbrtMzX17cuwicP4e3tzS9EInLgdwIB4B3ptaRQKNCyZct6fx1+Lt2Lx9+9ePzdi8ffvXj83auujj/7VbVTm34VPxONA89D48Fz0TjwPDQePBeNQ32eh9r2q9xe6nPatGkYO3YsevbsiV69emHRokUoKSnBuHHjAABjxoxBWFgYFixYAACYOnUq+vXrhzfeeAP33HMPVq1ahV27duHDDz9059sgIiIiIiIiIiIiIiIiciu3J/5GjBiBixcvYvbs2cjKykLXrl2xYcMGmM1mAMCZM2egUCgc7Xv37o2VK1fihRdewHPPPYfo6GisWbMGnTt3dtdbICIiIiIiIiIiIiIiInI7tyf+AGDy5MnVlvZMTk6usuzBBx/Egw8+WM9RkafTarWYM2dOlVKwRNQ88TuBqPHh59K9ePzdi8ffvXj83YvH3714/BsfnpPGgeeh8eC5aBx4HhoPnovGoTGdB0kIIdwdBBERERERERERERERERHdHMW1mxARERERERERERERERFRY8fEHxEREREREREREREREZEHYOKPqBZefPFFdO3a1d1hEFE9SE5OhiRJyM/Pr7FdVFQUFi1a1CAxEREREREREREREd0IJv6IfkeSJKxZs8Zp2fTp05GUlOSegIioXvXu3RuZmZnw8fEBACxbtgy+vr5V2u3cuROPP/54A0dH1Hy99957iIqKgk6nQ3x8PHbs2OHukDzSggULcMstt8BkMiE4OBjDhg1Denq6U5vy8nJMmjQJAQEBMBqNGD58OLKzs90UsWd79dVXIUkSnnrqKccyHv/6df78eTz88MMICAiAXq9HbGwsdu3a5VgvhMDs2bMRGhoKvV6PgQMH4tixY26M2HPYbDbMmjULrVq1gl6vR5s2bfDyyy9DCOFow+Nfd3766ScMGTIELVq0cPk3b22OdV5eHkaNGgVvb2/4+vpi/PjxKC4ubsB34Tmup59zxx13QJKkKo977rnH0eaRRx6psn7w4MEN8VaavOvtcy5atAjt27eHXq9HeHg4/va3v6G8vPym9kl1fx5efPHFKp+JDh061Pfb8AjXcy4qKirw0ksvoU2bNtDpdOjSpQs2bNhwU/skWV2fB34mrt+1+k6uJCcno3v37tBqtWjbti2WLVtWpU2DfR4EETkBIL7++mt3h0FEbrJ06VLh4+Pj7jCImrVVq1YJjUYjlixZIg4dOiQmTJggfH19RXZ2trtD8ziJiYli6dKl4uDBg2Lv3r3i7rvvFhEREaK4uNjR5i9/+YsIDw8XSUlJYteuXeLWW28VvXv3dmPUnmnHjh0iKipKxMXFialTpzqW8/jXn7y8PBEZGSkeeeQR8csvv4iMjAyxceNGcfz4cUebV199Vfj4+Ig1a9aIffv2iT/+8Y+iVatWoqyszI2Re4Z58+aJgIAA8e2334qTJ0+Kzz//XBiNRvHWW2852vD4153169eL559/Xnz11Vcu/+atzbEePHiw6NKli9i+fbvYsmWLaNu2rRg5cmQDv5Om73r7Obm5uSIzM9PxOHjwoFAqlWLp0qWONmPHjhWDBw92apeXl9dA76jput5zsWLFCqHVasWKFSvEyZMnxcaNG0VoaKj429/+dsP7pPo5D3PmzBGdOnVy+kxcvHixod5Sk3W95+KZZ54RLVq0EOvWrRMnTpwQ//rXv4ROpxO7d+++4X1S/ZwHfiau37X6Tr+XkZEhDAaDmDZtmjh8+LB45513hFKpFBs2bHC0acjPAxN/1Gj069dP/PWvfxV///vfhZ+fnzCbzWLOnDmO9ZcvXxbjx48XgYGBwmQyiT/84Q9i7969Tvt4+eWXRVBQkDAajWL8+PHi2WefFV26dHGs37Fjhxg4cKAICAgQ3t7e4vbbbxepqamO9ZGRkQKA4xEZGSmEkL8cr+xn48aNQqvVisuXLzu99pQpU8Qf/vAHx/MtW7aIvn37Cp1OJ1q2bCn++te/Ol1EI6La69evn5g0aZKYNGmS8Pb2FgEBAeKFF14QdrtdCCFfuBs9erTw9fUVer1eDB48WBw9etSx/alTp8S9994rfH19hcFgEB07dhTr1q0TQgjxww8/CADi8uXLjv9f/bjyPRQZGSnefPNNIYQQI0eOFA899JBTjFarVQQEBIjly5cLIYSw2Wxi/vz5IioqSuh0OhEXFyc+//zzej5SRJ6hV69eYtKkSY7nNptNtGjRQixYsMCNUTUPOTk5AoD48ccfhRBC5OfnC7Va7fT9lZaWJgCIlJQUd4XpcYqKikR0dLTYtGmT6NevnyPxx+Nfv5599lnRt2/fatfb7XYREhIi/vGPfziW5efnC61WK/7v//6vIUL0aPfcc4949NFHnZbdf//9YtSoUUIIHv/69PuLV7U51ocPHxYAxM6dOx1t/ve//wlJksT58+cbLHZPcLP9nDfffFOYTCan6wtjx44VQ4cOretQPd71notJkyaJ/v37Oy2bNm2a6NOnzw3vk+rnPFx9HY9q73rPRWhoqHj33Xedll39u/xG9kn1cx74mbg5tUn8PfPMM6JTp05Oy0aMGCESExMdzxvy88BSn9SoLF++HF5eXvjll1/w+uuv46WXXsKmTZsAAA8++CBycnLwv//9D6mpqejevTsGDBiAvLw8AMCKFSswb948vPbaa0hNTUVERATef/99p/0XFRVh7Nix2Lp1K7Zv347o6GjcfffdKCoqAiCX8gOApUuXIjMz0/H8agMGDICvry++/PJLxzKbzYbVq1dj1KhRAIATJ05g8ODBGD58OPbv34/Vq1dj69atmDx5ct0fNKJmYvny5VCpVNixYwfeeustLFy4EB9//DEAubTNrl27sHbtWqSkpEAIgbvvvhsVFRUAgEmTJsFiseCnn37CgQMH8Nprr8FoNFZ5jd69e2PRokXw9vZGZmYmMjMzMX369CrtRo0ahf/+979OpY02btyI0tJS3HfffQDk8nn//ve/sXjxYhw6dAh/+9vf8PDDD+PHH3+sj8ND5DGsVitSU1MxcOBAxzKFQoGBAwciJSXFjZE1DwUFBQAAf39/AEBqaioqKiqczkeHDh0QERHB81GHJk2ahHvuucfpOAM8/vVt7dq16NmzJx588EEEBwejW7du+OijjxzrT548iaysLKfj7+Pjg/j4eB7/OtC7d28kJSXh6NGjAIB9+/Zh69atuOuuuwDw+Dek2hzrlJQU+Pr6omfPno42AwcOhEKhwC+//NLgMTdVddHP+eSTT/CnP/0JXl5eTsuTk5MRHByM9u3bY+LEicjNza3T2D3NjZyL3r17IzU11VGWLSMjA+vXr8fdd999w/ts7urjPFxx7NgxtGjRAq1bt8aoUaNw5syZ+nsjHuBGzoXFYoFOp3NaptfrsXXr1hveZ3NXH+fhCn4m6ldKSkqVv+cSExMd562hPw+qOt8j0U2Ii4vDnDlzAADR0dF49913kZSUBL1ejx07diAnJwdarRYA8M9//hNr1qzBF198gccffxzvvPMOxo8fj3HjxgEAZs+eje+++87pwnz//v2dXu/DDz+Er68vfvzxR9x7770ICgoCAPj6+iIkJMRljEqlEn/605+wcuVKjB8/HgCQlJSE/Px8DB8+HIB8wX/UqFGO+Vmio6Px9ttvo1+/fnj//ferfBkT0bWFh4fjzTffhCRJaN++PQ4cOIA333wTd9xxB9auXYtt27ahd+/eAOQbAcLDw7FmzRo8+OCDOHPmDIYPH47Y2FgAQOvWrV2+hkajgY+PDyRJqvY7AJB/cXt5eeHrr7/G6NGjAQArV67EH//4R5hMJlgsFsyfPx+bN29GQkKC4zW3bt2KDz74AP369avLQ0PkUS5dugSbzQaz2ey03Gw248iRI26Kqnmw2+146qmn0KdPH3Tu3BkAkJWVBY1GU2XuU7PZjKysLDdE6XlWrVqF3bt3u7zhjMe/fmVkZOD999/HtGnT8Nxzz2Hnzp2YMmUKNBoNxo4d6zjGrr6PePxv3owZM1BYWIgOHTpAqVTCZrNh3rx5jpspefwbTm2OdVZWFoKDg53Wq1Qq+Pv783xch5vt5+zYsQMHDx7EJ5984rR88ODBuP/++9GqVSucOHECzz33HO666y6kpKRAqVTW6XvwFDdyLv785z/j0qVL6Nu3L4QQqKysxF/+8hc899xzN7zP5q4+zgMAxMfHY9myZWjfvj0yMzMxd+5c3HbbbTh48CBMJlO9vqem6kbORWJiIhYuXIjbb78dbdq0QVJSEr766ivYbLYb3mdzVx/nAeBnoiFkZWW5PG+FhYUoKyvD5cuXG/TzwBF/1KjExcU5PQ8NDUVOTg727duH4uJiBAQEwGg0Oh4nT57EiRMnAADp6eno1auX0/a/f56dnY0JEyYgOjoaPj4+8Pb2RnFx8XXf4TBq1CgkJyfjwoULAOQkwz333OO4KLNv3z4sW7bMKdbExETY7XacPHnyul6LiGS33norJElyPE9ISMCxY8dw+PBhqFQqxMfHO9YFBASgffv2SEtLAwBMmTIFr7zyCvr06YM5c+Zg//79NxWLSqXCQw89hBUrVgAASkpK8M033zguVB0/fhylpaUYNGiQ0/fAv//9b8d3FhFRYzNp0iQcPHgQq1atcncozcbZs2cxdepUrFixgjeGuYHdbkf37t0xf/58dOvWDY8//jgmTJiAxYsXuzu0ZuE///kPVqxYgZUrV2L37t1Yvnw5/vnPf2L58uXuDo2o0frkk08QGxtb5VrHn/70J/zxj39EbGwshg0bhm+//RY7d+5EcnKyewL1UMnJyZg/fz7+9a9/Yffu3fjqq6+wbt06vPzyy+4OrVmpzXm466678OCDDyIuLg6JiYlYv3498vPz8Z///MeNkXuet956C9HR0ejQoQM0Gg0mT56McePGQaFgyqEh1eY88DPR/HDEHzUqarXa6bkkSbDb7SguLkZoaKjLTuvv74CuydixY5Gbm4u33noLkZGR0Gq1SEhIgNVqva44b7nlFrRp0warVq3CxIkT8fXXX2PZsmWO9cXFxXjiiScwZcqUKttGRERc12sR0c177LHHkJiYiHXr1uG7777DggUL8MYbb+Cvf/3rDe9z1KhR6NevH3JycrBp0ybo9XoMHjwYABwjjdetW4ewsDCn7a6MWiYi1wIDA6FUKpGdne20PDs7u8aRuHRzJk+ejG+//RY//fQTWrZs6VgeEhICq9WK/Px8pz4Xz0fdSE1NRU5ODrp37+5YZrPZ8NNPP+Hdd9/Fxo0befzrUWhoKDp27Oi0LCYmxlHS/8oxzs7ORmhoqKNNdnY2unbt2mBxeqq///3vmDFjBv70pz8BAGJjY3H69GksWLAAY8eO5fFvQLU51iEhIcjJyXHarrKyEnl5efw+ug43088pKSnBqlWr8NJLL13zdVq3bo3AwEAcP34cAwYMuKmYPdWNnItZs2Zh9OjReOyxxwDI31slJSV4/PHH8fzzz7MfewPq4zy4Sjr5+vqiXbt2OH78eN2/CQ9xI+ciKCgIa9asQXl5OXJzc9GiRQvMmDHDUWWJn4nrVx/nwRV+JupeSEiIy/Pm7e0NvV4PpVLZoJ8Hpt+pSejevTuysrKgUqnQtm1bp0dgYCAAoH379lVKJP3++bZt2zBlyhTcfffd6NSpE7RaLS5duuTURq1WOw2Frs6oUaOwYsUK/Pe//4VCocA999zjFO/hw4erxNq2bVtoNJobPQxEzdrv5w65Mk9nx44dUVlZ6bQ+NzcX6enpThfzwsPD8Ze//AVfffUVnn76aac5fK6m0Whq9R3Qu3dvhIeHY/Xq1VixYgUefPBBx80LHTt2hFarxZkzZ6p8B4SHh9/I2ydqNjQaDXr06IGkpCTHMrvdjqSkJEfpXKo7QghMnjwZX3/9Nb7//nu0atXKaX2PHj2gVqudzkd6ejrOnDnD81EHBgwYgAMHDmDv3r2OR8+ePTFq1CjH/3n860+fPn2Qnp7utOzo0aOIjIwEALRq1QohISFOx7+wsBC//PILj38dKC0trXJxVqlUwm63A+Dxb0i1OdYJCQnIz89Hamqqo833338Pu93uVHmDanYz/ZzPP/8cFosFDz/88DVf59y5c8jNzXVK5JKzGzkX1X1vAXKfiv3Y61cf58GV4uJinDhxgp+JGtzMz69Op0NYWBgqKyvx5ZdfYujQoTe9z+aqPs6DK/xM1L2EhASn8wYAmzZtcpy3Bv88CKJGol+/fmLq1KlOy4YOHSrGjh0r7Ha76Nu3r+jSpYvYuHGjOHnypNi2bZt47rnnxM6dO4UQQnz22WdCr9eLZcuWiaNHj4qXX35ZeHt7i65duzr2161bNzFo0CBx+PBhsX37dnHbbbcJvV4v3nzzTUeb6OhoMXHiRJGZmSny8vKEEELMmTNHdOnSxSm2Y8eOCQAiLi5OjB8/3mndvn37hF6vF5MmTRJ79uwRR48eFWvWrBGTJk2quwNG1Iz069dPGI1G8be//U0cOXJErFy5Unh5eYnFixcLIeTvio4dO4otW7aIvXv3isGDB4u2bdsKq9UqhBBi6tSpYsOGDSIjI0OkpqaK+Ph48dBDDwkhhPjhhx8EAHH58mUhhBDbtm0TAMTmzZvFxYsXRUlJiRBCiMjISKfvCiGEeP7550XHjh2FSqUSW7ZsqbIuICBALFu2TBw/flykpqaKt99+WyxbtqwejxSRZ1i1apXQarVi2bJl4vDhw+Lxxx8Xvr6+Iisry92heZyJEycKHx8fkZycLDIzMx2P0tJSR5u//OUvIiIiQnz//fdi165dIiEhQSQkJLgxas/2+z4xj3/92bFjh1CpVGLevHni2LFjYsWKFcJgMIjPPvvM0ebVV18Vvr6+4ptvvhH79+8XQ4cOFa1atRJlZWVujNwzjB07VoSFhYlvv/1WnDx5Unz11VciMDBQPPPMM442PP51p6ioSOzZs0fs2bNHABALFy4Ue/bsEadPnxZC1O5YDx48WHTr1k388ssvYuvWrSI6OlqMHDnSXW+pybpWP2f06NFixowZVbbr27evGDFiRJXlRUVFYvr06SIlJUWcPHlSbN68WXTv3l1ER0eL8vLyen8/Tdn1nos5c+YIk8kk/u///k9kZGSI7777TrRp08bxt2Vt9klV1cd5ePrpp0VycrLj+uHAgQNFYGCgyMnJafD315Rc77nYvn27+PLLL8WJEyfETz/9JPr37y9atWrluL5Sm31SVfVxHviZuH7X6jvNmDFDjB492tE+IyNDGAwG8fe//12kpaWJ9957TyiVSrFhwwZHm4b8PDDxR41GTYk/IYQoLCwUf/3rX0WLFi2EWq0W4eHhYtSoUeLMmTOO9i+99JIIDAwURqNRPProo2LKlCni1ltvdazfvXu36Nmzp9DpdCI6Olp8/vnnVS7mr127VrRt21aoVCoRGRkphHCd+BNCiF69egkA4vvvv6+ybseOHWLQoEHCaDQKLy8vERcXJ+bNm3fDx4eoOevXr5948sknxV/+8hfh7e0t/Pz8xHPPPSfsdrsQQoi8vDwxevRo4ePjI/R6vUhMTBRHjx51bD958mTRpk0bodVqRVBQkBg9erS4dOmSEKJq4k8I+SJrQECAACDmzJkjhHCd+Dt8+LAAICIjIx2xXGG328WiRYtE+/bthVqtFkFBQSIxMVH8+OOPdX+AiDzQO++8IyIiIoRGoxG9evUS27dvd3dIHgmAy8fSpUsdbcrKysSTTz4p/Pz8hMFgEPfdd5/IzMx0X9Ae7vd9Yh7/+vXf//5XdO7cWWi1WtGhQwfx4YcfOq232+1i1qxZwmw2C61WKwYMGCDS09PdFK1nKSwsFFOnThURERFCp9OJ1q1bi+eff15YLBZHGx7/unOlz/v7x5W/t2tzrHNzc8XIkSOF0WgU3t7eYty4caKoqMgN76bpq6mf069fP8d5ueLIkSMCgPjuu++q7Ku0tFTceeedIigoSKjVahEZGSkmTJjAi+q1dD3noqKiQrz44ouiTZs2QqfTifDwcPHkk086/S15rX2Sa3V9HkaMGCFCQ0OFRqMRYWFhYsSIEeL48eMN+I6arus5F8nJySImJkZotVoREBAgRo8eLc6fP39d+yTX6vo88DNx/a7Vdxo7dqzo169flW26du0qNBqNaN26tdPf1Vc01OdBEqKaMdBEHmDQoEEICQnBp59+6u5QiOgm3HHHHejatSsWLVrk7lCIiIiIiIiIiIiIGi2VuwMgqiulpaVYvHgxEhMToVQq8X//93/YvHkzNm3a5O7QiIiIiIiIiIiIiIiI6h0Tf+QxJEnC+vXrMW/ePJSXl6N9+/b48ssvMXDgQHeHRkREREREREREREREVO9Y6pOIiIiIiIiIiIiIiIjIAyjcHQARERERERERERERERER3Twm/oiIiIiIiIiIiIiIiIg8ABN/RERERERERERERERERB6AiT8iIiIiIiIiIiIiIiIiD8DEHxEREREREREREREREZEHYOKPiIiIiIiIroskSVizZo27w8CLL76Irl27ujsMIiIiaoIaQ3+GfRkiqg9M/BFRk3Lx4kVMnDgRERER0Gq1CAkJQWJiIrZt2wagcXTaiIiIiG7Wtfo8Td2pU6cgSRL27t3r7lCIiIjIgzzyyCOQJAmSJEGtVsNsNmPQoEFYsmQJ7Ha7U9vMzEzcddddbopUNn36dCQlJTmeP/LIIxg2bNhN79dms+HVV19Fhw4doNfr4e/vj/j4eHz88cc3vW8iavxU7g6AiOh6DB8+HFarFcuXL0fr1q2RnZ2NpKQk5Obmujs0IiIiojrDPg8RERHRjRk8eDCWLl0Km82G7OxsbNiwAVOnTsUXX3yBtWvXQqWSL4mHhITUaxw2mw2SJEGhqH7sjdFohNForPPXnjt3Lj744AO8++676NmzJwoLC7Fr1y5cvny5zl/rCqvVCo1GU2/7J6La44g/Imoy8vPzsWXLFrz22mv4wx/+gMjISPTq1QszZ87EH//4R0RFRQEA7rvvPkiS5Hh+4sQJDB06FGazGUajEbfccgs2b97stO+oqCjMnz8fjz76KEwmEyIiIvDhhx86tTl37hxGjhwJf39/eHl5oWfPnvjll18c67/55ht0794dOp0OrVu3xty5c1FZWVmvx4SIiIg8z7X6PFcsXLgQsbGx8PLyQnh4OJ588kkUFxc71i9btgy+vr749ttv0b59exgMBjzwwAMoLS3F8uXLERUVBT8/P0yZMgU2m82xXVRUFF5++WWMHDkSXl5eCAsLw3vvvVdjzGfPnsVDDz0EX19f+Pv7Y+jQoTh16lSt33NycjIkSUJSUhJ69uwJg8GA3r17Iz093andq6++CrPZDJPJhPHjx6O8vLzKvj7++GPExMRAp9OhQ4cO+Ne//uVY9+ijjyIuLg4WiwWAfIGqW7duGDNmTK1jJSIiosbtSrWEsLAwdO/eHc899xy++eYb/O9//8OyZcsc7a6uGtW7d288++yzTvu5ePEi1Go1fvrpJwCAxWLB9OnTERYWBi8vL8THxyM5OdnR/krfa+3atejYsSO0Wi3OnDmD5ORk9OrVC15eXvD19UWfPn1w+vRpAM6lPl988UUsX74c33zzjWPUYnJyMvr374/JkydXiU2j0TiNFrza2rVr8eSTT+LBBx9Eq1at0KVLF4wfPx7Tp093tLHb7Xj99dfRtm1baLVaREREYN68eY71Bw4cQP/+/aHX6xEQEIDHH3/cqa95ZXTivHnz0KJFC7Rv3x7AzfcLiejmMfFHRE3Glbug1qxZ47hYc7WdO3cCAJYuXYrMzEzH8+LiYtx9991ISkrCnj17MHjwYAwZMgRnzpxx2v6NN95Az549sWfPHjz55JOYOHGi42JTcXEx+vXrh/Pnz2Pt2rXYt28fnnnmGUeZiC1btmDMmDGYOnUqDh8+jA8++ADLli1z6jARERER1ca1+jxXKBQKvP322zh06BCWL1+O77//Hs8884xTm9LSUrz99ttYtWoVNmzYgOTkZNx3331Yv3491q9fj08//RQffPABvvjiC6ft/vGPf6BLly7Ys2cPZsyYgalTp2LTpk0u46ioqEBiYiJMJhO2bNmCbdu2wWg0YvDgwbBardf13p9//nm88cYb2LVrF1QqFR599FHHuv/85z948cUXMX/+fOzatQuhoaFOST0AWLFiBWbPno158+YhLS0N8+fPx6xZs7B8+XIAwNtvv42SkhLMmDHD8Xr5+fl49913rytOIiIialr69++PLl264KuvvnK5ftSoUVi1ahWEEI5lq1evRosWLXDbbbcBACZPnoyUlBSsWrUK+/fvx4MPPojBgwfj2LFjjm1KS0vx2muv4eOPP8ahQ4fg7++PYcOGoV+/fti/fz9SUlLw+OOPQ5KkKjFMnz4dDz30EAYPHozMzExkZmaid+/eeOyxx7By5UqnfuFnn32GsLAw9O/f3+X7CQkJwffff4+LFy9We0xmzpyJV199FbNmzcLhw4excuVKmM1mAEBJSQkSExPh5+eHnTt34vPPP8fmzZurJCCTkpKQnp6OTZs24dtvv63TfiER3QRBRNSEfPHFF8LPz0/odDrRu3dvMXPmTLFv3z7HegDi66+/vuZ+OnXqJN555x3H88jISPHwww87ntvtdhEcHCzef/99IYQQH3zwgTCZTCI3N9fl/gYMGCDmz5/vtOzTTz8VoaGh1/P2iIiIiIQQ1+7zuPL555+LgIAAx/OlS5cKAOL48eOOZU888YQwGAyiqKjIsSwxMVE88cQTjueRkZFi8ODBTvseMWKEuOuuuxzPr+5zffrpp6J9+/bCbrc71lssFqHX68XGjRtdxnry5EkBQOzZs0cIIcQPP/wgAIjNmzc72qxbt04AEGVlZUIIIRISEsSTTz7ptJ/4+HjRpUsXx/M2bdqIlStXOrV5+eWXRUJCguP5zz//LNRqtZg1a5ZQqVRiy5YtLmMkIiKipmfs2LFi6NChLteNGDFCxMTEOJ5f3Z/JyckRKpVK/PTTT471CQkJ4tlnnxVCCHH69GmhVCrF+fPnnfY5YMAAMXPmTCHEb32vvXv3Otbn5uYKACI5OdllTHPmzHHqy7iKv6ysTPj5+YnVq1c7lsXFxYkXX3zR9UEQQhw6dEjExMQIhUIhYmNjxRNPPCHWr1/vWF9YWCi0Wq346KOPXG7/4YcfCj8/P1FcXOxYtm7dOqFQKERWVpYjVrPZLCwWi6PNjfQLiajuccQfETUpw4cPx4ULF7B27VoMHjwYycnJ6N69u1Opht8rLi7G9OnTERMTA19fXxiNRqSlpVUZ8RcXF+f4vyRJCAkJQU5ODgBg79696NatG/z9/V2+xr59+/DSSy857tA3Go2YMGECMjMzUVpaevNvnIiIiJqV2vR5Nm/ejAEDBiAsLAwmkwmjR49Gbm6uU9/DYDCgTZs2judmsxlRUVFOc8mYzWZHn+eKhISEKs/T0tJcxrpv3z4cP34cJpPJ0Q/y9/dHeXk5Tpw4cV3v++r+WGhoKAA4YktLS0N8fHy1cZaUlODEiRMYP368U5/slVdecYojISEB06dPx8svv4ynn34affv2va4YiYiIqGkSQrgcaQcAQUFBuPPOO7FixQoAwMmTJ5GSkoJRo0YBkMte2mw2tGvXzqmf8eOPPzr1MzQajVN/xt/fH4888ggSExMxZMgQvPXWW8jMzLyuuHU6HUaPHo0lS5YAAHbv3o2DBw/ikUceqXabjh074uDBg9i+fTseffRR5OTkYMiQIXjssccAyP0qi8WCAQMGuNw+LS0NXbp0gZeXl2NZnz59YLfbnUqxx8bGOs3rV5f9QiK6cSp3B0BEdL10Oh0GDRqEQYMGYdasWXjssccwZ86cajs806dPx6ZNm/DPf/4Tbdu2hV6vxwMPPFClxIBarXZ6LkmSo5SnXq+vMabi4mLMnTsX999/v8t4iYiIiK5XTX2eU6dO4d5778XEiRMxb948+Pv7Y+vWrRg/fjysVisMBgMA1/2bmvo8N6K4uBg9evRwXCi7WlBQ0HXt6+rYrlyYq21sV+ac+eijj6okCJVKpeP/drsd27Ztg1KpxPHjx68rPiIiImq60tLS0KpVq2rXjxo1ClOmTME777yDlStXIjY2FrGxsQDkfoZSqURqaqpTvwKA0w1Ver2+SnJx6dKlmDJlCjZs2IDVq1fjhRdewKZNm3DrrbfWOvbHHnsMXbt2xblz57B06VL0798fkZGRNW6jUChwyy234JZbbsFTTz2Fzz77DKNHj8bzzz9/zetctXV1YhCo234hEd04jvgjoiavY8eOKCkpASBfLLLZbE7rt23bhkceeQT33XcfYmNjERISct2TCsfFxWHv3r3Iy8tzub579+5IT09H27ZtqzwUCn7VEhER0c27us+TmpoKu92ON954A7feeivatWuHCxcu1Nlrbd++vcrzmJgYl227d++OY8eOITg4uEo/yMfHp85iiomJwS+//FJtnGazGS1atEBGRkaVOK6+yPePf/wDR44cwY8//ogNGzZg6dKldRYjERERNU7ff/89Dhw4gOHDh1fbZujQoSgvL8eGDRuwcuVKx2g/AOjWrRtsNhtycnKq9DNCQkKu+frdunXDzJkz8fPPP6Nz585YuXKly3YajabKdS1AHlnXs2dPfPTRR1i5cqXTPMi11bFjRwBylYTo6Gjo9XokJSW5bBsTE4N9+/Y5+p6AfH1NoVCgffv21b5GQ/ULiahmvBpNRE1Gbm4u+vfvj88++wz79+/HyZMn8fnnn+P111/H0KFDAQBRUVFISkpCVlYWLl++DACIjo7GV199hb1792Lfvn3485//fN13tY8cORIhISEYNmwYtm3bhoyMDHz55ZdISUkBAMyePRv//ve/MXfuXBw6dAhpaWlYtWoVXnjhhbo9CEREROTxatPnadu2LSoqKvDOO+8gIyMDn376KRYvXlxnMWzbtg2vv/46jh49ivfeew+ff/45pk6d6rLtqFGjEBgYiKFDh2LLli04efIkkpOTMWXKFJw7d67OYpo6dSqWLFmCpUuX4ujRo5gzZw4OHTrk1Gbu3LlYsGAB3n77bRw9ehQHDhzA0qVLsXDhQgDAnj17MHv2bHz88cfo06cPFi5ciKlTpyIjI6PO4iQiIiL3slgsyMrKwvnz57F7927Mnz8fQ4cOxb333osxY8ZUu52XlxeGDRuGWbNmIS0tDSNHjnSsa9euHUaNGoUxY8bgq6++wsmTJ7Fjxw4sWLAA69atq3afJ0+exMyZM5GSkoLTp0/ju+++w7Fjx6q9oSoqKgr79+9Heno6Ll26hIqKCse6xx57DK+++iqEELjvvvtqPAYPPPAA3nzzTfzyyy84ffo0kpOTMWnSJLRr1w4dOnSATqfDs88+i2eeeQb//ve/ceLECWzfvh2ffPIJALl/p9PpMHbsWBw8eBA//PAD/vrXv2L06NEwm83Vvm5D9QuJqGZM/BFRk2E0GhEfH48333wTt99+Ozp37oxZs2ZhwoQJePfddwEAb7zxBjZt2oTw8HB069YNALBw4UL4+fmhd+/eGDJkCBITE9G9e/frem2NRoPvvvsOwcHBuPvuuxEbG4tXX33VUd4hMTER3377Lb777jvccsstuPXWW/Hmm29es+wCERER0e/Vps/TpUsXLFy4EK+99ho6d+6MFStWYMGCBXUWw9NPP41du3ahW7dueOWVV7Bw4UIkJia6bGswGPDTTz8hIiIC999/P2JiYjB+/HiUl5fD29u7zmIaMWIEZs2ahWeeeQY9evTA6dOnMXHiRKc2jz32GD7++GMsXboUsbGx6NevH5YtW4ZWrVqhvLwcDz/8MB555BEMGTIEAPD444/jD3/4A0aPHu3y7noiIiJqejZs2IDQ0FBERUVh8ODB+OGHH/D222/jm2++qVKm8/dGjRqFffv24bbbbkNERITTuqVLl2LMmDF4+umn0b59ewwbNgw7d+6s0u5qBoMBR44cwfDhw9GuXTs8/vjjmDRpEp544gmX7SdMmID27dujZ8+eCAoKwrZt2xzrRo4cCZVKhZEjR15zWpnExET897//xZAhQ9CuXTuMHTsWHTp0wHfffQeVSp79a9asWXj66acxe/ZsxMTEYMSIEY65lQ0GAzZu3Ii8vDzccssteOCBBzBgwABHX7Sm99sQ/UIiqpkkhBDuDoKIiIiIiIgah6ioKDz11FN46qmn3B0KEREREf3q1KlTaNOmDXbu3HndN7QTUfOicncARERERERERERERERUVUVFBXJzc/HCCy/g1ltvZdKPiK6JpT6JiIiIiIiIiIiIiBqhbdu2ITQ0FDt37qzTOZ2JyHOx1CcRERERERERERERERGRB+CIPyIiIiIiIiIiIiIiIiIPwMQfERERERERERERERERkQdg4o+IiIiIiIiIiIiIiIjIAzDxR0REREREREREREREROQBmPgjIiIiIiIiIiIiIiIi8gBM/BERERERERERERERERF5ACb+iIiIiIiIiIiIiIiIiDwAE39EREREREREREREREREHoCJPyIiIiIiIiIiIiIiIiIP8P8Rhp3NkL89JAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 4: DATA VISUALIZATION\n", - "# ============================================================================\n", - "\n", - "# Create visualizations\n", - "fig, axes = plt.subplots(2, 3, figsize=(18, 10))\n", - "\n", - "# 1. ROUGE Scores Distribution\n", - "if ROUGE_AVAILABLE:\n", - " rouge_data = test_results[['rouge1', 'rouge2', 'rougeL']].melt(var_name='Metric', value_name='Score')\n", - " sns.boxplot(data=rouge_data, x='Metric', y='Score', ax=axes[0, 0], palette='Set2')\n", - " axes[0, 0].set_title('ROUGE Scores Distribution', fontsize=14, fontweight='bold')\n", - " axes[0, 0].set_ylim(0, 1)\n", - "\n", - "# 2. Diversity Score Distribution\n", - "axes[0, 1].hist(test_results['diversity'], bins=30, color='#95E1D3', edgecolor='black')\n", - "axes[0, 1].set_title('Diversity Score Distribution', fontsize=14, fontweight='bold')\n", - "axes[0, 1].set_xlabel('Diversity Score')\n", - "axes[0, 1].set_ylabel('Frequency')\n", - "axes[0, 1].axvline(test_results['diversity'].mean(), color='red', linestyle='--', \n", - " label=f'Mean: {test_results[\"diversity\"].mean():.3f}')\n", - "axes[0, 1].legend()\n", - "\n", - "# 3. Creativity Score Distribution\n", - "axes[0, 2].hist(test_results['creativity'], bins=30, color='#F38181', edgecolor='black')\n", - "axes[0, 2].set_title('Creativity Score Distribution', fontsize=14, fontweight='bold')\n", - "axes[0, 2].set_xlabel('Creativity Score')\n", - "axes[0, 2].set_ylabel('Frequency')\n", - "axes[0, 2].axvline(test_results['creativity'].mean(), color='red', linestyle='--',\n", - " label=f'Mean: {test_results[\"creativity\"].mean():.3f}')\n", - "axes[0, 2].legend()\n", - "\n", - "# 4. Metrics by Stance\n", - "stance_metrics = test_results.groupby('stance')[['diversity', 'creativity', 'length_similarity']].mean()\n", - "stance_metrics.plot(kind='bar', ax=axes[1, 0], rot=0)\n", - "axes[1, 0].set_title('Metrics by Stance', fontsize=14, fontweight='bold')\n", - "axes[1, 0].set_xlabel('Stance')\n", - "axes[1, 0].set_ylabel('Score')\n", - "axes[1, 0].legend(loc='best')\n", - "\n", - "# 5. Length Similarity\n", - "axes[1, 1].scatter(test_results.index, test_results['length_similarity'], \n", - " c=test_results['stance'].map({'positive': '#4ECDC4', 'negative': '#FF6B6B'}),\n", - " alpha=0.6)\n", - "axes[1, 1].set_title('Length Similarity Across Samples', fontsize=14, fontweight='bold')\n", - "axes[1, 1].set_xlabel('Sample Index')\n", - "axes[1, 1].set_ylabel('Length Similarity')\n", - "axes[1, 1].axhline(test_results['length_similarity'].mean(), color='black', linestyle='--', alpha=0.5)\n", - "\n", - "# 6. Creativity vs Diversity Scatter\n", - "scatter = axes[1, 2].scatter(test_results['diversity'], test_results['creativity'],\n", - " c=test_results['stance'].map({'positive': '#4ECDC4', 'negative': '#FF6B6B'}),\n", - " alpha=0.6, s=50)\n", - "axes[1, 2].set_title('Creativity vs Diversity', fontsize=14, fontweight='bold')\n", - "axes[1, 2].set_xlabel('Diversity Score')\n", - "axes[1, 2].set_ylabel('Creativity Score')\n", - "axes[1, 2].legend(handles=scatter.legend_elements()[0], labels=['Negative', 'Positive'])\n", - "\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "bd4003e6", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:18:43.134926Z", - "iopub.status.busy": "2025-12-11T06:18:43.134254Z", - "iopub.status.idle": "2025-12-11T06:18:43.147980Z", - "shell.execute_reply": "2025-12-11T06:18:43.146710Z" - }, - "papermill": { - "duration": 0.049581, - "end_time": "2025-12-11T06:18:43.149298", - "exception": false, - "start_time": "2025-12-11T06:18:43.099717", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "================================================================================\n", - "📝 QUALITATIVE ANALYSIS - Sample Generated Arguments\n", - "================================================================================\n", - "\n", - "🌟 Top 5 Most Creative & Diverse Arguments:\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: We should ban the use of child actors\n", - "Stance: NEGATIVE\n", - "\n", - "📖 Reference:\n", - " movies and shows without children in them would feel incomplete and unrealistic.\n", - "\n", - "✨ Generated:\n", - " we should not ban the use of child actors because it is important for them to be able to make their own decisions about what they want to do with their lives.\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.966 | Diversity: 0.906 | ROUGE-1: 0.045\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: We should subsidize journalism\n", - "Stance: NEGATIVE\n", - "\n", - "📖 Reference:\n", - " subsidizing journalism lowers the barrier to entry and can allow more fake news and junk reporting to proliferate so to speak\n", - "\n", - "✨ Generated:\n", - " we should not subsidize journalism because it is a waste of money that would be better spent on other things such as education, health care, etc. the government should not subsidise journalism at all.\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.935 | Diversity: 0.912 | ROUGE-1: 0.109\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: We should legalize prostitution\n", - "Stance: POSITIVE\n", - "\n", - "📖 Reference:\n", - " legalising prostitution could lead to better working conditions for women.\n", - "\n", - "✨ Generated:\n", - " legalizing prostitution would make it safer for prostitutes and women to be able to do what they want with their bodies without fear of being harmed.\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.880 | Diversity: 0.962 | ROUGE-1: 0.222\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: We should fight urbanization\n", - "Stance: NEGATIVE\n", - "\n", - "📖 Reference:\n", - " we need to support urbanization to support growing populations.\n", - "\n", - "✨ Generated:\n", - " urbanization should not be fought as it allows for more people to live and work in an environment that is conducive to health and well-being. the benefits of urbanization are endless.\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.929 | Diversity: 0.903 | ROUGE-1: 0.146\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: The use of public defenders should be mandatory\n", - "Stance: NEGATIVE\n", - "\n", - "📖 Reference:\n", - " public defenders are often overworked and should only support those who cannot afford another attorney.\n", - "\n", - "✨ Generated:\n", - " the use of public defenders should not be mandatory because it is unfair to force someone to pay for a lawyer that they don't want to spend their money on.\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.893 | Diversity: 0.933 | ROUGE-1: 0.130\n", - "\n", - "\n", - "================================================================================\n", - "⚠️ Samples Needing Improvement:\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: We should legalize sex selection\n", - "Stance: NEGATIVE\n", - "\n", - "📖 Reference:\n", - " sex selection can lead to societies where there are more men than women. this can mean that a lot of men cannot find a wife and are unhappy.\n", - "\n", - "⚠️ Generated:\n", - " sex selection can lead to an imbalance between the sexes, which can lead to a gender imbalance in the population. this could lead to more males being born than females\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.609 | Diversity: 0.767 | ROUGE-1: 0.345\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: We should prohibit flag burning\n", - "Stance: NEGATIVE\n", - "\n", - "📖 Reference:\n", - " burning the flag is freedom of speech and it would be unconstitutional to ban it.\n", - "\n", - "⚠️ Generated:\n", - " flag burning is a free speech right and should not be prohibited. it's a way of showing our country's commitment to freedom of expression. the only way to show this is by burning the flag.\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.643 | Diversity: 0.800 | ROUGE-1: 0.423\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "Topic: The vow of celibacy should be abandoned\n", - "Stance: NEGATIVE\n", - "\n", - "📖 Reference:\n", - " the vow of celibacy, and those who choose to make that vow, should be respected. it should be a matter of individual choice for the individual.\n", - "\n", - "⚠️ Generated:\n", - " the vow of celibacy should not be abandoned because it is an important part of a person's life and should not be sacrificed in order to become a priest.\n", - "\n", - "📊 Scores:\n", - " Creativity: 0.625 | Diversity: 0.828 | ROUGE-1: 0.464\n", - "\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 16: QUALITATIVE ANALYSIS\n", - "# ============================================================================\n", - "\n", - "print(\"\\n\" + \"=\"*80)\n", - "print(\"📝 QUALITATIVE ANALYSIS - Sample Generated Arguments\")\n", - "print(\"=\"*80)\n", - "\n", - "# Show best performing samples (high creativity and diversity)\n", - "test_results['combined_score'] = (test_results['creativity'] + test_results['diversity']) / 2\n", - "best_samples = test_results.nlargest(5, 'combined_score')\n", - "\n", - "print(\"\\n🌟 Top 5 Most Creative & Diverse Arguments:\\n\")\n", - "for idx, row in best_samples.iterrows():\n", - " print(f\"{'─'*80}\")\n", - " print(f\"Topic: {row['topic']}\")\n", - " print(f\"Stance: {row['stance'].upper()}\")\n", - " print(f\"\\n📖 Reference:\")\n", - " print(f\" {row['reference']}\")\n", - " print(f\"\\n✨ Generated:\")\n", - " print(f\" {row['generated']}\")\n", - " print(f\"\\n📊 Scores:\")\n", - " print(f\" Creativity: {row['creativity']:.3f} | Diversity: {row['diversity']:.3f} | ROUGE-1: {row['rouge1']:.3f}\")\n", - " print()\n", - "\n", - "# Show samples that need improvement (low scores)\n", - "worst_samples = test_results.nsmallest(3, 'combined_score')\n", - "\n", - "print(f\"\\n{'='*80}\")\n", - "print(\"⚠️ Samples Needing Improvement:\\n\")\n", - "for idx, row in worst_samples.iterrows():\n", - " print(f\"{'─'*80}\")\n", - " print(f\"Topic: {row['topic']}\")\n", - " print(f\"Stance: {row['stance'].upper()}\")\n", - " print(f\"\\n📖 Reference:\")\n", - " print(f\" {row['reference']}\")\n", - " print(f\"\\n⚠️ Generated:\")\n", - " print(f\" {row['generated']}\")\n", - " print(f\"\\n📊 Scores:\")\n", - " print(f\" Creativity: {row['creativity']:.3f} | Diversity: {row['diversity']:.3f} | ROUGE-1: {row['rouge1']:.3f}\")\n", - " print()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "1a14f644", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:18:43.219607Z", - "iopub.status.busy": "2025-12-11T06:18:43.219298Z", - "iopub.status.idle": "2025-12-11T06:19:05.195797Z", - "shell.execute_reply": "2025-12-11T06:19:05.194939Z" - }, - "papermill": { - "duration": 22.012366, - "end_time": "2025-12-11T06:19:05.197007", - "exception": false, - "start_time": "2025-12-11T06:18:43.184641", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "================================================================================\n", - "🧪 TESTING ON NEW UNSEEN TOPICS\n", - "================================================================================\n", - "\n", - "🔮 Generating arguments for new topics...\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Nuclear energy should be expanded\n", - "\n", - " POSITIVE stance:\n", - " nuclear energy should be expanded because it is a renewable resource that can be used for many other purposes, such as agriculture and food production. there is no need to limit the use of nuclear energy.\n", - " [Diversity: 0.917, Length: 36 words]\n", - "\n", - " NEGATIVE stance:\n", - " nuclear energy is a waste of resources and should not be expanded. there is no need to increase the amount of nuclear waste that can be used for other purposes such as heating water or cooking food.\n", - " [Diversity: 0.865, Length: 37 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Social media does more harm than good\n", - "\n", - " POSITIVE stance:\n", - " Social media does more harm than good because it encourages people to post things that they don't want to retweet or share with friends and family.\n", - " [Diversity: 0.962, Length: 26 words]\n", - "\n", - " NEGATIVE stance:\n", - " Social media does more good than harm because it allows people to express themselves in a way that they would not otherwise be able to do without the use of social media.\n", - " [Diversity: 0.938, Length: 32 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Universal basic income should be implemented\n", - "\n", - " POSITIVE stance:\n", - " Universal basic income should be implemented to ensure that all citizens have access to the basic services they need to live a normal life and not having to worry about what other people are doing\n", - " [Diversity: 0.886, Length: 35 words]\n", - "\n", - " NEGATIVE stance:\n", - " Universal basic income should not be implemented because a lot of people have no idea what they are getting into when they start out and need help to pay for their basic needs.\n", - " [Diversity: 0.939, Length: 33 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Space exploration is worth the cost\n", - "\n", - " POSITIVE stance:\n", - " space exploration is worth the cost because it will allow us to learn more about the universe we live in, as well as a lot of new information that could help us improve our lives.\n", - " [Diversity: 0.914, Length: 35 words]\n", - "\n", - " NEGATIVE stance:\n", - " space exploration is not worth the cost because there are so many things that can be done on earth that it's impossible to know if it's worth the cost.\n", - " [Diversity: 0.862, Length: 29 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Genetic engineering of humans should be allowed\n", - "\n", - " POSITIVE stance:\n", - " Genetic engineering of humans should be allowed because it allows for a better understanding of the human body and how it affects other parts of the body as well as the ability to learn new things.\n", - " [Diversity: 0.806, Length: 36 words]\n", - "\n", - " NEGATIVE stance:\n", - " Genetic engineering of humans shouldn't be allowed because it could lead to the death of a lot of innocent people who have no idea what is going on in the world.\n", - " [Diversity: 0.903, Length: 31 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Remote work should become the standard\n", - "\n", - " POSITIVE stance:\n", - " remote work should become the standard because it allows for a better understanding of the world around us and can be used to improve our quality of life with less distractions.\n", - " [Diversity: 0.935, Length: 31 words]\n", - "\n", - " NEGATIVE stance:\n", - " remote work should not become the standard because a lot of people have a hard time finding a job that they can't do at home or on the go.\n", - " [Diversity: 0.897, Length: 29 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Cryptocurrencies should replace traditional currency\n", - "\n", - " POSITIVE stance:\n", - " Cryptocurrencies should replace traditional currency because they can be used for a variety of purposes, such as the payment of bills and other financial transactions. They can also be used to pay for medical bills and other expenses.\n", - " [Diversity: 0.763, Length: 38 words]\n", - "\n", - " NEGATIVE stance:\n", - " Cryptocurrencies should not replace traditional currency because a lot of people don't have the means to pay for everything they want with their wallets full of money.\n", - " [Diversity: 0.963, Length: 27 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Artificial intelligence poses an existential threat\n", - "\n", - " POSITIVE stance:\n", - " Artificial intelligence poses an existential threat because it can be used to manipulate a person's thoughts and feelings, making it more likely that they will not be able to make a decision.\n", - " [Diversity: 0.875, Length: 32 words]\n", - "\n", - " NEGATIVE stance:\n", - " Artificial intelligence is an existential threat to the human race because it can be used to a great extent to improve the lives of people who do not have access to it.\n", - " [Diversity: 0.875, Length: 32 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: College education should be free for all\n", - "\n", - " POSITIVE stance:\n", - " college education should be free for all because a lot of people do not have access to the same level of education as their parents or guardians. it's important that everyone has access to this level of education.\n", - " [Diversity: 0.842, Length: 38 words]\n", - "\n", - " NEGATIVE stance:\n", - " college education should not be free for all because it is a personal choice and the students should be able to choose how they want to go to school regardless of their income.\n", - " [Diversity: 0.879, Length: 33 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Meat consumption should be banned\n", - "\n", - " POSITIVE stance:\n", - " Meat consumption should be banned because it is a waste of money that can be spent on other things such as drugs and alcohol. It is also a source of pollution for the government.\n", - " [Diversity: 0.853, Length: 34 words]\n", - "\n", - " NEGATIVE stance:\n", - " Meat consumption should not be banned because it is a good source of protein for many people who are suffering from diseases such as cancer and heart disease. It is also a good way to reduce the number of illnesses that can be prevented with meat consumption.\n", - " [Diversity: 0.851, Length: 47 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Surveillance is necessary for public safety\n", - "\n", - " POSITIVE stance:\n", - " Surveillance is necessary for public safety because it is a way to ensure that the public is safe from terrorists and other criminals, as well as to ensure the safety of citizens.\n", - " [Diversity: 0.750, Length: 32 words]\n", - "\n", - " NEGATIVE stance:\n", - " Surveillance is not necessary for public safety because it is a way of keeping tabs on what is going on in the world around us and should not be required.\n", - " [Diversity: 0.867, Length: 30 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Climate change is the most pressing issue\n", - "\n", - " POSITIVE stance:\n", - " climate change is the most pressing issue as it affects millions of people a year, making it impossible for them to continue to live in harmony with their natural environment.\n", - " [Diversity: 0.933, Length: 30 words]\n", - "\n", - " NEGATIVE stance:\n", - " climate change is the most pressing issue because it affects millions of people a year and causes more pollution than ever before. this could lead to an increase in global warming.\n", - " [Diversity: 1.000, Length: 31 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Immigration policies should be more lenient\n", - "\n", - " POSITIVE stance:\n", - " immigration policies should be more lenient in order to reduce the number of illegal immigrants entering the country and keep them out of the country for the rest of their lives.\n", - " [Diversity: 0.806, Length: 31 words]\n", - "\n", - " NEGATIVE stance:\n", - " immigration policies should not be more lenient because it is unfair to force people to come from countries that are not in the same country as the one you are applying for.\n", - " [Diversity: 0.875, Length: 32 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Death penalty should be abolished\n", - "\n", - " POSITIVE stance:\n", - " Death penalty should be abolished because it is a cruel punishment for a person who has committed a crime with no hope of regaining his or her life.\n", - " [Diversity: 0.929, Length: 28 words]\n", - "\n", - " NEGATIVE stance:\n", - " death penalty should not be abolished because a person has the right to live their life as long as they want to. it is a personal choice and should not be taken away from them.\n", - " [Diversity: 0.857, Length: 35 words]\n", - "\n", - "────────────────────────────────────────────────────────────────────────────────\n", - "📌 Topic: Homework should be banned in schools\n", - "\n", - " POSITIVE stance:\n", - " homework should be banned in schools because it is a waste of time and money for students to spend at home. they do not learn how to read, write, or listen to music.\n", - " [Diversity: 0.939, Length: 33 words]\n", - "\n", - " NEGATIVE stance:\n", - " homework should not be banned in schools because it is a way for students to learn at their own pace without having to worry about what they are doing at the school.\n", - " [Diversity: 0.938, Length: 32 words]\n", - "\n", - "\n", - "================================================================================\n", - "✅ Generated arguments for all new topics!\n", - "================================================================================\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 17: TEST ON NEW TOPICS\n", - "# ============================================================================\n", - "\n", - "print(\"\\n\" + \"=\"*80)\n", - "print(\"🧪 TESTING ON NEW UNSEEN TOPICS\")\n", - "print(\"=\"*80)\n", - "\n", - "test_topics = [\n", - " \"Nuclear energy should be expanded\",\n", - " \"Social media does more harm than good\",\n", - " \"Universal basic income should be implemented\",\n", - " \"Space exploration is worth the cost\",\n", - " \"Genetic engineering of humans should be allowed\",\n", - " \"Remote work should become the standard\",\n", - " \"Cryptocurrencies should replace traditional currency\",\n", - " \"Artificial intelligence poses an existential threat\",\n", - " \"College education should be free for all\",\n", - " \"Meat consumption should be banned\",\n", - " \"Surveillance is necessary for public safety\",\n", - " \"Climate change is the most pressing issue\",\n", - " \"Immigration policies should be more lenient\",\n", - " \"Death penalty should be abolished\",\n", - " \"Homework should be banned in schools\"\n", - "]\n", - "\n", - "new_topic_results = []\n", - "\n", - "print(\"\\n🔮 Generating arguments for new topics...\\n\")\n", - "\n", - "for topic in test_topics:\n", - " print(f\"{'─'*80}\")\n", - " print(f\"📌 Topic: {topic}\")\n", - " \n", - " for stance in ['positive', 'negative']:\n", - " argument = generate_argument(model, tokenizer, topic, stance, device)\n", - " \n", - " # Calculate diversity for this generation\n", - " diversity = evaluator.calculate_diversity(argument)\n", - " \n", - " new_topic_results.append({\n", - " 'topic': topic,\n", - " 'stance': stance,\n", - " 'generated_argument': argument,\n", - " 'diversity': diversity,\n", - " 'length': len(argument.split())\n", - " })\n", - " \n", - " print(f\"\\n {stance.upper()} stance:\")\n", - " print(f\" {argument}\")\n", - " print(f\" [Diversity: {diversity:.3f}, Length: {len(argument.split())} words]\")\n", - " \n", - " print()\n", - "\n", - "# Convert to DataFrame\n", - "new_results_df = pd.DataFrame(new_topic_results)\n", - "\n", - "print(f\"\\n{'='*80}\")\n", - "print(\"✅ Generated arguments for all new topics!\")\n", - "print(f\"{'='*80}\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "2679fc37", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:19:05.269880Z", - "iopub.status.busy": "2025-12-11T06:19:05.269630Z", - "iopub.status.idle": "2025-12-11T06:19:05.541621Z", - "shell.execute_reply": "2025-12-11T06:19:05.540898Z" - }, - "papermill": { - "duration": 0.308871, - "end_time": "2025-12-11T06:19:05.542720", - "exception": false, - "start_time": "2025-12-11T06:19:05.233849", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "📊 Analysis of New Topic Generations:\n", - "\n", - "Average Diversity: 0.8873\n", - "Average Length: 32.8 words\n", - "\n", - "By Stance:\n", - " diversity length\n", - "stance \n", - "negative 0.900515 32.666667\n", - "positive 0.874013 33.000000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAHaCAYAAAB7F2ttAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPMElEQVR4nOzdd3gU5fr/8U96gwChhGKAAEogIL2EDtI5CCKKoFIUVIpHCKCgFFEpRwThKIh6KIqCKCIWlGIkdKQLKKBEEKSDQEhCwiaZ3x/8Mt9sGruwyS7J+3VdeyU788wz98zOzD5z7zMzboZhGAIAAAAAAAAAuAR3ZwcAAAAAAAAAAPg/JG0BAAAAAAAAwIWQtAUAAAAAAAAAF0LSFgAAAAAAAABcCElbAAAAAAAAAHAhJG0BAAAAAAAAwIWQtAUAAAAAAAAAF0LSFgAAAAAAAABcCElbAAAAAAAAAHAhJG2Rr0VHR8vNzc18HT9+3NkhOcSiRYuslguuJ/3ns2jRImeHAwdISkpShQoV5ObmppIlS+r69evODqnAOn78uNU+Fh0dnSfz3blzpznPxx57LE/mCQDAnciN84ZWrVqZ9fXv398hdcL5HnvsMfNz3blzp7PDKdAqVqxofhavvvpqnszz+vXrKlmypNzc3FSxYkUlJSXlyXyRM5K2cGkZk65ubm7y9vZWkSJFVKlSJbVt21aTJk3SyZMnnR2qy3BWQvfvv//W8OHDFR4eroCAAPn4+Kh06dKqWbOmevXqpalTp+ry5ct5Fg9uun79ut588001btxYRYsWlZeXl0qUKKGqVauqS5cueuWVV/Trr79aTZNff+y4U3PnztWJEyckScOGDZOfn5857tVXX7VaZ+XLl8/U0Pnuu++ckmi8XelPyGx95fcfKBo0aKCWLVtKkj7//HPt3bvXyREByCs1atSwOt6VKVNGycnJzg6rQLmT75uMP/blVRIkt9GRQ/rss8/UoUMHBQcHy8vLS0WKFFFoaKhatWqlF154QWvWrMk0TUFqu9hqz549+vzzzyXdbAM2aNDAHJfx3MDDw0MHDhywmj4uLu6u2scytt1teeX3Hyj8/Pw0dOhQSdJff/2l9957z8kRQZI8nR0AYC+LxSKLxaLY2FgdO3ZMUVFRev311zV+/HiNHz9e7u7/91tE5cqVNX36dPN9UFCQM0J2uAYNGlgtl7Pt2bNHbdq00dWrV62Gnzt3TufOndPBgwf1+eefq1OnTipWrJiToix4rly5ohYtWmRqVF26dEmXLl3S77//ru+//14lS5ZUeHi4k6K8OyQlJWnq1KmSJE9PTw0ZMiTH8idPntTcuXM1YsSIvAivwAkKCrI6BlauXDnP5v3CCy9ow4YNMgxDEydO1DfffJNn8wbgHDt37sz0A+fZs2e1evVq/etf/3JSVAD69u2rxYsXWw2LjY1VbGysjh8/rg0bNuivv/5Shw4dnBTh3ePVV1+VYRiSbrZ1cpKamqpx48bp66+/zovQCqRXXnnFPLdu0qRJns136NChmjx5spKTkzVlyhQNHjxYPj4+eTZ/ZEbSFneVXr16qX79+rp69ar27NmjNWvWKCUlRSkpKXr11Vd19uxZq1+EQkJCNGrUKCdGfGvXrl1T4cKF7ZomPDzcpZJsQ4YMMb9UAgIC1KtXL1WqVEkWi0V//PGHNm3a5JK9oW/cuCHDMPLtF9G0adOsErbdunVT7dq15eXlpRMnTmj79u3av3+/EyO8e3z55Ze6cOGCJOmBBx5QyZIlbznN1KlTNWjQIBUqVCi3w8sVgwcPzpSMGD16tPl//fr11atXL6vx6Xtl5KbAwECnHds7d+6swMBAxcbG6vvvv9fff/+te+65xymxAMgb2fXEW7Ro0W0lbWNjYxUYGHiHUQEF2+rVq60StvXq1VOHDh1UqFAhXbhwQXv27NG2bducGOHd4++//9aqVask3WxjderU6ZbTfPPNN/r555/VqFGj3A4vV7Rv3z5TG/29997Tn3/+KUkqVqyYXn75ZavxNWrUyLP4Bg0alGfzSq9kyZJq06aN1q5dqwsXLmjFihXq3bu3U2LB/2cALmz9+vWGJPO1cOFCq/G//fabERoaalXmhx9+yHb6Y8eOGYZhGM2aNTOH9evXL9N8586da44PDAw0EhISzHFXr141pkyZYjRs2NAIDAw0vLy8jJCQEKNfv37GwYMHM9U1ceJEs64KFSoYFy9eNIYMGWKUK1fOcHd3N95++23DMAzj+PHjxjPPPGNUqVLF8PX1NXx8fIyyZcsaTZo0MUaMGGH89ttvZp0LFy60Wi7DMIxjx45ZDcvqNXHiRGPChAnm+3vuucdISUmxivfgwYNW02zfvj3Hz+jq1atW5RctWpRluR07dhgXLlzINDwuLs54++23jRYtWhhBQUGGl5eXERwcbLRo0cJ49913M5XftWuX8eSTTxoVK1Y0fHx8jICAACM8PNyIjIw0Tp48mal8y5YtrT7rAwcOGN26dTOCgoIMScbevXvNsjExMcbzzz9vhIWFGf7+/oavr69RrVo146WXXsoy9pxk3G7XrVtnNG/e3AgICDCKFi1qPPzww8Yff/xhlv/pp5+spjly5IhVfSkpKUZwcLA5ftq0abeMoU6dOmb5/v37Z1nm+PHjVtvtrbahtP3FYrEY48aNMzp16mRUqlTJKFKkiOHp6WkEBQUZzZo1M/773/8aN27csJpXxm10/fr1xtKlS42GDRsafn5+RtGiRY2ePXsaJ06cyDLWQ4cOGUOGDDGqVatmBAQEGH5+fkZoaKjRq1cvY+fOnZnW18cff2y0a9fOKFmypOHl5WWUKFHC6Ny5s7Fq1apbrruM2rZta8b9wQcfZBqffj9P/5o0aZJZ5ttvv820/Blt3LjR6NWrlxESEmJ4e3sbhQsXNho3bmy8++67mdZn7dq1s5zPkSNHzOFBQUFGamqqOa5jx47muOeee87u9ZDVtpDR8uXLjc6dOxvBwcGGl5eXUbRoUSMiIsJ46623jPj4+BzrXLhwobFq1SqjadOm2e4rhpH1tpTRunXrjEcffdQoX7684ePjYwQGBhrh4eHG4MGDrfZne469afr06WPO+4033rBvJQK4qyQmJhrFihUz9/n77rvP/N/b29u4ePFipmkytj//+OMPY/r06UZYWJjh7e1tdOvWzSx7/Phxo3fv3kZQUJAREBBgNG/e3IiKisqyrZemQoUKVm279DK2O3Oa7vvvvzcaN25s+Pn5GeXKlTNeeeUV87tmzpw5RlhYmOHj42OEhoYakydPtvo+SWPv923GdRMTE2PMmTPHqFmzpuHj42OULFnSePrpp41//vnHnCZ9Wy6rV8blzErG742M6y07d9ruv3LlijFq1CijfPnyhpeXV47r0p5twdZ2v2FkPm+4ceOG8Z///MeoWrWq4e3tbZQrV84YOXKkkZiYaNM6MYzM7eujR48ajzzyiBEUFGT4+fkZTZs2NdatW2e1HgsVKmRO8/7772eqs2fPnub4jh073jKGESNGmOWrVKliJCcnZypz9epVY/PmzVnGfattaf78+cYjjzxihIWFGcWLFzc8PT2NwoULG7Vq1TJefPHFLM8NMu5ju3btMrp06WIUKVLE8PPzM5o1a2Zs2rQpy+W5ePGi8dprrxmNGjUyihYtanh7extly5Y12rdvb3z22WeZytvTZryVN954w4y7T58+mcZn3G/TXm3atDHLXLt27Zb7mD3nWsOHDzfrat26tdW4MmXKmON++eUXc/i0adPM4WFhYXatA8Ow3j6yO67c6bnooUOHjB49ehjFihXLcl9Jk9Nx3jBsPy+Ki4szJk2aZNSpU8coVKiQ4enpaZQsWdKoVauWMXDgQKvcSZoPPvjAnHfbtm1tX4HIFSRt4dJulbQ1jJvJwPRl2rdvn+30aUnb+fPnm8MCAwON69evW9XZvHlzc/wzzzxjDv/999+NihUrZvtF7+PjY3z++edWdaVvvJUoUcIICwuzmubtt982zp07Z5QsWTLHRsR7771n1nknjbfTp08bXl5e5rCMDer0Sd3q1avf8jO6dOmS1TxGjRqVZaMpKzExMca9996bbby1atWyKv/2228b7u7u2ZYvUqRIpuRN+i/KOnXqGAEBAVbTpCVtV65cafj7+2dbd7ly5bJM3mQn/bSdOnUy3NzcMtVZvHhxq+RsjRo1zHGjR4+2qi99UtfDw8M4ffr0LWOoWbOmOU3Lli2Nq1ev2hV3Vq+0RF3GhllWr7Zt21ptCxm30fQ/nqR/3XvvvZn2yf/973+Gt7d3tvNK+/HDMAwjISHBKsma1SsyMvKW6yLN9evXreZ9q5M0SUbp0qXN40vaCf2tkrYvv/xyjjE3b97ciIuLM8unP1lp166d1bpKP11avCkpKUZgYKA5POOxyhZZbQtpkpOTjUcffTTHZahWrVqmbTf9+NatW2c5XcZ9JaekbWpqqjFw4MAc40jb7+099qZ55513rPYtAPnXsmXLrI4J27Zts2pH/fe//800Tcb2Z/p2pSQzaXvs2DHz+yL9y93d3ejSpYvVsPQckbStU6dOlm2Tfv36Gc8//3yWx8Px48db1Xc737cZ1012bYEWLVqY0zgraXun7f7ixYsb1apVs2ld2rst3EnStkOHDlmWf/LJJ2+5TtKk/0wiIiLMzhAZY0+/foYOHWqOa9CggVV9cXFxVu1wW9oo6bfTEiVKGEePHrUr7lttS/Xq1cuxbLly5YxTp05Z1Z9+H2vYsKHVsSL9dpPxnGLHjh1Zfv4Zjxlp7G0z3kqLFi3MabPqNJNxv00fa1rC8VZJW3vPtb7++mtznL+/v5mIPnr0qNV06eNNv68MGTLE5uVPc6uk7Z2ei9arV8+qLZ7dvmIYOR/n7TkvatWqVY7bSq9evTIt54EDB6y2V3t+0IHjkbSFS7MlaWsYhlGrVi2zjK+vr5koyi5pe+3aNavk3fLly826Tpw4YdWI3bZtm2EYNxMS4eHh5vCSJUsaL7zwgjFp0iSjSZMmVvOPiYkx68uqB17btm2NiRMnGkOGDDGWLFli1bO3WLFiRmRkpDF58mRj6NChxgMPPGB4e3vfMml79epVY/r06UavXr2sxk2fPt18bdmyxTAMw3jsscfM8Q899JDVukzfuJw+fbpNn1P6LxXpZiP1wQcfNCZOnGisXr06ywN9cnKyVVJRutmAGzNmjDF69GijRYsWRu3atc3yGzZssPpcypcvb7z00kvG0KFDrRoAQUFBOfbO8PT0NJ588knjtddeM/r06WMcOnTI+PPPPw0/Pz+zTHh4uDFu3Djj5Zdftlq2atWq2ZyQzviZ16tXzxg/frzx0EMPWQ1P/8vxvHnzzOHBwcFWv5IPHjzYHNelSxebYujXr5/VvPz8/IxWrVoZI0eONJYtW5ZlD4Hp06cbzz33nNV0L7/8srkNpf0aGxcXZ1SqVMno06ePMXr0aGPKlCnGpEmTjN69exuenp7mtMuWLTPrzuoEo0GDBsa4ceOMpk2bWg1funSpOd22bdusGkienp5G7969jUmTJhmDBg0yQkJCrBonzz77rFnW29vb6Nu3r/H6668bjz76qNU29Omnn9q0Hjds2GBOExAQkKl3umFk3s/fffdd8/9Ro0YZhpFz0nbp0qVW4zp06GC89tprxtChQ616pgwaNMic5ptvvjGHFypUyNw2M37uc+fONQzDMPbs2WMOc3NzM86fP2/T8qeXvt6MSdvXXnvNanzjxo2NCRMmGI888ki223zGOm3dV3JK2r755puZjkeDBw82Xn31VaNPnz5GQECAmbS199ibZvv27VbH/KSkJLvXJYC7Q6dOncz9vW7dutkOSy+rXmnh4eHGmDFjjJdeesl4+eWXDcMwMiXjOnfubIwfP96oW7dupunTc0TSNi2m8ePHGw0aNMg0vzp16hjjx4+3+nE9MDDQ6nh3O9+3Wa2bBx54wBg/fnymdmFaG/yzzz4zpk+fbjWuV69eZtskqytgMrI3aeuodr+7u7vRt29fY8yYMUaJEiWyXZf2bgv2tPsznjdIN9v/r7zyilVS2t3dPVMSMjsZ29dly5Y1XnrpJWPIkCGGj4+PObxo0aLGlStXDMO42TMw/Xaxf/9+s770P44EBQXZlCTKuFzu7u5G3bp1jWeffdb44IMPMl2lYxj2bUudOnUyunbtagwfPtx47bXXjMmTJxtDhgwxihcvbk47ePBgq/oz7mP33HOP8dJLL1ldoSPJePbZZ81pYmNjMyVs27RpY4wfP9544YUXjHr16lklbW+nzZiTpKQkw9fX15wuq6ssM+63b7/9ttneT0vA55S0vZ1zrcuXLxseHh6Z4sr4uT/66KOGYdzsnFC0aFFz+BdffGHT8qeXU9LWUeeituwrhpH9cd6e86LffvvNav/o37+/MWXKFCMyMtJ46KGHjGLFimWZtE1OTrbKlWzcuNHudQnHIWkLl2Zr0jZj7660ZER2SVvDMIz+/fubwx9++GFzePoT/mrVqpnD0//a5+HhYfz+++/muIwJyBEjRpjjMjbehg8fnin+mTNnZvklniYuLs44e/as+T6nS+ZyGpdmy5Yt5ngvLy+z7vS/qnl6elrNMycrVqzIsrdG2qtIkSLGpEmTrBKe6RNO0s0ezRkvFUvfCO7WrZtZtnDhwsa5c+fMcd9//32mhkSajF+UK1euzBR/+h6L9913n1Uvz9OnT1s1GL7++mub1kn6eYaHh1s1zAcNGmQ1Pq1RGRcXZ9XY+PLLLw3DuLl9pb81QtrwWzl+/LhVfRlfnp6exhNPPJHp0s6c9puMzp07Z3z99dfG3LlzjbfeesuYPn26VY/hp556yiyb8YSpYcOGZmL6xo0bRqlSpcxx6Xvm9OjRw6rBkbHhkJSUZF6OdOnSJauk8YIFC6zKDhkyxBxXp04dm9bjggULzGnuvffeLMtk3M+vXr1q/gDi5+dnnDp1KsekbfpbWfTt29eq7s8//9zqM7t06ZJhGDdP2NJvm2mXQlWqVMmQZJ5U9O7d2zAMw5g1a5ZZtmbNmjYte0bp40+ftE1JSbHqZRMREWG1v7/44otW06a/Lcnt7CvZJW1TUlKses6WK1fO6lhhGDcvP0xrFNt77E3z999/27yPALh7ZWwDpP2Y/fHHH1sdA9Innwwj8/do48aNM11Bcvr0aau2U/oT58TERKNq1arZtucckbQtXry4eQVO+tvqSDJKlSpl9tJbvXp1lst6u9+3GdfNQw89ZLb/Ll26ZLW+M/ZiTj9dducE2bE3aeuodv+sWbPMcStXrsxyXd7JtmBLuz9jmfTnIvv27bMa980339x6ZRrW7WsvLy+r78FPP/3Uqs4PP/zQHNeuXTtz+PPPP28Of/jhh7McnhOLxWLUr1/fal4ZX82aNTP27duXaVpbt6X4+Hjjxx9/ND744ANj5syZxvTp063OSSpVqmRVPv0+FhAQYJUE7969uzku/Y89//3vf63imTx5cqY40p8T3U6bMSd//vmn1fyzStxn3G+//fZb45lnnjHfr1ixIsek7e2ea6X/fNOOv0899ZR5DJNklClTxjAM623Zzc3N7lvbGUbOSVtHnIvas69kd5y357wofYeNatWqZTrXTk5ONo4fP57luqhSpcptH2/hWO4C8gHDMOyeZsCAAeb/q1at0rVr1yRJS5cuzbLMli1bzP9TUlJ03333yc3NTW5ubvL09LR64NPWrVuzne+4ceMyDWvatKnc3NwkSe+//77q1aunJ598Um+88YZWr14tT09PBQcH272M2WnSpInq1q0rSbJYLOYDNr744guzTOfOnW2e50MPPaSffvpJbdq0kbt75sPK1atXNXHiRL3++uvmsM2bN1uVef311811kKZSpUrm/+kfJNCxY0eVKlXKfN+pUyerB0Nl99CBGjVqqFu3bpmGp/9sf//9d/n5+ZmfbdmyZZWSkmKOz+mzzU6vXr3k7e1tvn/iiSesxu/evVvSzYe4PfXUU+bwDz/8UJK0ceNGnTt3TpJUokQJde3a1ab5VqhQQbt379YTTzwhf3//TOOTk5P1ySef6JFHHrF7H7p+/boGDBigMmXKqFu3bhoyZIhGjRql0aNH6+DBg2a5v//+O9s6Bg4cKC8vL0mSl5eXQkNDzXGXL182/0+/rXTo0EHNmze3qsfb29t8ENTPP/+s5ORkc9xTTz1lfpZubm6aO3euOW7fvn1KSEi45bKmPYBMkoKCgm5ZXpLc3d31xhtvSLq5rl577bVsyyYkJGjfvn3m+48//tgq5kcffdQcl5ycrB07dki6+aCItP1Yurmezpw5Yz5A4d///rckadOmTVZ/Jal169Y2LYetjhw5on/++cd8/8QTT8jDw8N8369fP6vy2e2jtu4rOcWR/vP697//bXWskKTixYurSJEikm7/2Fu8eHGr9+nnCSD/WLx4sdkGcHNzMx++2L17d/n6+prlFi5cmGM9o0aNsiov3Tyepf/u7du3r/m/j49Prj/4pWvXrubD0CpWrGg1rkuXLgoICJAkVa5c2Wpc2vezo75vBw8ebB6Hg4KCVKJEiUzzcgZHtPs9PDz07LPPmu+rVq1qNT5t+fJ6WxgyZMgtY7JH8+bNrbahXr16me07yfq7+/nnnzf//+STT5SYmKj4+Hh9//335vD051858fT01E8//aSxY8dme86yefNmtWvX7ra+p2fOnKng4GC1bdtWzzzzjCIjIzV69Gh9/fXXZpmc2rndunVT2bJlzffp13V27dzChQvrpZdeylRX2jnR7bYZc5Jx3dja1p0wYYJ5XBs3bpxSU1OzLXu751rp26tp6yntb1o798yZM4qJibFq59asWdPqWOIIjjgXtWdfyY4950XVqlUz26yHDh1SlSpV1LNnT7388sv67LPPdPnyZVWoUCHL+aRv69LOdS6StsgXfv/9d/N/X1/fTCfUWWnRooWqVKkiSUpMTNSKFSt0+PBh7d27V9LNhkD6RlP6hMStZHdgK1GiRJaxNWzYUDNnzjSfYLlnzx598sknGj9+vDp16qR77rlH0dHRNs/fFmlfdJI0f/58SdZJ2/TJQ1u0atVKUVFR+ueff/TDDz/o1VdfVf369a3KvP322+b/6denv79/psRKRunLZ9UwSz8suwZnWFjYLeu+ldv50sq4bBnjv3Llivn/sGHDzMT32rVrdfLkSX3++efm+CeeeMLqy/1WKlWqpMWLF+vy5cvaunWr3n77bXXp0sUqub5+/Xpzu7fV2LFjtWjRohwbaJKUlJSU7biMJ4k+Pj7m/+nrTf/5pE/sZsWez9IwDF26dMnm8vbq0aOHuQ8sWLBAMTExWZa7fPmyXUnz9NtgmzZtzP83bdpkNljLli1rJkr//vtvHTt2zKqRl346R8i43jNu4xnfZ7eP2rOv2BLHrbaX2z323s4PhQDuPmk/aks3f/AOCQmRdDOx0qVLF3Pcp59+apXAzCir9kfG41np0qVzfJ+djMejnL5300ufTEr/Y1nGcZ6enlbj0r6fHfV9a2tbIK85om0YHBxslaxPv2zS/y2fo7YFW6Vf59nFZI+M390eHh5W5zvpl69Lly5mAvLy5cv68ssv9d133+n69euSpNq1a6tOnTo2z7tw4cKaMmWKzpw5o4MHD2r+/Pnq16+fChcubJa5cOGCFi9ebNcyrVy5UiNHjlRcXFyO5W7cuJHtuNtp54aEhFj96J3RnbQZHa1cuXIaOnSoJOm3337TJ598km3Z292f0rdXN2/erLNnz5rn/Y899pi5jjdu3GiVtHV0O1dyzLmoPfuKLXHcqp3r6+urzz//XOXLl5ck/fnnn/ryyy81depU9e7dW+XKldPMmTOznJa2ruvwvHURwLXt2rVLv/zyi/m+ZcuWWfb2zEr//v3Nnq9Lly41e6hJN38xS3/wTf+ro6+vr1Wv0YzSenFllNZrISvDhw/XM888o+3bt+vXX3/VH3/8odWrV+uPP/7QxYsX1a9fP/311182LZctHnvsMY0ePVoXLlzQH3/8oXfffVeHDh2SdPMLJf3JiD2KFCmijh07qmPHjpo4caKefvppLViwQJIUGxurc+fOKTg42Gp9JiQk6Pz58zkmboOCgnT+/HlJMnudppd+WLFixbKsI7v1nz6W8PBw9e/fP9s4atSoke247KTFnSZj/EWLFjX/Dw0NVZcuXfTtt98qNTVVH374oVasWGGOt7X3QUbe3t6KiIhQRESEhg8frsWLF1v9KPHHH39Y9dq8lWXLlpn/16xZU0uXLlXVqlXl6empRx991OoHgOxkTD5n7GmdJv1nf+zYsRzrzNg7YMSIEVYnnxllt6+mdye9fqZMmaL27dvLYrFo2rRpWZZJ//lL0oMPPpjpV/P00n9OrVu31n/+8x9JNxuzacvarFkzVahQQSEhITp58qT+97//mdudu7u7WrZsaddy3ErG9Z5xG8/4Prt91J59xZY4brW9SLd37M148pG+dwWA/OHnn38220XSzZ5i2X1PnT9/Xt9//70efPDBLMdn1f7IeDzLePw7e/ZstrGlb+emJbvS/PHHH9lOl15OPwBnTNRmxVHft7a2BfKaI9r9ti7bnWwLtyN9XI5Y3xnjTUlJsUrSp18+d3d3DR06VCNHjpQk/e9//7NKWt1uO9fNzU3h4eEKDw/XU089pVdffVWVK1c2k6O27hdp0rdzCxUqpBUrVqh58+by9fXV3LlzzWRlTuxp56Y5efKkUlJSsk3c3kmbMTsZe6RevnxZZcqUueV00s1OHB9++KFiY2Nz3Edu91yrWbNm8vLyksVi0aVLl8yrEEuVKqX77rtPzZs31/Hjx606LkiOv6IsbRnu9FzUnn3Fljhsaee2adNGx44d0549e7Rv3z4dPXpUW7du1aZNm3Tjxg2NHj1aDz74oNmZLU36ti7tXOciaYu72pEjR/TYY49ZDYuMjLR5+n79+mnChAlKTU1VVFSUfvvtN3Ncxp6mTZo0Mf9PTExUeHi4OnXqlKnOn3/+OdOv1rdy+vRpeXh4KDg4WG3atDF/Hdy7d6/5ZXvixAldunTplr2IMzYQEhISsrw03sfHR4MGDdKUKVMkSaNHjzbHPfnkkzY12NP069dP//73v1WvXr1M49J6sEk3G2ppv3w3a9ZMb775pjlu4sSJmjt3rlWD5q+//jIv2WjSpIlWrlwpSVq9erVVkveHH36w+lU2/WdliyZNmpiXD505c8b85TG95ORkffvtt2rUqJFddUs3G35jxowxP5uMv0RnXG/PP/+8vv32W0nS9OnTlZiYaJa7//77bZ7vuHHj1LhxY3Xs2DHT55n+c5GsGwlZbUMZpW9gtG7dWuHh4ZJu/jru6F7hzZo1MxPXa9eu1ZYtW9S0aVNzfHJyss6dO6dy5cqpUaNG8vDwMC+z8vLy0qhRozLVefz4cR05csS8NDQn6W/TcerUKaWmptr8w1C7du3UqlUrRUdHZ3vSFRAQoNq1a5uXu126dEkvvPBCps/h6tWr+uGHH8x1LVk3Zs+fP6/PPvtMkswGfPPmzbVkyRLNmTPHnKZOnTo2NQrtUbVqVQUFBZkNvE8++UTPPvusedLx0UcfWZXPbh+1d1/JKo6SJUuax4N33nlHTz31VKbEu4eHhwIDA2/72Hvy5Enzf19f3xwTFQDuTul72dpaPrukbVbq1asnNzc3szfT0qVL1bFjR0k3e8umv11XRumP4Tt27JBhGHJzc9OBAwfM9kNuy43v21vx9PQ0ezTbcnujO5Gb7f6M7mRbsLXdn5s2bdqk48ePm70ely1bJovFYo7P+N391FNPacKECYqPj1d0dLS5/ry9vfX444/bPN+PPvpIiYmJ6t27d6btKyAgQO7u7mbSNmO751bbUvp2bqVKldSuXTtJN3vILl++3OYYbdGsWTPzqrpr165p+vTpGjNmjFWZtHOiO2kzZqdcuXLy9vY2ew2fPHnS5qRt8eLFFRkZqVdffTXHHxdu91yrUKFCatCggXnLhP/+97+SrNu5ixcv1ooVK3T16lVJN3uvOrpzQtoy3Om5qL37SlbsOS9KTEzUsWPHVK1aNdWvX9+8AtAwDBUrVkxXr15VamqqfvnlF6ukbUpKik6fPm2+T38uhLxH0hZ3ldWrV+vixYuKjY3V3r17tXr1aqvL0YYOHar27dvbXN8999yjdu3aac2aNUpOTjZPxLPqadqlSxdVq1bN7HXRvXt39ejRQ9WrV1dqaqpiYmK0ceNG/fXXX1q4cKFq165tcxwbN27U448/rmbNmqlatWrmvX3S97D09va2qRGW8QuwT58+atKkidzd3fXkk09a9R4ePHiw3nzzTSUnJ5uJQcn+X7k//vhjffzxx6pcubKaNWumSpUqyc3NTb/88ovVMrRo0cJchs6dO6tmzZrmPcHmzZunvXv3qk2bNjIMQ3v27NH58+fNy/ZHjBihr7/+WoZh6Nq1a2rQoIH69OmjuLg4syevdPPXx4z3z7yV559/XvPmzVNiYqL++ecf1a5dW4888ohCQkIUFxen3377TdHR0bpy5YqOHTuW7a+n2fn1118VERGhLl266ODBg1brpFWrVpl+2Wzbtq3CwsJ0+PDhO/pcNm/erMmTJ6t48eJq2bKlqlWrpoCAAB07dsxM7kk3742avnGRcRsaOnSoOnToIE9PTz344IO67777VLVqVfPetR9++KHc3d3l7++vxYsXO/xSrNGjR2vlypVKTU1VSkqKWrdurUcffVRVq1bV2bNntWbNGg0bNkzDhw9XUFCQnnrqKfOX+DfffFO7du1SkyZN5Ovrq1OnTmn79u3au3ev+vXrpw4dOtxy/g0bNjQTo/Hx8fr999+zvdVGVqZMmXLLHxJGjx5tnqhs2bJF999/v7p27apixYrp0qVL2rt3rzZv3qwyZcpY/VAVEBCghg0bmvcKu3jxoqTMSdu0hqyUO70P3N3dNWLECI0fP17SzXt5NWvWTO3bt9fhw4etbvHRunVr1apVK8t67N1Xsopj9OjRevHFFyXdvDVEtWrV9Oijjyo4OFjHjh3TypUrtX79etWuXfu2j727du0y/2/YsGGmS4sB3N0SExOtvidDQ0PVsGHDTOUOHDhg/uD/3Xff6eLFizbfR7FMmTLq0qWLvvvuO0k321JXr15VrVq19N133+nIkSPZTtugQQOzfbRhwwY1btxYZcuW1Y8//pjj5dqOlBvft7dSrlw588qHGTNm6NKlS/Lz81OdOnX0wAMP2FXXBx98YK77jHbt2pWr7f6M7mRbsKfdn1ssFouaNm2qJ598UteuXTNvuybd7IX8yCOPWJUvWrSonnjiCb3//vuS/u+WHg8++KBNt7hLc+zYMU2aNEnDhw9Xs2bNVLt2bQUFBenSpUtavny51TliWhI8za22papVq2rdunWSpP3796t3796qVq2afvjhB23fvt2OtXNr/fv31+TJk82emmPHjlVUVJQiIiKUkJCg7du3q0SJEmbC8HbbjNnx8fFR/fr1zcTonj17sjzeZScyMlLvvvuu2QbNyp2ca7Vu3dqMLat2riSrdm6dOnVsupLOXo44F7V3X8mKPedFV65cUfXq1RUeHq6GDRuqbNmy8vPz0+bNm63WWcYfNQ4dOmT+mOHt7W3X9oBckNdPPgPskfFJldm9PD09jddff91ISUnJcfqsnvC9bNmyTPWlf3J9ekeOHDEqVqx4y3jSP2Exp6f4plm6dOkt60wfU05Pik1MTDTKlCmTZR1pT5dPr2fPnlZlGjRokM2nkT1bPqOgoCDjwIEDVtPFxMRYPZky46tWrVpW5d9++23D3d092/JFihQxnyKfJv0TO9M/7T6jr776yggICLjlctj6lPj006SPIeM6OXToUJbTv/vuu1ZlfXx8jH/++cemeWe17Nm93N3djcWLF2eaNv2TadO/vvjiC8Mwst9my5QpY/Vk4JYtW5p1Znxysz2f1f/+9z/D29s72+VI/5TW+Ph4o23btrdc9py2h5zWZcYnZBtG5qdFX7t2zWp8165dM80/4/KPHTv2ljFndQwZP358pv0g7Vh48ODBTHV8//33Ni93Rjmtv+TkZOORRx7JMf5q1apleipx+vGdOnWyeoJ2dvtKTttSamqqMXDgwBzj2Lt3r2EY9h970/Tp08cc//rrr9/2+gTgmjIeGz755JMsy0VFRVmVmzVrlmEYtrU/DePmsax06dKZjjtubm5Gx44drd6n9+uvvxo+Pj6ZpvPz8zNatWqV7XdGdk8jNwzrY3H6cTkdb2/n+/ZW6yanGNM/gT79a+jQoVmu34zr+lZxpr3SOLrdn9O6vN1twZZ2f07nDYZhZLssOUnfLqpbt65RuHDhTPN3d3c3li5dmuX0WbVPVq1aZdO802Rse2X3GjRoUKZpb7Ut/fHHH1kuk6enp/H4449nuz5z2n5z2jZ27NhhBAcHZ7sM3bp1syp/u21GW9Zl3759M43PuN9+++23VuNnzJiRaf4Zl/92z7UyHmclGbt37zbHlyxZ0mrciy++aPNyZ5R+u85q/d3puWjjxo2NoKAgm/aVnLYlW8+Lzpw5c8v13bBhQ8NisVjV/8EHH5jjH3jggdten3AMHkSGu46Hh4cKFy6s0NBQPfDAA5o0aZKOHz+ucePG2XzJcnrdunXLdF+u7Ho03nfffdq/f7/efPNNNWnSRMWKFTPjuf/++zVw4EB99dVX6tOnj10xNGvWTJMnT1aXLl1UuXJlFS5cWJ6enipZsqQeeOABLVq0SDNmzLCpLh8fH33//fdq3769TZeipX8gmWT/A8ikm7/ITp8+3eyVULx4cXO91KlTRy+++KJ+/fXXTPeDrVSpkvbt26eZM2eqWbNmKlasmDw9PVWiRAk1bdpUAwcOtCo/fPhw/fzzz3ryySdVoUIFeXt7y8/PT9WqVdOIESN04MABtWrVyu74pZs9KA4ePKjIyEjVrFlThQoVMm8OHxERodGjR2vLli2ZHipgi/79+2vVqlVq2rSp/P39VaRIEfXo0UPbtm3Ltsdmv379rD6/7t27293D9+OPP9b//vc/9enTR7Vq1VKZMmXk5eUlPz8/3Xvvverfv7927typJ554ItO0K1as0EMPPaSgoKAs78H12GOP6fPPP1etWrXk5eWl4sWLq1evXtq+fXuuXCr+9NNPa9++fRo8eLDCwsLk7+8vHx8fhYSEqGfPnmrWrJlZ1t/fX2vWrNGSJUvUuXNnBQcHy9PTU35+fqpcubJ69uypDz74INsb72cl/X5xO5fFTZ48+ZbHpylTpmjLli164oknFBoaKh8fH3l5ealcuXJq3769pkyZoqioqEzTZew5m9bDRpKqV69udXzz9PTM8d5nd8LDw0Off/65vvjiC3Xu3FmlSpWSp6enihQpokaNGmn69OnauXNnjtvHo48+qrVr16p58+YKCAiwaV/JyM3NTR9++KHWrl1r9uLw9vZWoUKFVLVqVT3zzDPmU3Vv59iblJRk9oZyd3e3u2c/ANeX/tYIacehrLRu3dqqXWDvLRUqVqyo7du367HHHlPRokXl5+eniIgIrVq1yury3oy9oKpXr64ff/xRzZs3l5+fnwIDA9W1a1f9/PPPuXJZcHZy4/s2J5MnT9YLL7yge+65J8eHNTlKbrX7s3K724K97f7cULNmTe3YsUMPPfSQihUrJj8/PzVp0kTff/99tj09w8PDrR4WVbZsWbt7Yw8fPlzLly/XkCFD1LBhQ5UvX15+fn7y9vZWuXLl9OCDD+rLL7/UBx98kGnaW21LVapU0caNG9W+fXv5+/urUKFCatmypaKiotS2bVu74rRFgwYN9Ouvv2rSpElq0KCBAgMD5enpqVKlSqlNmzaZ1uPtthmz079/f7Pt+M0331hdsm+LIUOGmG2r7NzuuVaTJk2sbkFSuHBhqyu20p8DSLlzRVmaOz0XrVq1qnbs2KGePXvavK9kxdbzomLFiundd99V7969zXOCtFuE1a9fX6+//rqioqIy3UYv/bnO7eQG4FhuhsFj4YCC7MyZMypXrpwMw5Cfn59Onz7t8Ptd4vZUq1ZNhw8flnTz1iCOuLQQt+f69esKCQnRpUuX5OXlpTNnzth1CR+yl/5HgYULF+b4cApX8NVXX5kJnH/96195dv9IAPlPamqqkpOTM91iJSUlxeoekO3atdPatWudESLySEHcFp577jnzFgljxozR1KlTnRxRwdalSxd9//33km4mbrt27erkiPKHVq1aacOGDZJudsqx98e9vHbhwgWVLVtWycnJKlGihE6ePClfX19nh1WgcU9boICKjo5WfHy8Zs+ebT744PHHHydh62T79u3ThQsXtGrVKjNhe99999l1r2Y4np+fn8aOHatRo0bJYrHovffe07hx45wdFpxg9uzZkm4mmydNmuTkaADczWJjY3XvvfeqT58+ql27tkqVKqVTp05p0aJFZpJOynxVFPKfgrItHD9+XH/++ad+++038yGlnp6eevbZZ50cGSZNmqQffvhBhmFo9uzZJG0LqDlz5pj3g3755ZdJ2LoAetoCBVTGS96LFSum/fv33/LSFuSu9L/GSjc/p2+//TbTg/GQ95KSknTffffpxIkTKlmypP766y/5+fk5O6y73t3U03bnzp3mwxh69epl9aAiALDXlStXcrz1UdqPQ2kPeUT+VVC2hVdffTXTD56jR4/Wm2++6aSIkF6vXr3Mh8fu3LlT9evXd3JEd7+7qaft9evXVb58eV28eFHly5fX77//bnVrCjgHPW2BAq5YsWKKiIjQtGnTSNi6EH9/f1WvXl3jxo0jYesifHx8zCcNo2Bq0KCB+K0bgKP4+/tr7NixWr9+vf78809dvnxZXl5eCgkJUbNmzfTss8+qQYMGzg4TeaCgbQuenp6qWLGiBg4cqNGjRzs7HPx/y5Yt07Jly5wdBpzEz89PFy5ccHYYyICetgAAAAAAAADgQnJ+lDUAAAAAAAAAIE9xe4QspKam6vTp0ypcuHCm+34CAADA9RiGoWvXrqls2bJydy84/RJotwIAANxdbG23krTNwunTpxUSEuLsMAAAAGCnkydPFqh7tNNuBQAAuDvdqt1K0jYLhQsXlnRz5QUGBjo5GuR3FotFa9euVfv27eXl5eXscADAYTi+IS/FxsYqJCTEbMcVFLRbkZc4rgPIrzi+IS/Z2m4laZuFtEvLAgMDafwi11ksFvn7+yswMJAvBwD5Csc3OENBu0UA7VbkJY7rAPIrjm9whlu1WwvODb8AAAAAAAAA4C5A0hYAAAAAAAAAXAhJWwAAAAAAAABwISRtAQAAAAAAAMCFkLQFAAAAAAAAABdC0hYAAAAAAAAAXAhJWwAAAAAAAABwISRtAQAAAAAAAMCFkLQFAAAAAAAAABdC0hYAAAAAAAAAXAhJWwAAAABAjlJSUrRhwwZt3LhRGzZsUEpKirNDAgAgX3Nq0nbjxo3q2rWrypYtKzc3N61cufKW00RHR6tu3bry8fFRlSpVtGjRokxl5syZo4oVK8rX11eNGjXSjh07HB88AAAAABQAK1asUJUqVdSuXTvNnDlT7dq1U5UqVbRixQpnhwYAQL7l1KRtfHy8atWqpTlz5thU/tixY+rSpYtat26tffv2afjw4Ro4cKDWrFljllm2bJkiIyM1ceJE7dmzR7Vq1VKHDh10/vz53FoMAAAAAMiXVqxYoZ49e6pmzZratGmTli5dqk2bNqlmzZrq2bMniVsAAHKJpzNn3qlTJ3Xq1Mnm8vPmzVNoaKhmzJghSapWrZo2b96st99+Wx06dJAkzZw5U4MGDdKAAQPMaVatWqUFCxZozJgxjl8IAAAAAMiHUlJSNHLkSP3rX//SypUrlZKSokuXLqlRo0ZauXKlunfvrlGjRqlbt27y8PBwdrgAAOQrTk3a2mvbtm1q27at1bAOHTpo+PDhkqQbN25o9+7dGjt2rDne3d1dbdu21bZt27KtNykpSUlJSeb72NhYSZLFYpHFYnHgEqAgSEhI0JEjR2wuH3c9SVsPxKhw0e0q5Odj83RVq1aVv7//7YQIAHki7TuU71LkBbYzwPE2bdqk48ePa+nSpXJ3d7e6j627u7vGjh2rJk2aaNOmTWrVqpXzAgUAIB+6q5K2Z8+eVXBwsNWw4OBgxcbG6vr167p8+bJSUlKyLHP48OFs6506daomTZqUafjatWtJisFuMTExGjlypN3TvWln+RkzZqhy5cp2zwcA8tq6deucHQIKgISEBGeHAOQ7Z86ckSTVqFEjy/Fpw9PKAQAAx7mrkra5ZezYsYqMjDTfx8bGKiQkRO3bt1dgYKATI8PdKCEhQc2aNbO5/O9nrmr0V79p+kPVdV+ZIjZPR09bAK7OYrFo3bp1ateunby8vJwdDvK5tCulADhOmTJlJEkHDx5U48aNM40/ePCgVTkAAOA4d1XStnTp0jp37pzVsHPnzikwMFB+fn7y8PCQh4dHlmVKly6dbb0+Pj7y8cl8WbqXlxcnmbBbkSJF1LBhQ5vLe/91ST7bbqhG7bqqXaF4LkYGAM7B9ynyAtsY4HjNmzdXxYoVNWXKFK1cudJqXGpqqqZOnarQ0FA1b97cOQECAJCPuTs7AHtEREQoKirKati6desUEREhSfL29la9evWsyqSmpioqKsosAwAAAAC4NQ8PD82YMUPfffedunfvru3bt+v69evavn27unfvru+++05vvfUWDyEDACAXOLWnbVxcnI4ePWq+P3bsmPbt26egoCCVL19eY8eO1alTp/Txxx9Lkp577jm9++67evHFF/XUU0/pp59+0ueff65Vq1aZdURGRqpfv36qX7++GjZsqFmzZik+Pl4DBgzI8+UDAAAAgLtZjx49tHz5co0cOVItWrQwh4eGhmr58uXq0aOHE6MDACD/cmrSdteuXWrdurX5Pu2+sv369dOiRYt05swZnThxwhwfGhqqVatWacSIEZo9e7buuece/e9//1OHDh3MMr169dKFCxc0YcIEnT17VrVr19bq1aszPZwMAAAAAHBrPXr0ULdu3bR+/Xr98MMP6tSpk1q3bk0PWwAAcpFTk7atWrWSYRjZjl+0aFGW0+zduzfHeocNG6Zhw4bdaXgAAAAAAN28VULLli0VHx+vli1bkrAFACCX3VX3tAUAAAAAAACA/I6kLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAuWzatGlyc3PT8OHDzWGtWrWSm5ub1eu5555zXpAAAABwGZ7ODgAAAADIz3bu3Kn3339f999/f6ZxgwYN0muvvWa+9/f3z8vQAAAA4KLoaQsAAADkkri4OD3++OP68MMPVaxYsUzj/f39Vbp0afMVGBjohCgBAADgauhpCwAAAOSSoUOHqkuXLmrbtq3eeOONTOM//fRTffLJJypdurS6du2q8ePH59jbNikpSUlJSeb72NhYSZLFYpHFYnH8AgDppG1jbGsA8huOb8hLtm5nJG0BAACAXPDZZ59pz5492rlzZ5bj+/TpowoVKqhs2bLav3+/XnrpJR05ckQrVqzIts6pU6dq0qRJmYavXbuWWysgz6xbt87ZIQBAruD4hryQkJBgUzmStgAAAICDnTx5Ui+88ILWrVsnX1/fLMs888wz5v81a9ZUmTJl9MADDygmJkaVK1fOcpqxY8cqMjLSfB8bG6uQkBC1b9+eWysg11ksFq1bt07t2rWTl5eXs8MBAIfh+Ia8lHal1K2QtAUAAAAcbPfu3Tp//rzq1q1rDktJSdHGjRv17rvvKikpSR4eHlbTNGrUSJJ09OjRbJO2Pj4+8vHxyTTcy8uLk0zkGbY3APkVxzfkBVu3MZK2AAAAgIM98MADOnDggNWwAQMGKCwsTC+99FKmhK0k7du3T5JUpkyZvAgRAAAALoykLQAAAOBghQsXVo0aNayGBQQEqHjx4qpRo4ZiYmK0ZMkSde7cWcWLF9f+/fs1YsQItWjRQvfff7+TogYAAICrIGkLAAAA5DFvb2/9+OOPmjVrluLj4xUSEqKHH35Y48aNc3ZoAAAAcAEkbQEAAIA8EB0dbf4fEhKiDRs2OC8YAAAAuDR3ZwcAAAAAAAAAAPg/JG0BAAAAAAAAwIWQtAUAAAAAAAAAF0LSFgAAAAAAAABcCElbAAAAAAAAAHAhJG0BAAAAAAAAwIWQtAUAAAAAAAAAF0LSFgAAAAAAAABcCElbAAAAAAAAAHAhJG0BAAAAAAAAwIWQtAUAAAAAAAAAF0LSFgAAAAAAAABciKezAwAAAHeHhIQEHT582ObycdeTtPVAjIqV2KVCfj42TxcWFiZ/f//bCREAAAAA8gWStgAAwCaHDx9WvXr17J7uTTvL7969W3Xr1rV7PgAAAACQX5C0BQAANgkLC9Pu3bttLn/kzBVFfnFAMx+pqaplito1HwAAAAAoyEjaAgAAm/j7+9vVA9b9r0vy2XRd1WrUUu0KxXMxMgAAAADIX3gQGQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCnJ60nTNnjipWrChfX181atRIO3bsyLasxWLRa6+9psqVK8vX11e1atXS6tWrrcq8+uqrcnNzs3qFhYXl9mIAAAAAAAAAgEM4NWm7bNkyRUZGauLEidqzZ49q1aqlDh066Pz581mWHzdunN5//3298847+u233/Tcc8/poYce0t69e63KhYeH68yZM+Zr8+bNebE4AAAAAAAAAHDHnJq0nTlzpgYNGqQBAwaoevXqmjdvnvz9/bVgwYIsyy9evFgvv/yyOnfurEqVKmnw4MHq3LmzZsyYYVXO09NTpUuXNl8lSpTIi8UBAAAAAAAAgDvm6awZ37hxQ7t379bYsWPNYe7u7mrbtq22bduW5TRJSUny9fW1Gubn55epJ+0ff/yhsmXLytfXVxEREZo6darKly+fbSxJSUlKSkoy38fGxkq6eTsGi8Vi97IB9khOTjb/sr0ByE84viEvsY0BAAAgP3Fa0vbixYtKSUlRcHCw1fDg4GAdPnw4y2k6dOigmTNnqkWLFqpcubKioqK0YsUKpaSkmGUaNWqkRYsWqWrVqjpz5owmTZqk5s2b6+DBgypcuHCW9U6dOlWTJk3KNHzt2rXy9/e/g6UEbu1knCR5avv27Tp10NnRAIDjcHxDXkpISHB2CAAAAIDDOC1peztmz56tQYMGKSwsTG5ubqpcubIGDBhgdTuFTp06mf/ff//9atSokSpUqKDPP/9cTz/9dJb1jh07VpGRkeb72NhYhYSEqH379goMDMy9BQIk/XLiH+nALjVu3Fi1ygc5OxwAcBiOb8hLaVdKAQAAAPmB05K2JUqUkIeHh86dO2c1/Ny5cypdunSW05QsWVIrV65UYmKiLl26pLJly2rMmDGqVKlStvMpWrSo7rvvPh09ejTbMj4+PvLx8ck03MvLS15eXjYuEXB7PD09zb9sbwDyE45vyEtsYwAAAMhPnPYgMm9vb9WrV09RUVHmsNTUVEVFRSkiIiLHaX19fVWuXDklJyfryy+/VLdu3bItGxcXp5iYGJUpU8ZhsQMAAAAAAABAbnFa0laSIiMj9eGHH+qjjz7SoUOHNHjwYMXHx2vAgAGSpL59+1o9qOznn3/WihUr9Oeff2rTpk3q2LGjUlNT9eKLL5plRo0apQ0bNuj48ePaunWrHnroIXl4eKh37955vnwAAAAAAAAAYC+n3tO2V69eunDhgiZMmKCzZ8+qdu3aWr16tflwshMnTsjd/f/yyomJiRo3bpz+/PNPFSpUSJ07d9bixYtVtGhRs8zff/+t3r1769KlSypZsqSaNWum7du3q2TJknm9eAAAAAAAAABgN6c/iGzYsGEaNmxYluOio6Ot3rds2VK//fZbjvV99tlnjgoNAAAAAAAAAPKcU2+PAAAAAAAAAACwRtIWAAAAAAAAAFwISVsAAAAAAAAAcCEkbQEAAAAAAADAhZC0BQAAAAAAAAAXQtIWAAAAAAAAAFwISVsAAAAAAAAAcCEkbQEAAAAAAADAhZC0BQAAAAAAAAAX4unsAIC7xbGL8YpPSnZ4vTEX4s2/np6O3yUDfDwVWiLA4fUCAAAAAAAgd5C0BWxw7GK8Wr8VnavzGLn8QK7VvX5UKxK3AAAAAAAAdwmStoAN0nrYzupVW1VKFXJs3deT9F30Nv2rVYQC/HwcWvfR83EavmxfrvQQBgAAAAAAQO4gaQvYoUqpQqpRrohD67RYLDpbUqpboZi8vLwcWjcAAAAAAADuPjyIDAAAAAAAAABcCElbAAAAAAAAAHAhJG0BAAAAAAAAwIWQtAUAAAAAAAAAF0LSFgAAAAAAAABcCElbAAAAAAAAAHAhns4OAAAAONexi/GKT0p2eL0xF+LNv56eudPkCPDxVGiJgFypGwAAAACchaQtAAAF2LGL8Wr9VnSuzmPk8gO5Wv/6Ua1I3AIAAADIV0jaAgBQgKX1sJ3Vq7aqlCrk2LqvJ+m76G36V6sIBfj5OLRuSTp6Pk7Dl+3LlV7CAAAAAOBMJG0BAICqlCqkGuWKOLROi8WisyWluhWKycvLy6F1AwAAAEB+xoPIAAAAAAAAAMCFkLQFAAAAAAAAABdC0hYAAAAAAAAAXAhJWwAAAAAAAABwISRtAQAAAAAAAMCFkLQFAAAAAAAAABdC0hYAAAAAAAAAXAhJWwAAAAAAAABwISRtAQAAAAAAAMCFkLQFAAAAAAAAABdC0hYAAAAAAAAAXAhJWwAAAAAAAABwISRtAQAAAAAAAMCFkLQFAAAActm0adPk5uam4cOHm8MSExM1dOhQFS9eXIUKFdLDDz+sc+fOOS9IAAAAuAyStgAAAEAu2rlzp95//33df//9VsNHjBihb7/9Vl988YU2bNig06dPq0ePHk6KEgAAAK6EpC0AAACQS+Li4vT444/rww8/VLFixczhV69e1fz58zVz5ky1adNG9erV08KFC7V161Zt377diREDAADAFXg6OwAAAAAgvxo6dKi6dOmitm3b6o033jCH7969WxaLRW3btjWHhYWFqXz58tq2bZsaN26cZX1JSUlKSkoy38fGxkqSLBaLLBZLLi0FcFPaNsa2BiC/4fiGvGTrdkbSFgAAAMgFn332mfbs2aOdO3dmGnf27Fl5e3uraNGiVsODg4N19uzZbOucOnWqJk2alGn42rVr5e/vf8cxA7ZYt26ds0MAgFzB8Q15ISEhwaZyJG0BAAAABzt58qReeOEFrVu3Tr6+vg6rd+zYsYqMjDTfx8bGKiQkRO3bt1dgYKDD5gNkxWKxaN26dWrXrp28vLycHQ4AOAzHN+SltCulboWkLQAAAOBgu3fv1vnz51W3bl1zWEpKijZu3Kh3331Xa9as0Y0bN3TlyhWr3rbnzp1T6dKls63Xx8dHPj4+mYZ7eXlxkok8w/YGIL/i+Ia8YOs2RtIWAAAAcLAHHnhABw4csBo2YMAAhYWF6aWXXlJISIi8vLwUFRWlhx9+WJJ05MgRnThxQhEREc4IGQAAAC6EpC0AAADgYIULF1aNGjWshgUEBKh48eLm8KefflqRkZEKCgpSYGCgnn/+eUVERGT7EDIAAAAUHCRtAQAAACd4++235e7urocfflhJSUnq0KGD5s6d6+ywAAAA4AJI2gIAAAB5IDo62uq9r6+v5syZozlz5jgnIAAAALgsd2cHAAAAAAAAAAD4P7eVtE1OTtaPP/6o999/X9euXZMknT59WnFxcQ4NDgAAAAAAAAAKGrtvj/DXX3+pY8eOOnHihJKSktSuXTsVLlxY//nPf5SUlKR58+blRpwAAAAAAAAAUCDY3dP2hRdeUP369XX58mX5+fmZwx966CFFRUU5NDgAAAAAAAAAKGjs7mm7adMmbd26Vd7e3lbDK1asqFOnTjksMAAAAAAAAAAoiOzuaZuamqqUlJRMw//++28VLlzYIUEBAAAAAAAAQEFld9K2ffv2mjVrlvnezc1NcXFxmjhxojp37uzI2AAAAAAAAACgwLH79ghvvfWWOnbsqOrVqysxMVF9+vTRH3/8oRIlSmjp0qW5ESMAAAAAAAAAFBh2J21DQkL0yy+/aNmyZfrll18UFxenp59+Wo8//rjVg8kAAAAAAAAAAPazK2lrsVgUFham7777To8//rgef/zx3IoLAAAAAAAAAAoku+5p6+XlpcTExNyKBQAAAAAAAAAKPLsfRDZ06FD95z//UXJycm7EAwAAAAAAAAAFmt33tN25c6eioqK0du1a1axZUwEBAVbjV6xY4bDgAAAAgLx04sQJhYSEyM3NzWq4YRg6efKkypcv76TIAAAAUJDY3dO2aNGievjhh9WhQweVLVtWRYoUsXrZa86cOapYsaJ8fX3VqFEj7dixI9uyFotFr732mipXrixfX1/VqlVLq1evvqM6AQAAgDShoaG6cOFCpuH//POPQkNDnRARAAAACiK7e9ouXLjQYTNftmyZIiMjNW/ePDVq1EizZs1Shw4ddOTIEZUqVSpT+XHjxumTTz7Rhx9+qLCwMK1Zs0YPPfSQtm7dqjp16txWnQAAAEAawzAy9bKVpLi4OPn6+johIgAAABREdidt01y4cEFHjhyRJFWtWlUlS5a0u46ZM2dq0KBBGjBggCRp3rx5WrVqlRYsWKAxY8ZkKr948WK98sor6ty5syRp8ODB+vHHHzVjxgx98sknt1WnJCUlJSkpKcl8HxsbK+lmz16LxWL3ciH/SbuHc3JyssO3ibT6cmNby824AeQPd+vxTeIYB2t3ug1ERkZKktzc3DR+/Hj5+/ub41JSUvTzzz+rdu3adzQPAAAAwFZ2J23j4+P1/PPP6+OPP1ZqaqokycPDQ3379tU777xj1cDNyY0bN7R7926NHTvWHObu7q62bdtq27ZtWU6TlJSUqYeDn5+fNm/efNt1StLUqVM1adKkTMPXrl1r8/IgfzsZJ0me2rx5s/4qlDvzWLduncPrzIu4Adzd7tbjm8QxDtYSEhLuaPq9e/dKutnT9sCBA/L29jbHeXt7q1atWho1atQdzQMAAACwld1J28jISG3YsEHffvutmjZtKknavHmz/v3vf2vkyJF67733bKrn4sWLSklJUXBwsNXw4OBgHT58OMtpOnTooJkzZ6pFixaqXLmyoqKitGLFCqWkpNx2nZI0duxYs3eFdLOnbUhIiNq3b6/AwECblgf526+nY/XWge1q1qyZwss6dpuwWCxat26d2rVrJy8vL4fWnZtxA8gf7tbjm8QxDtbSrpS6XevXr5ckDRgwQLNnz6YNCAAAAKeyO2n75Zdfavny5WrVqpU5rHPnzvLz89Ojjz5qc9L2dsyePVuDBg1SWFiY3NzcVLlyZQ0YMEALFiy4o3p9fHzk4+OTabiXl1eunGTi7uPp6Wn+za1tIje2t7yIG8Dd7W49vkkc42DNUduAI5/fAAAAANwuu5O2CQkJmXqySlKpUqXsuiytRIkS8vDw0Llz56yGnzt3TqVLl85ympIlS2rlypVKTEzUpUuXVLZsWY0ZM0aVKlW67ToBAACANPHx8Zo2bZqioqJ0/vx583Zgaf78808nRQYAAICCxO6kbUREhCZOnKiPP/7YvL/s9evXNWnSJEVERNhcj7e3t+rVq6eoqCh1795dkpSamqqoqCgNGzYsx2l9fX1Vrlw5WSwWffnll3r00UfvuE4AAABg4MCB2rBhg5588kmVKVNGbm5uzg4JAAAABZDdSdvZs2erQ4cOuueee1SrVi1J0i+//CJfX1+tWbPGrroiIyPVr18/1a9fXw0bNtSsWbMUHx+vAQMGSJL69u2rcuXKaerUqZKkn3/+WadOnVLt2rV16tQpvfrqq0pNTdWLL75oc50AAABAdn744QetWrXKfHYDAAAA4Ax2J21r1KihP/74Q59++qn5cK/evXvr8ccfl5+fn1119erVSxcuXNCECRN09uxZ1a5dW6tXrzZvv3DixAm5u7ub5RMTEzVu3Dj9+eefKlSokDp37qzFixeraNGiNtcJAAAAZKdYsWIKCgpydhgAAAAo4OxO2kqSv7+/Bg0a5JAAhg0blu2tC6Kjo63et2zZUr/99tsd1QkAAABk5/XXX9eECRP00Ucfyd/f39nhAAAAoICyO2k7depUBQcH66mnnrIavmDBAl24cEEvvfSSw4IDAAAA8tKMGTMUExOj4OBgVaxYUV5eXlbj9+zZ46TIAAAAUJDYnbR9//33tWTJkkzDw8PD9dhjj5G0BQAAwF0r7WG2AADg7pWQkGDe0tMWcdeTtPVAjIqV2KVCfj42TxcWFsaVOcg1didtz549qzJlymQaXrJkSZ05c8YhQQEAAADOMHHiRGeHAAAA7tDhw4dVr149u6d7087yu3fvVt26de2eD2ALu5O2ISEh2rJli0JDQ62Gb9myRWXLlnVYYAAAAAAAAIC9wsLCtHv3bpvLHzlzRZFfHNDMR2qqapmids0HyC12J20HDRqk4cOHy2KxqE2bNpKkqKgovfjiixo5cqTDAwQAAADyiru7u9zc3LIdn5KSkofRAACA2+Hv729XD1j3vy7JZ9N1VatRS7UrFM/FyADb2Z20HT16tC5duqQhQ4boxo0bkiRfX1+99NJLGjt2rMMDBAAAAPLKV199ZfXeYrFo7969+uijjzRp0iQnRQUAAICCxu6krZubm/7zn/9o/PjxOnTokPz8/HTvvffKx8f2GzUDAAAArqhbt26ZhvXs2VPh4eFatmyZnn76aSdEBQAAgILG/XYnLFSokBo0aKDChQsrJiZGqampjowLAAAAcBmNGzdWVFSUs8MAAABAAWFz0nbBggWaOXOm1bBnnnlGlSpVUs2aNVWjRg2dPHnS4QECAAAAznT9+nX997//Vbly5ZwdCgAAAAoIm5O2H3zwgYoVK2a+X716tRYuXKiPP/5YO3fuVNGiRbnPFwAAAO5qxYoVU1BQkPkqVqyYChcurAULFmj69OnODg8AAAAFhM33tP3jjz9Uv3598/3XX3+tbt266fHHH5ckTZkyRQMGDHB8hAAAAEAemTVrltV7d3d3lSxZUo0aNbLqwAAAAADkJpuTttevX1dgYKD5fuvWrVYPYqhUqZLOnj3r2OgAAECuSkpJlLvvKR2LPSJ330IOrTs5OVmnk0/r0D+H5Olp97NPb+lYbJzcfU8pKSVRUhGH14+CqV+/fs4OAQAAALA9aVuhQgXt3r1bFSpU0MWLF/Xrr7+qadOm5vizZ8+qSBFOmAAAuJucjv9LAaHv6OUduTePuavn5lrdAaHS6fjaqqfgXJsHCp4rV65o/vz5OnTokCQpPDxcTz31FG1dAAAA5Bmbk7b9+vXT0KFD9euvv+qnn35SWFiY6tWrZ47funWratSokStBAgCA3FE2oILijz2v2b1qq3Ipx/e03bJ5i5o2a5orPW1jzsfphWX7VLZ1BYfXjYJr165d6tChg/z8/NSwYUNJ0syZMzV58mStXbtWdevWdXKEAAAAKAhsPoN68cUXlZCQoBUrVqh06dL64osvrMZv2bJFvXv3dniAAAAg9/h4+Co1sZxCA6uqenHH9iK0WCw65nlM1YKqycvLy6F1S1Jq4lWlJl6Qj4evw+tGwTVixAg9+OCD+vDDD80fG5KTkzVw4EANHz5cGzdudHKEgHOkpKRow4YN2rhxowICAtS6dWt5eHg4OywAAPItm5O27u7ueu211/Taa69lOT5jEhcAAAC42+zatcsqYStJnp6eevHFF60eygsUJCtWrNDIkSN1/PhxSTd7n1esWFEzZsxQjx49nBscAAD5lLuzAwAAAABcRWBgoE6cOJFp+MmTJ1W4cGEnRAQ414oVK9SzZ0/VrFlTmzZt0tKlS7Vp0ybVrFlTPXv21IoVK5wdIgAA+RJJWwAAAOD/69Wrl55++mktW7ZMJ0+e1MmTJ/XZZ59p4MCB3AoMBU5KSopGjhypf/3rX1q5cqUaNWokPz8/NWrUSCtXrtS//vUvjRo1SikpKc4OFQCAfMfxTwUBAAAA7lJvvfWW3Nzc1LdvXyUnJ0uSvLy8NHjwYE2bNs3J0QF5a9OmTTp+/LiWLl0qd3d3q+Ssu7u7xo4dqyZNmmjTpk1q1aqV8wIFACAfImkLAAAA/H/e3t6aPXu2pk6dqpiYGElS5cqV5e/v7+TIgLx35swZSVKNGjWyHJ82PK0cAABwHLtvj7B+/frciAMAAABwmpSUFO3fv1/Xr1+XJPn7+6tmzZqqWbOm3NzctH//fqWmpjo5SiBvlSlTRpJ08ODBLMenDU8rBwAAHMfunrYdO3bUPffcowEDBqhfv34KCQnJjbgAl5KUkih331M6FntE7r6FHFp3cnKyTief1qF/Dlk9qdoRjsXGyd33lJJSEiUVcWjdAADkJ4sXL9a7776rn3/+OdM4Ly8vPfXUUxo+fLieeOIJJ0QHOEfz5s1VsWJFTZkyRStXrrQal5qaqqlTpyo0NFTNmzd3ToAAAORjdmeITp06pcWLF+ujjz7SpEmT1KZNGz399NPq3r27vL29cyNGwOlOx/+lgNB39PKO3JvH3NVzc6XegFDpdHxt1VNwrtQPAEB+MH/+fI0aNUoeHh6Zxnl6eurFF1/Uu+++S9IWBYqHh4dmzJihnj17qnv37ho9erSuX7+u7du3a/r06fruu++0fPnyLPcbAABwZ+xO2pYoUUIjRozQiBEjtGfPHi1cuFBDhgzRkCFD1KdPHz399NOqVatWbsQKOE3ZgAqKP/a8ZveqrcqlHN/TdsvmLWrarKnDe9rGnI/TC8v2qWzrCg6tFwCA/ObIkSNq3LhxtuMbNGigQ4cO5WFEgGvo0aOHli9frpEjR6pFixbm8NDQUC1fvlw9evRwYnQAAORfd5Qhqlu3rkqXLq3ixYtr2rRpWrBggebOnauIiAjNmzdP4eHhjooTcCofD1+lJpZTaGBVVS/u2NsMWCwWHfM8pmpB1eTl5eXQulMTryo18YJ8PHwdWi8AAPlNfHy8YmNjsx1/7do1JSQk5GFEgOvo0aOHunXrpvXr1+uHH35Qp06d1Lp1a3rYAgCQi+x+EJl0M8m0fPlyde7cWRUqVNCaNWv07rvv6ty5czp69KgqVKigRx55xNGxAgAAALni3nvv1datW7Mdv3nzZt177715GBHgWjw8PNSyZUu1aNFCLVu2JGELAEAusztp+/zzz6tMmTJ69tlndd9992nv3r3atm2bBg4cqICAAFWsWFFvvfWWDh8+nBvxAgAAAA7Xp08fjRs3Tvv378807pdfftGECRPUp08fJ0QGAACAgsju2yP89ttveuedd9SjRw/5+PhkWaZEiRJav379HQcHAAAA5IURI0bohx9+UL169dS2bVuFhYVJkg4fPqwff/xRTZs21YgRI5wcJQAAAAoKu5O2EydOVJMmTTI9MCk5OVlbt25VixYt5OnpqZYtWzosSAAAACA3eXl5ae3atXr77be1ZMkSbdy4UYZh6L777tPkyZM1fPhwh997HgAAAMiO3Unb1q1b68yZMypVqpTV8KtXr6p169ZKSUlxWHAAAABAXvHy8tKLL76oF1980dmhAAAAoICz+562hmHIzc0t0/BLly4pICDAIUEBAAAAAAAAQEFlc0/bHj16SJLc3NzUv39/q/vZpqSkaP/+/WrSpInjIwQAAAAAAACAAsTmpG2RIkUk3expW7hwYfn5+ZnjvL291bhxYw0aNMjxEQIAAAAAAABAAWJz0nbhwoWSpIoVK2rUqFHcCgEAAAAAAAAAcoHdDyKbOHFibsQBAAAAAAAAAJCNSdu6desqKipKxYoVU506dbJ8EFmaPXv2OCw4AAAAILdFRkbaXHbmzJm5GAkAAABwk01J227dupkPHuvevXtuxgMAAADkqb1791q937Nnj5KTk1W1alVJ0u+//y4PDw/Vq1fPGeEBAACgALIpaZv+lgjcHgEAAAD5yfr1683/Z86cqcKFC+ujjz5SsWLFJEmXL1/WgAED1Lx5c2eFCAAAgALG3d4JTp48qb///tt8v2PHDg0fPlwffPCBQwMDAAAA8tqMGTM0depUM2ErScWKFdMbb7yhGTNmODEyAAAAFCR2J2379Olj9kY4e/as2rZtqx07duiVV17Ra6+95vAAAQAAgLwSGxurCxcuZBp+4cIFXbt2zQkRAQAAoCCy6fYI6R08eFANGzaUJH3++eeqWbOmtmzZorVr1+q5557ThAkTHB4k4GzXLSmSpIOnrjq87vjrSdp1QSr912UF+Pk4tO6j5+McWh8AAPndQw89pAEDBmjGjBlmm/fnn3/W6NGj1aNHDydHBwAAgILC7qStxWIxH0r2448/6sEHH5QkhYWF6cyZM46NDnARMf8/+TlmxYFcmoOnFh/dmUt1SwE+du/qAAAUSPPmzdOoUaPUp08fWSwWSZKnp6eefvppTZ8+3cnRAQAAoKCwO5MTHh6uefPmqUuXLlq3bp1ef/11SdLp06dVvHhxhwcIuIL24aUlSZVLFZKfl4dD6z5y5qpGLj+gGT1rqmqZIg6tW7qZsA0tEeDwegEAyG9SUlK0a9cuTZ48WdOnT1dMTIwkqXLlygoI4LsUAAAAecfupO1//vMfPfTQQ5o+fbr69eunWrVqSZK++eYb8xIyIL8JCvDWYw3L50rdycnJkqTKJQNUo5zjk7YAAMA2Hh4eat++vQ4dOqTQ0FDdf//9zg4JAACkc+xivOKTkh1eb8yFePOvp6fjr1SlMxVuh11bomEYqlSpkk6cOKHk5GSrp+o+88wz8vf3d3iAAAAAQF6pUaOG/vzzT4WGhjo7FAAAkM6xi/Fq/VZ0rs5j5PLcuiWitH5UKxK3sIvdSdsqVaro119/1b333ms1rmLFio6MCwAAAMhzb7zxhkaNGqXXX39d9erVy3RbhMDAQCdFBgBAwZbWw3ZWr9qqUqqQY+u+nqTvorfpX60icuUB4cOX7cuVHsLI3+xK2rq7u+vee+/VpUuXMiVtAQAAgLtd586dJUkPPvig3NzczOGGYcjNzU0pKSnOCg0AAEiqUqqQw28taLFYdLakVLdCMXl5eTm0buB22X2jjmnTpmn06NF67733VKNGjdyICQAAAHCK9evXOzsEAAAAwP6kbd++fZWQkKBatWrJ29tbfn5+VuP/+ecfhwUHAAAA5KWWLVs6OwQAAADA/qTtrFmzciEMAAAAwDVcuXJF8+fP16FDhyRJ4eHheuqpp1SkiH2XYr733nt67733dPz4cbOeCRMmqFOnTpKkVq1aacOGDVbTPPvss5o3b96dLwQAAADuanYnbfv165cbcQAAAABOt2vXLnXo0EF+fn5q2LChJGnmzJmaPHmy1q5dq7p169pc1z333KNp06bp3nvvlWEY+uijj9StWzft3btX4eHhkqRBgwbptddeM6fx9/d37AIBAADgrmR30laSYmJitHDhQsXExGj27NkqVaqUfvjhB5UvX95sgAIAAAB3mxEjRujBBx/Uhx9+KE/Pm03l5ORkDRw4UMOHD9fGjRttrqtr165W7ydPnqz33ntP27dvN9vM/v7+Kl26tOMWAAAAAPmC3UnbDRs2qFOnTmratKk2btyoyZMnq1SpUvrll180f/58LV++PDfiBAAAAHLdrl27rBK2kuTp6akXX3xR9evXv+16U1JS9MUXXyg+Pl4RERHm8E8//VSffPKJSpcura5du2r8+PE59rZNSkpSUlKS+T42NlbSzadeWyyW244PBVNCQoKOHDlic/m460naeiBGhYtuVyE/H5unq1q1Kr3IAdyx5ORk86+jv/PS6suN79LcjBt3J1u3A7uTtmPGjNEbb7yhyMhIFS5c2Bzepk0bvfvuu/ZWBwAAALiMwMBAnThxQmFhYVbDT548adX2tdWBAwcUERGhxMREFSpUSF999ZWqV68uSerTp48qVKigsmXLav/+/XrppZd05MgRrVixItv6pk6dqkmTJmUavnbtWpJisFtMTIxGjhxp93Rv2ll+xowZqly5st3zAYD0TsZJkqc2b96svwrlzjzWrVvn8DrzIm7cXRISEmwqZ3fS9sCBA1qyZEmm4aVKldLFixftrQ4AAABwGb169dLTTz+tt956S02aNJEkbdmyRaNHj1bv3r3trq9q1arat2+frl69quXLl6tfv37asGGDqlevrmeeecYsV7NmTZUpU0YPPPCAYmJisk1wjR07VpGRkeb72NhYhYSEqH379goMDLQ7PhRsCQkJatasmc3lfz9zVaO/+k3TH6qu+8rY/mA+etoCcIRfT8fqrQPb1axZM4WXdex3nsVi0bp169SuXTt5eXk5tO7cjBt3p7QrpW7F7qRt0aJFdebMGYWGhloN37t3r8qVK2dvdQAAAIDLeOutt+Tm5qa+ffualzN6eXlp8ODBmjZtmt31eXt7q0qVKpKkevXqaefOnZo9e7bef//9TGUbNWokSTp69Gi2SVsfHx/5+GS+LN3Ly8vhJ5nI/4oUKWI+cM8W3n9dks+2G6pRu65qVyiei5EBQGZpty7y9PTMte+83Pg+zYu4cXexdTtwt7fixx57TC+99JLOnj0rNzc3paamasuWLRo1apT69u1rd6AAAACAsx07dkzSzSTr7NmzdfnyZe3bt0/79u3TP//8o7fffjvLZKm9UlNTre5Jm96+ffskSWXKlLnj+QAAAODuZndP2ylTpmjo0KEKCQlRSkqKqlevrpSUFPXp00fjxo3LjRgBAACAXFW5cmVVqFBBrVu3Vps2bdS6dWvVrFnzjuocO3asOnXqpPLly+vatWtasmSJoqOjtWbNGsXExGjJkiXq3Lmzihcvrv3792vEiBFq0aKF7r//fgctFQAAAO5Wdidtvb299eGHH2r8+PE6ePCg4uLiVKdOHd177725ER8AAACQ63766SdFR0crOjpaS5cu1Y0bN1SpUiUzgdu6dWsFBwfbVef58+fVt29fnTlzRkWKFNH999+vNWvWqF27djp58qR+/PFHzZo1S/Hx8QoJCdHDDz9MJwgAAABIuo2k7ebNm9WsWTOVL19e5cuXv+MA5syZo+nTp+vs2bOqVauW3nnnnRzvqzRr1iy99957OnHihEqUKKGePXtq6tSp8vX1lSS9+uqrmZ6oW7VqVR0+fPiOYwUAAED+1KpVK7Vq1UqSlJiYqK1bt5pJ3I8++kgWi0VhYWH69ddfba5z/vz52Y4LCQnRhg0b7jRsAAAA5FN2J23btGmjcuXKqXfv3nriiSdUvXr12575smXLFBkZqXnz5qlRo0aaNWuWOnTooCNHjqhUqVKZyi9ZskRjxozRggUL1KRJE/3+++/q37+/3NzcNHPmTLNceHi4fvzxR/N92k2fgbyQkJBg148ER85cUdLZozp00E+pl4raPF1YWBhP4QUAIBf4+vqqTZs2atasmVq3bq0ffvhB77//Pp0AAAAAkGfszmaePn1an332mZYuXapp06bp/vvv1+OPP67evXvrnnvusauumTNnatCgQRowYIAkad68eVq1apUWLFigMWPGZCq/detWNW3aVH369JEkVaxYUb1799bPP/9svVCenipdurS9iwY4xOHDh1WvXj27p+vzkX3ld+/erbp169o9HwAAkLUbN25o+/btWr9+vaKjo/Xzzz8rJCRELVq00LvvvquWLVs6O0QAAAAUEHYnbUuUKKFhw4Zp2LBhOnbsmJYsWaKPPvpIY8eOVYsWLfTTTz/ZVM+NGze0e/dujR071hzm7u6utm3batu2bVlO06RJE33yySfasWOHGjZsqD///FPff/+9nnzySatyf/zxh8qWLStfX19FRERo6tSpOd7KISkpyeopvrGxsZIki8Uii8Vi0/IAaSpXrpzph4ScxF1P0ppNO9WheQMV8rP9qdSVK1dm+wRwx5KTk82/jj6mpNWXW8eq3Iwdd5873QbatGmjn3/+WaGhoWrZsqWeffZZLVmyRGXKlHFQhAAAAIDt7ui+AaGhoRozZoxq1aql8ePH23VfrosXLyolJSXTAx2Cg4OzvfSsT58+unjxopo1aybDMJScnKznnntOL7/8slmmUaNGWrRokapWraozZ85o0qRJat68uQ4ePKjChQtnWe/UqVMz3QdXktauXcvl58gTTWpW1rUr/+jaFdunOXPmTK7FA6DgOBknSZ7avHmz/iqUO/NYt25drtSbF7Hj7pGQkHBH02/atEllypRRmzZt1KpVK7Vs2VLFixd3UHQAAACAfW47abtlyxZ9+umnWr58uRITE9WtWzdNnTrVkbFlEh0drSlTpmju3Llq1KiRjh49qhdeeEGvv/66xo8fL0nq1KmTWf7+++9Xo0aNVKFCBX3++ed6+umns6x37NixioyMNN/HxsYqJCRE7du3V2BgYK4uE2CxWLRu3Tq1a9dOXl5ezg4HQAHz6+lYvXVgu5o1a6bwso79zsvt41tuxo67T9qVUrfrypUr2rRpk6Kjo/Wf//xHvXv31n333aeWLVuaSdySJUs6KFoAAAAgZ3YnbceOHavPPvtMp0+fVrt27TR79mx169bN7h6pJUqUkIeHh86dO2c1/Ny5c9nej3b8+PF68sknNXDgQElSzZo1FR8fr2eeeUavvPKK3N3dM01TtGhR3XfffTp69Gi2sfj4+MjHJ/Nl6V5eXiTRkGfY3gA4Q9rDOj09PXPtGJRbx7e8iB13jzvdBgICAtSxY0d17NhRknTt2jVt3rxZ69ev15tvvqnHH39c9957rw4ePOiIcAEAAIAcZc5y3sLGjRs1evRonTp1St9995169+59W7cQ8Pb2Vr169RQVFWUOS01NVVRUlCIiIrKcJiEhIVNi1sPDQ5JkGEaW08TFxSkmJob7kQEAAMBmAQEBCgoKUlBQkIoVKyZPT08dOnTI2WEBAACggLC7p+2WLVscNvPIyEj169dP9evXV8OGDTVr1izFx8drwIABkqS+ffuqXLly5m0XunbtqpkzZ6pOnTrm7RHGjx+vrl27msnbUaNGqWvXrqpQoYJOnz6tiRMnysPDQ71793ZY3AAAAMhfUlNTtWvXLkVHR2v9+vXasmWL4uPjVa5cObVu3Vpz5sxR69atnR0mAAAACgibkrbffPONOnXqJC8vL33zzTc5ln3wwQdtnnmvXr104cIFTZgwQWfPnlXt2rW1evVq8+FkJ06csOpZO27cOLm5uWncuHE6deqUSpYsqa5du2ry5Mlmmb///lu9e/fWpUuXVLJkSTVr1kzbt2/nHmQAAADIVtGiRRUfH6/SpUurdevWevvtt9WqVStVrlzZ2aEBAACgALIpadu9e3edPXtWpUqVUvfu3bMt5+bmppSUFLsCGDZsmIYNG5bluOjoaKv3np6emjhxoiZOnJhtfZ999pld8wcAAACmT5+u1q1b67777nN2KAAAAIBtSdvU1NQs/wcAAADyg2effdbZIQAAAAAmux9EBgAAAAAAAADIPXY9iCw1NVWLFi3SihUrdPz4cbm5uSk0NFQ9e/bUk08+KTc3t9yKEwAAAAAAAAAKBJt72hqGoQcffFADBw7UqVOnVLNmTYWHh+uvv/5S//799dBDD+VmnAAAAAAAAABQINjc03bRokXauHGjoqKi1Lp1a6txP/30k7p3766PP/5Yffv2dXiQAAAAAAAAAFBQ2NzTdunSpXr55ZczJWwlqU2bNhozZow+/fRThwYHAAAAAAAAAAWNzUnb/fv3q2PHjtmO79Spk3755ReHBAUAAAAAAAAABZXNSdt//vlHwcHB2Y4PDg7W5cuXHRIUAAAAAAAAABRUNidtU1JS5OmZ/S1wPTw8lJyc7JCgAAAAAAAAAKCgsvlBZIZhqH///vLx8clyfFJSksOCAgAAAAAAAICCyuakbb9+/W5Zpm/fvncUDAAAAAAAAAAUdDYnbRcuXJibcQAAAAAAAAAAZMc9bQEAAAAAAAAAuY+kLQAAAAAAAAC4EJK2AAAAAAAAAOBCbL6nLQAAAADA9R27GK/4pGSH1xtzId786+np+FPJAB9PhZYIcHi9APKHpJREufue0rHYI3L3LeTQupOTk3U6+bQO/XPI4ce3Y7Fxcvc9paSURElFHFo38jeStgAAAACQTxy7GK/Wb0Xn6jxGLj+Qa3WvH9WKxC2ALJ2O/0sBoe/o5R25N4+5q+fmSr0BodLp+Nqqp+BcqR/5E0lbAAAAAMgn0nrYzupVW1VKObYnWvz1JH0XvU3/ahWhAD8fh9Z99Hychi/blys9hAHkD2UDKij+2POa3au2Kjv4+JacnKwtm7eoabOmDu9pG3M+Ti8s26eyrSs4tF7kfyRtAQAAACCfqVKqkGqUc+xluBaLRWdLSnUrFJOXl5dD6waAW/Hx8FVqYjmFBlZV9eKOP74d8zymakHVHH58S028qtTEC/Lx8HVovcj/eBAZAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQT2cHAAAAnOe6JUWSdPDUVYfXHX89SbsuSKX/uqwAPx+H13/0fJzD6wQAAAAAV0DSFgCAAizm/yc+x6w4kEtz8NTioztzqe6bAnxozgAAAADIXzjLAQCgAGsfXlqSVLlUIfl5eTi07iNnrmrk8gOa0bOmqpYp4tC60wT4eCq0RECu1A0AAAAAzkLSFgCAAiwowFuPNSyfK3UnJydLkiqXDFCNcrmTtAUAAACA/IikLQAAAADkE0kpiXL3PaVjsUfk7lvIoXUnJyfrdPJpHfrnkDw9HXsqeSw2Tu6+p5SUkiiJH/oAACBpCwAAAAD5xOn4vxQQ+o5e3pF785i7em6u1BsQKp2Or616Cs6V+gEAuJuQtAUAAACAfKJsQAXFH3tes3vVVuVSju9pu2XzFjVt1tThPW1jzsfphWX7VLZ1BYfWCwDA3YqkLQAAAADkEz4evkpNLKfQwKqqXtyxtxmwWCw65nlM1YKqycvLy6F1pyZeVWriBfl4+Dq0XgAA7lbuzg4AAAAAAAAAAPB/SNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCPJ0dAAAAAAAAAJCT65YUSdLBU1cdXnf89STtuiCV/uuyAvx8HFr30fNxDq0PBQdJWwAAAAAAALi0mP+f/Byz4kAuzcFTi4/uzKW6pQAfUnCwD1sMAAAAAAAAXFr78NKSpMqlCsnPy8OhdR85c1Ujlx/QjJ41VbVMEYfWLd1M2IaWCHB4vcjfSNoCAAAAAADApQUFeOuxhuVzpe7k5GRJUuWSAapRzvFJW+B28CAyAAAAAAAAAHAhJG0BAAAAAAAAwIWQtAUAAAAAAAAAF0LSFgAAAAAAAABcCA8iAwAAAIB84rolRZJ08NRVh9cdfz1Juy5Ipf+6rAA/H4fWffR8nEPrAwDgbkfSFgAAAADyiZj/n/wcs+JALs3BU4uP7syluqUAH05RAQCQSNoCAAAAQL7RPry0JKlyqULy8/JwaN1HzlzVyOUHNKNnTVUtU8ShdUs3E7ahJQIcXi8AAHcjpydt58yZo+nTp+vs2bOqVauW3nnnHTVs2DDb8rNmzdJ7772nEydOqESJEurZs6emTp0qX1/f264TAAAAAPKDoABvPdawfK7UnZycLEmqXDJANco5PmkLAAD+j1MfRLZs2TJFRkZq4sSJ2rNnj2rVqqUOHTro/PnzWZZfsmSJxowZo4kTJ+rQoUOaP3++li1bppdffvm26wQAAAAAAAAAV+LUnrYzZ87UoEGDNGDAAEnSvHnztGrVKi1YsEBjxozJVH7r1q1q2rSp+vTpI0mqWLGievfurZ9//vm265SkpKQkJSUlme9jY2MlSRaLRRaLxTELC2QjbRtjWwOQ36T1yEpOTuYYh1zHNgYAAID8xGlJ2xs3bmj37t0aO3asOczd3V1t27bVtm3bspymSZMm+uSTT7Rjxw41bNhQf/75p77//ns9+eSTt12nJE2dOlWTJk3KNHzt2rXy9/e/3UUE7LJu3TpnhwAADnUyTpI8tX37dp066OxokN8lJCQ4O4RM3nvvPb333ns6fvy4JCk8PFwTJkxQp06dJEmJiYkaOXKkPvvsMyUlJalDhw6aO3eugoODnRg1AAAAXIHTkrYXL15USkpKpkZpcHCwDh8+nOU0ffr00cWLF9WsWTMZhqHk5GQ999xz5u0RbqdOSRo7dqwiIyPN97GxsQoJCVH79u0VGBh4u4sI2MRisWjdunVq166dvLy8nB0OADjMLyf+kQ7sUuPGjVWrfJCzw0E+l3allCu55557NG3aNN17770yDEMfffSRunXrpr179yo8PFwjRozQqlWr9MUXX6hIkSIaNmyYevTooS1btjg7dAAAADiZ0x9EZo/o6GhNmTJFc+fOVaNGjXT06FG98MILev311zV+/PjbrtfHx0c+Pj6Zhnt5eZFEQ55hewOQ33h6epp/Ob4ht7niNta1a1er95MnT9Z7772n7du365577tH8+fO1ZMkStWnTRpK0cOFCVatWTdu3b1fjxo2dETIAAABchNOStiVKlJCHh4fOnTtnNfzcuXMqXbp0ltOMHz9eTz75pAYOHChJqlmzpuLj4/XMM8/olVdeua06AQAAgNyWkpKiL774QvHx8YqIiNDu3btlsVjUtm1bs0xYWJjKly+vbdu2ZZu05VkMcCbuVQ4gv+L4hrxk6zbmtKStt7e36tWrp6ioKHXv3l2SlJqaqqioKA0bNizLaRISEuTu7m41zMPDQ5JkGMZt1QkAAADklgMHDigiIkKJiYkqVKiQvvrqK1WvXl379u2Tt7e3ihYtalU+ODhYZ8+ezbY+nsUAZ+Je5QDyK45vyEu2PovBqbdHiIyMVL9+/VS/fn01bNhQs2bNUnx8vAYMGCBJ6tu3r8qVK6epU6dKunmJ2cyZM1WnTh3z9gjjx49X165dzeTtreoEAAAA8krVqlW1b98+Xb16VcuXL1e/fv20YcOG266PZzHAmbhXOYD8iuMb8pKtz2JwatK2V69eunDhgiZMmKCzZ8+qdu3aWr16tfkgsRMnTlj1rB03bpzc3Nw0btw4nTp1SiVLllTXrl01efJkm+sEAAAA8oq3t7eqVKkiSapXr5527typ2bNnq1evXrpx44auXLli1dv2Vrf14lkMcCbuVQ4gv+L4hrxk6zbm9AeRDRs2LNtbF0RHR1u99/T01MSJEzVx4sTbrhMAAABwltTUVCUlJalevXry8vJSVFSUHn74YUnSkSNHdOLECUVERDg5SgAAADib05O2AAAAQH40duxYderUSeXLl9e1a9e0ZMkSRUdHa82aNSpSpIiefvppRUZGKigoSIGBgXr++ecVERGR7UPIAAAAUHCQtAUAAABywfnz59W3b1+dOXNGRYoU0f333681a9aoXbt2kqS3335b7u7uevjhh5WUlKQOHTpo7ty5To4aAAAAroCkLQAAAJAL5s+fn+N4X19fzZkzR3PmzMmjiAAAAHC3cL91EQAAAAAAAABAXiFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuhKQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gIAAAAAAACACyFpCwAAAAAAAAAuxNPZAQAAAAAA8l5CQoIOHz5sc/kjZ64o6exRHTrop9RLRW2eLiwsTP7+/rcRIQAABRdJWwAAAAAogA4fPqx69erZPV2fj+wrv3v3btWtW9fu+QAAUJCRtAUAAACAAigsLEy7d++2uXzc9SStWr9NXVpHqJCfj13zAQAA9iFpCwAAAAAFkL+/v109YC0Wiy5fPK+IhvXl5eWVi5EBAAAeRAYAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCSNoCAAAAAAAAgAshaQsAAAAAAAAALoSkLQAAAAAAAAC4EJK2AAAAAAAAAOBCXCJpO2fOHFWsWFG+vr5q1KiRduzYkW3ZVq1ayc3NLdOrS5cuZpn+/ftnGt+xY8e8WBQAAAAAAAAAuCOezg5g2bJlioyM1Lx589SoUSPNmjVLHTp00JEjR1SqVKlM5VesWKEbN26Y7y9duqRatWrpkUcesSrXsWNHLVy40Hzv4+OTewsBAAAAAAAAAA7i9KTtzJkzNWjQIA0YMECSNG/ePK1atUoLFizQmDFjMpUPCgqyev/ZZ5/J398/U9LWx8dHpUuXtimGpKQkJSUlme9jY2MlSRaLRRaLxa7lAeyVto2xrQFwdQkJCTpy5IjN5X8/c1VJZ4/q4D5v3ThXxObpqlatKn9//9sJEQUY36MAACBNQkKCDh8+bHP5I2euKOnsUR066KfUS0Vtni4sLIx2K3KNU5O2N27c0O7duzV27FhzmLu7u9q2batt27bZVMf8+fP12GOPKSAgwGp4dHS0SpUqpWLFiqlNmzZ64403VLx48SzrmDp1qiZNmpRp+Nq1a9n5kGfWrVvn7BAAIEcxMTEaOXKk3dM9+ZF95WfMmKHKlSvbPR8UbAkJCc4OAQAAuIjDhw+rXr16dk/Xx8526+7du1W3bl275wPYwqlJ24sXLyolJUXBwcFWw4ODg236RWTHjh06ePCg5s+fbzW8Y8eO6tGjh0JDQxUTE6OXX35ZnTp10rZt2+Th4ZGpnrFjxyoyMtJ8Hxsbq5CQELVv316BgYG3uXSAbSwWi9atW6d27drJy8vL2eEAQLYSEhLUrFkzm8vHXU/Smk071aF5AxXys/02RfS0xe1Iu1IKAAAgLCxMu3fvtrl83PUkrVq/TV1aR9jVbg0LC7ud8ACbOP32CHdi/vz5qlmzpho2bGg1/LHHHjP/r1mzpu6//35VrlxZ0dHReuCBBzLV4+Pjk+U9b728vEiiIc+wvQFwdUWKFMn0nZsTi8Wia1f+UfMmjTm+IdexjQEAgDT+/v529YC1WCy6fPG8IhrWp00Bl+HuzJmXKFFCHh4eOnfunNXwc+fO3fJ+tPHx8frss8/09NNP33I+lSpVUokSJXT06NE7ihcAAAAAAAAAcptTk7be3t6qV6+eoqKizGGpqamKiopSREREjtN+8cUXSkpK0hNPPHHL+fz999+6dOmSypQpc8cxAwAAAAAAAEBucmrSVpIiIyP14Ycf6qOPPtKhQ4c0ePBgxcfHa8CAAZKkvn37Wj2oLM38+fPVvXv3TA8Xi4uL0+jRo7V9+3YdP35cUVFR6tatm6pUqaIOHTrkyTIBAAAAAAAAwO1y+j1te/XqpQsXLmjChAk6e/asateurdWrV5sPJztx4oTc3a1zy0eOHNHmzZu1du3aTPV5eHho//79+uijj3TlyhWVLVtW7du31+uvv57lfWsBAAAAAAAAwJU4PWkrScOGDdOwYcOyHBcdHZ1pWNWqVWUYRpbl/fz8tGbNGkeGBwAAAAAAAAB5xum3RwAAAAAAAAAA/B+StgAAAAAAAADgQkjaAgAAAAAAAIALIWkLAAAAAAAAAC6EpC0AAAAAAAAAuBCStgAAAEAumDp1qho0aKDChQurVKlS6t69u44cOWJVplWrVnJzc7N6Pffcc06KGAAAAK6CpC0AAACQCzZs2KChQ4dq+/btWrdunSwWi9q3b6/4+HircoMGDdKZM2fM15tvvumkiAEAAOAqPJ0dAAAAAJAfrV692ur9okWLVKpUKe3evVstWrQwh/v7+6t06dJ5HR4AAABcGElbAAAAIA9cvXpVkhQUFGQ1/NNPP9Unn3yi0qVLq2vXrho/frz8/f2zrCMpKUlJSUnm+9jYWEmSxWKRxWLJpciBm9K2MbY1APkNxzfkJVu3M5K2WTAMQ9L/NYKB3GSxWJSQkKDY2Fh5eXk5OxwAcBiOb8hLae22tHacq0lNTdXw4cPVtGlT1ahRwxzep08fVahQQWXLltX+/fv10ksv6ciRI1qxYkWW9UydOlWTJk3KNHzlypXZJnoBR/v666+dHQIA5AqOb8gLCQkJkm7dbnUzXLVl60R///23QkJCnB0GAAAA7HTy5Endc889zg4jk8GDB+uHH37Q5s2bc4zvp59+0gMPPKCjR4+qcuXKmcZn7Gl76tQpVa9ePVdiBgAAQO65VbuVpG0WUlNTdfr0aRUuXFhubm7ODgf5XGxsrEJCQnTy5EkFBgY6OxwAcBiOb8hLhmHo2rVrKlu2rNzdXetZu8OGDdPXX3+tjRs3KjQ0NMey8fHxKlSokFavXq0OHTrcsm7archLHNcB5Fcc35CXbG23cnuELLi7u7tkDw3kb4GBgXw5AMiXOL4hrxQpUsTZIVgxDEPPP/+8vvrqK0VHR98yYStJ+/btkySVKVPGpnnQboUzcFwHkF9xfENesaXdStIWAAAAyAVDhw7VkiVL9PXXX6tw4cI6e/aspJuNdD8/P8XExGjJkiXq3Lmzihcvrv3792vEiBFq0aKF7r//fidHDwAAAGciaQsAAADkgvfee0+S1KpVK6vhCxcuVP/+/eXt7a0ff/xRs2bNUnx8vEJCQvTwww9r3LhxTogWAAAAroSkLeBkPj4+mjhxonx8fJwdCgA4FMc3FHS3enRESEiINmzYkEfRAHeO4zqA/IrjG1wRDyIDAAAAAAAAABfiWo/WBQAAAAAAAIACjqQtAAAAAAAAALgQkrYAAAAAAAAA4EJI2gJ3kVdffVW1a9d2dhgAkKPo6Gi5ubnpypUrOZarWLGiZs2alScxAQDyFu1WAHcD2q1wZTyIDHBRbm5u+uqrr9S9e3dzWFxcnJKSklS8eHHnBQYAt3Djxg39888/Cg4OlpubmxYtWqThw4dnagxfuHBBAQEB8vf3d06gAACHoN0K4G5FuxWuzNPZAQD4f+3de1BV1fvH8c9RFNCjeEHFDMULOpCXOHnFFFMZCDM1NUUMNcEwELJhNKe8JplO3sbG1HQU1FEr8pY6goyaoJFXaMRBM9RKlFRsPOIV9u8PpjOdxL5Z+OMo79d/a6+91372+uPwzMPaa/9zZrNZZrO5osMAgL9VvXp1eXh4/M/zGjRo8P8QDQCgIpC3AngSkLfCkbE9AvAXvXr1UmxsrCZNmqR69erJw8NDM2bMsPVfv35dERERatCggWrXrq3evXsrKyvLbozZs2erYcOGqlWrliIiIvTee+/ZvR52+PBhBQYGyt3dXW5ubgoICNCxY8ds/V5eXpKkQYMGyWQy2dp/fs0sJSVFLi4uD/wHMC4uTr1797a109PT1aNHD7m6usrT01OxsbG6efPmf54nAE+2Xr16KSYmRjExMXJzc5O7u7umTp2qP17AKSwsVHh4uOrWrasaNWro5Zdf1pkzZ2zXnz9/Xv3791fdunVVs2ZNPffcc9q5c6ck+9fM9u3bpzFjxuj333+XyWSSyWSy/ab++TWzESNGaNiwYXYx3rt3T+7u7kpKSpIklZSUaM6cOWrevLlcXV3VoUMHffXVV495pgDAcZG3AqgMyFtRWVG0BcqQmJiomjVrKjMzU/PmzdOsWbOUmpoqSRo6dKgKCgq0a9cuHT16VBaLRX369NG1a9ckSevXr1dCQoLmzp2ro0ePqmnTpvrss8/sxr9x44ZGjRql9PR0fffdd/L29lZISIhu3LghqTQ5lqTVq1crPz/f1v6zPn36qE6dOkpOTrYdKy4u1qZNmxQWFiZJOnv2rIKDgzV48GBlZ2dr06ZNSk9PV0xMTPlPGoAnTmJiopycnPT9999r8eLFWrBggVauXClJGj16tI4cOaJt27bp0KFDMgxDISEhunfvniQpOjpad+7c0bfffqsffvhBc+fOLXNFlb+/vxYtWqTatWsrPz9f+fn5io+Pf+C8sLAwbd++XVar1XZs9+7dKioq0qBBgyRJc+bMUVJSkpYtW6aTJ09q4sSJGjlypPbv3/84pgcAngjkrQAqA/JWVEoGADsBAQHGiy++aHesU6dOxuTJk40DBw4YtWvXNm7fvm3X37JlS2P58uWGYRhGly5djOjoaLv+7t27Gx06dHjoPYuLi41atWoZ27dvtx2TZGzevNnuvOnTp9uNExcXZ/Tu3dvW3r17t+Hs7GwUFhYahmEYY8eONcaNG2c3xoEDB4wqVaoYt27demg8AJ5+AQEBho+Pj1FSUmI7NnnyZMPHx8c4ffq0IcnIyMiw9V25csVwdXU1vvjiC8MwDKNdu3bGjBkzyhx77969hiTbb9Hq1asNNze3B85r1qyZsXDhQsMwDOPevXuGu7u7kZSUZOsPDQ01hg0bZhiGYdy+fduoUaOGcfDgQbsxxo4da4SGhj7y8wPA04C8FUBlQN6KyoqVtkAZ2rdvb9du3LixCgoKlJWVJavVqvr169v26TKbzcrLy9PZs2clSbm5uercubPd9X9tX758WZGRkfL29pabm5tq164tq9WqCxcuPFKcYWFh2rdvny5evCipdLVEv379VKdOHUlSVlaW1qxZYxdrUFCQSkpKlJeX90j3AvD06dq1q0wmk63drVs3nTlzRjk5OXJyclKXLl1sffXr11ebNm106tQpSVJsbKxmz56t7t27a/r06crOzv5PsTg5Oen111/X+vXrJUk3b97U1q1bbSuwfvzxRxUVFSkwMNDuNy0pKcn2+wsAlRF5K4DKgLwVlREfIgPKUK1aNbu2yWRSSUmJrFarGjdurH379j1wzR8J5z8xatQoXb16VYsXL1azZs3k7Oysbt266e7du48UZ6dOndSyZUtt3LhR48eP1+bNm7VmzRpbv9Vq1VtvvaXY2NgHrm3atOkj3QsA/iwiIkJBQUHasWOHUlJSNGfOHM2fP18TJkz412OGhYUpICBABQUFSk1Nlaurq4KDgyXJ9vrZjh071KRJE7vrnJ2d//2DAMATjrwVAP4eeSueVBRtgUdgsVh06dIlOTk52T6y8Fdt2rTR4cOHFR4ebjv21729MjIytHTpUoWEhEiSfv75Z125csXunGrVqqm4uPh/xhQWFqb169fr2WefVZUqVdSvXz+7eHNyctSqVat/+ogAKpHMzEy79h97Ffr6+ur+/fvKzMyUv7+/JOnq1avKzc2Vr6+v7XxPT09FRUUpKipKU6ZM0eeff15m8lu9evV/9Hvm7+8vT09Pbdq0Sbt27dLQoUNtxQhfX185OzvrwoULCggI+C+PDQCVAnkrgKcJeSsqI7ZHAB5B37591a1bNw0cOFApKSk6d+6cDh48qPfff19HjhyRJE2YMEGrVq1SYmKizpw5o9mzZys7O9vuVQ5vb2+tXbtWp06dUmZmpsLCwuTq6mp3Ly8vL6WlpenSpUsqLCx8aExhYWE6duyYEhISNGTIELv/3E2ePFkHDx5UTEyMTpw4oTNnzmjr1q180AGAJOnChQt69913lZubqw0bNmjJkiWKi4uTt7e3BgwYoMjISKWnpysrK0sjR45UkyZNNGDAAEnSO++8o927dysvL0/Hjh3T3r175ePjU+Z9vLy8ZLValZaWpitXrqioqOihMY0YMULLli1Tamqq7RUzSapVq5bi4+M1ceJEJSYm6uzZszp27JiWLFmixMTE8p0YAHgKkLcCeJqQt6IyomgLPAKTyaSdO3eqZ8+eGjNmjFq3bq3hw4fr/PnzatSokaTSZHTKlCmKj4+XxWJRXl6eRo8eLRcXF9s4q1atUmFhoSwWi9544w3FxsaqYcOGdveaP3++UlNT5enpKT8/v4fG1KpVK3Xu3FnZ2dl2fyik0j3O9u/fr9OnT6tHjx7y8/PTtGnT9Mwzz5TjrAB4UoWHh+vWrVvq3LmzoqOjFRcXp3Hjxkkq/Qr4Cy+8oFdeeUXdunWTYRjauXOnbQVBcXGxoqOj5ePjo+DgYLVu3VpLly4t8z7+/v6KiorSsGHD1KBBA82bN++hMYWFhSknJ0dNmjRR9+7d7fo+/PBDTZ06VXPmzLHdd8eOHWrevHk5zQgAPD3IWwE8TchbURmZDMMwKjoI4GkXGBgoDw8PrV27tqJDAQBJUq9evfT8889r0aJFFR0KAMCBkLcCcDTkrais2NMWKGdFRUVatmyZgoKCVLVqVW3YsEF79uxRampqRYcGAAAA2JC3AgDguCjaAuXsj1fREhISdPv2bbVp00bJycnq27dvRYcGAAAA2JC3AgDguNgeAQAAAAAAAAAcCB8iAwAAAAAAAAAHQtEWAAAAAAAAABwIRVsAAAAAAAAAcCAUbQEAAAAAAADAgVC0BQAAAAAAAAAHQtEWAAAAAAAAABwIRVsAcFC//fabxo8fr6ZNm8rZ2VkeHh4KCgpSRkaGJMlkMmnLli0VGyQAAAAqPfJWACh/ThUdAACgbIMHD9bdu3eVmJioFi1a6PLly0pLS9PVq1crOjQAAADAhrwVAMofK20BwAFdv35dBw4c0Ny5c/XSSy+pWbNm6ty5s6ZMmaJXX31VXl5ekqRBgwbJZDLZ2mfPntWAAQPUqFEjmc1mderUSXv27LEb28vLSx999JHefPNN1apVS02bNtWKFSvszvnll18UGhqqevXqqWbNmurYsaMyMzNt/Vu3bpXFYpGLi4tatGihmTNn6v79+491TgAAAOB4yFsB4PGgaAsADshsNstsNmvLli26c+fOA/2HDx+WJK1evVr5+fm2ttVqVUhIiNLS0nT8+HEFBwerf//+unDhgt318+fPV8eOHXX8+HG9/fbbGj9+vHJzc21jBAQE6Ndff9W2bduUlZWlSZMmqaSkRJJ04MABhYeHKy4uTjk5OVq+fLnWrFmjhISExzklAAAAcEDkrQDweJgMwzAqOggAwIOSk5MVGRmpW7duyWKxKCAgQMOHD1f79u0lle4NtnnzZg0cOPBvx2nbtq2ioqIUExMjqXTFQo8ePbR27VpJkmEY8vDw0MyZMxUVFaUVK1YoPj5e586dU7169R4Yr2/fvurTp4+mTJliO7Zu3TpNmjRJFy9eLKenBwAAwJOCvBUAyh8rbQHAQQ0ePFgXL17Utm3bFBwcrH379slisWjNmjUPvcZqtSo+Pl4+Pj6qU6eOzGazTp069cCKhT8SaKk0ifbw8FBBQYEk6cSJE/Lz8ysz8ZWkrKwszZo1y7aqwmw2KzIyUvn5+SoqKvrvDw4AAIAnCnkrAJQ/PkQGAA7MxcVFgYGBCgwM1NSpUxUREaHp06dr9OjRZZ4fHx+v1NRUffLJJ2rVqpVcXV01ZMgQ3b171+68atWq2bVNJpPtNTJXV9e/jclqtWrmzJl67bXXyowXAAAAlQ95KwCUL4q2APAE8fX11ZYtWySVJrDFxcV2/RkZGRo9erQGDRokqTRRPXfu3CPdo3379lq5cqWuXbtW5qoFi8Wi3NxctWrV6l89AwAAAJ5+5K0A8N+wPQIAOKCrV6+qd+/eWrdunbKzs5WXl6cvv/xS8+bN04ABAySV7vGVlpamS5cuqbCwUJLk7e2tr7/+WidOnFBWVpZGjBhhW4nwT4WGhsrDw0MDBw5URkaGfvrpJyUnJ+vQoUOSpGnTpikpKUkzZ87UyZMnderUKW3cuFEffPBB+U4CAAAAHB55KwA8HhRtAcABmc1mdenSRQsXLlTPnj3Vtm1bTZ06VZGRkfr0008llX5JNzU1VZ6envLz85MkLViwQHXr1pW/v7/69++voKAgWSyWR7p39erVlZKSooYNGyokJETt2rXTxx9/rKpVq0qSgoKC9M033yglJUWdOnVS165dtXDhQjVr1qx8JwEAAAAOj7wVAB4Pk2EYRkUHAQAAAAAAAAAoxUpbAAAAAAAAAHAgFG0BAAAAAAAAwIFQtAUAAAAAAAAAB0LRFgAAAAAAAAAcCEVbAAAAAAAAAHAgFG0BAAAAAAAAwIFQtAUAAAAAAAAAB0LRFgAAAAAAAAAcCEVbAAAAAAAAAHAgFG0BAAAAAAAAwIFQtAUAAAAAAAAAB/J/qOUJmDiSuH0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 18: ANALYZE NEW TOPIC RESULTS\n", - "# ============================================================================\n", - "\n", - "print(\"\\n📊 Analysis of New Topic Generations:\\n\")\n", - "print(f\"Average Diversity: {new_results_df['diversity'].mean():.4f}\")\n", - "print(f\"Average Length: {new_results_df['length'].mean():.1f} words\")\n", - "print(f\"\\nBy Stance:\")\n", - "print(new_results_df.groupby('stance')[['diversity', 'length']].mean())\n", - "\n", - "# Visualize new topic results\n", - "fig, axes = plt.subplots(1, 2, figsize=(14, 5))\n", - "\n", - "# Diversity by stance\n", - "new_results_df.boxplot(column='diversity', by='stance', ax=axes[0])\n", - "axes[0].set_title('Diversity Score by Stance (New Topics)', fontsize=14, fontweight='bold')\n", - "axes[0].set_xlabel('Stance')\n", - "axes[0].set_ylabel('Diversity Score')\n", - "plt.suptitle('')\n", - "\n", - "# Length by stance\n", - "new_results_df.boxplot(column='length', by='stance', ax=axes[1])\n", - "axes[1].set_title('Argument Length by Stance (New Topics)', fontsize=14, fontweight='bold')\n", - "axes[1].set_xlabel('Stance')\n", - "axes[1].set_ylabel('Word Count')\n", - "plt.suptitle('')\n", - "\n", - "plt.tight_layout()\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "1f87df8b", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:19:05.616935Z", - "iopub.status.busy": "2025-12-11T06:19:05.616700Z", - "iopub.status.idle": "2025-12-11T06:19:05.634548Z", - "shell.execute_reply": "2025-12-11T06:19:05.633972Z" - }, - "papermill": { - "duration": 0.055557, - "end_time": "2025-12-11T06:19:05.635559", - "exception": false, - "start_time": "2025-12-11T06:19:05.580002", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "💾 Saving results to CSV files...\n", - "✅ Test set evaluation saved to: test_set_evaluation.csv\n", - "✅ New topic generations saved to: generated_arguments_new_topics.csv\n", - "✅ Evaluation summary saved to: evaluation_summary.csv\n", - "\n", - "================================================================================\n", - "📋 EVALUATION SUMMARY\n", - "================================================================================\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
MetricValue
0Train Loss (Final)2.169585
1Val Loss (Final)2.005616
2Avg ROUGE-10.273987
3Avg ROUGE-20.065607
4Avg ROUGE-L0.199495
5Avg Diversity0.885864
6Avg Creativity0.783749
7Avg Length Similarity0.612062
\n", - "
" - ], - "text/plain": [ - " Metric Value\n", - "0 Train Loss (Final) 2.169585\n", - "1 Val Loss (Final) 2.005616\n", - "2 Avg ROUGE-1 0.273987\n", - "3 Avg ROUGE-2 0.065607\n", - "4 Avg ROUGE-L 0.199495\n", - "5 Avg Diversity 0.885864\n", - "6 Avg Creativity 0.783749\n", - "7 Avg Length Similarity 0.612062" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 19: SAVE RESULTS TO CSV\n", - "# ============================================================================\n", - "\n", - "print(\"\\n💾 Saving results to CSV files...\")\n", - "\n", - "# Save test set evaluation results\n", - "test_results.to_csv('test_set_evaluation.csv', index=False)\n", - "print(f\"✅ Test set evaluation saved to: test_set_evaluation.csv\")\n", - "\n", - "# Save new topic generation results\n", - "new_results_df.to_csv('generated_arguments_new_topics.csv', index=False)\n", - "print(f\"✅ New topic generations saved to: generated_arguments_new_topics.csv\")\n", - "\n", - "# Create a summary report\n", - "summary_df = pd.DataFrame({\n", - " 'Metric': ['Train Loss (Final)', 'Val Loss (Final)', \n", - " 'Avg ROUGE-1', 'Avg ROUGE-2', 'Avg ROUGE-L',\n", - " 'Avg Diversity', 'Avg Creativity', 'Avg Length Similarity'],\n", - " 'Value': [\n", - " history['train_loss'][-1],\n", - " history['val_loss'][-1],\n", - " test_results['rouge1'].mean() if ROUGE_AVAILABLE else 'N/A',\n", - " test_results['rouge2'].mean() if ROUGE_AVAILABLE else 'N/A',\n", - " test_results['rougeL'].mean() if ROUGE_AVAILABLE else 'N/A',\n", - " test_results['diversity'].mean(),\n", - " test_results['creativity'].mean(),\n", - " test_results['length_similarity'].mean()\n", - " ]\n", - "})\n", - "\n", - "summary_df.to_csv('evaluation_summary.csv', index=False)\n", - "print(f\"✅ Evaluation summary saved to: evaluation_summary.csv\")\n", - "\n", - "print(\"\\n\" + \"=\"*80)\n", - "print(\"📋 EVALUATION SUMMARY\")\n", - "print(\"=\"*80)\n", - "display(summary_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "8fd541ac", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:19:05.709767Z", - "iopub.status.busy": "2025-12-11T06:19:05.709544Z", - "iopub.status.idle": "2025-12-11T06:19:06.870973Z", - "shell.execute_reply": "2025-12-11T06:19:06.870170Z" - }, - "papermill": { - "duration": 1.199867, - "end_time": "2025-12-11T06:19:06.872282", - "exception": false, - "start_time": "2025-12-11T06:19:05.672415", - "status": "completed" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "💾 Saving trained model...\n", - "✅ Model and tokenizer saved to: ./argument_generator_model\n", - "✅ Training configuration saved to: training_config.csv\n", - "\n", - "================================================================================\n", - "🎉 PIPELINE COMPLETED SUCCESSFULLY!\n", - "================================================================================\n", - "\n", - "📁 Generated Files:\n", - " 1. test_set_evaluation.csv - Detailed evaluation on test set\n", - " 2. generated_arguments_new_topics.csv - Arguments for 15 new topics\n", - " 3. evaluation_summary.csv - Overall metrics summary\n", - " 4. training_config.csv - Training configuration and final losses\n", - " 5. ./argument_generator_model/ - Saved model and tokenizer\n", - "\n", - "✨ Your model is ready to generate creative arguments!\n" - ] - } - ], - "source": [ - "# ============================================================================\n", - "# CELL 20: SAVE MODEL\n", - "# ============================================================================\n", - "\n", - "print(\"\\n💾 Saving trained model...\")\n", - "\n", - "model_save_path = './argument_generator_model'\n", - "model.save_pretrained(model_save_path)\n", - "tokenizer.save_pretrained(model_save_path)\n", - "\n", - "print(f\"✅ Model and tokenizer saved to: {model_save_path}\")\n", - "\n", - "# Save training configuration\n", - "config_dict = {\n", - " 'model_name': config.MODEL_NAME,\n", - " 'epochs': config.EPOCHS,\n", - " 'batch_size': config.BATCH_SIZE,\n", - " 'learning_rate': config.LEARNING_RATE,\n", - " 'max_input_length': config.MAX_INPUT_LENGTH,\n", - " 'max_target_length': config.MAX_TARGET_LENGTH,\n", - " 'train_samples': len(train_df),\n", - " 'val_samples': len(val_df),\n", - " 'test_samples': len(test_df),\n", - " 'final_train_loss': history['train_loss'][-1],\n", - " 'final_val_loss': history['val_loss'][-1]\n", - "}\n", - "\n", - "config_df = pd.DataFrame([config_dict])\n", - "config_df.to_csv('training_config.csv', index=False)\n", - "print(f\"✅ Training configuration saved to: training_config.csv\")\n", - "\n", - "print(\"\\n\" + \"=\"*80)\n", - "print(\"🎉 PIPELINE COMPLETED SUCCESSFULLY!\")\n", - "print(\"=\"*80)\n", - "print(\"\\n📁 Generated Files:\")\n", - "print(\" 1. test_set_evaluation.csv - Detailed evaluation on test set\")\n", - "print(\" 2. generated_arguments_new_topics.csv - Arguments for 15 new topics\")\n", - "print(\" 3. evaluation_summary.csv - Overall metrics summary\")\n", - "print(\" 4. training_config.csv - Training configuration and final losses\")\n", - "print(\" 5. ./argument_generator_model/ - Saved model and tokenizer\")\n", - "print(\"\\n✨ Your model is ready to generate creative arguments!\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "b215c519", - "metadata": { - "execution": { - "iopub.execute_input": "2025-12-11T06:19:06.947953Z", - "iopub.status.busy": "2025-12-11T06:19:06.947713Z", - "iopub.status.idle": "2025-12-11T06:19:06.951995Z", - "shell.execute_reply": "2025-12-11T06:19:06.951405Z" - }, - "papermill": { - "duration": 0.042543, - "end_time": "2025-12-11T06:19:06.953116", - "exception": false, - "start_time": "2025-12-11T06:19:06.910573", - "status": "completed" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "# # ============================================================================\n", - "# # CELL 21: INTERACTIVE TESTING (OPTIONAL)\n", - "# # ============================================================================\n", - "\n", - "# print(\"\\n\" + \"=\"*80)\n", - "# print(\"🎮 INTERACTIVE TESTING\")\n", - "# print(\"=\"*80)\n", - "# print(\"\\nYou can now test the model with custom topics!\")\n", - "# print(\"Example usage:\\n\")\n", - "# print(\"topic = 'Your custom topic here'\")\n", - "# print(\"stance = 'positive' # or 'negative'\")\n", - "# print(\"argument = generate_argument(model, tokenizer, topic, stance, device)\")\n", - "# print(\"print(argument)\")\n", - "\n", - "# # Example interactive test\n", - "# def test_custom_topic(topic, stance):\n", - "# \"\"\"Helper function for quick testing\"\"\"\n", - "# print(f\"\\n{'─'*60}\")\n", - "# print(f\"Topic: {topic}\")\n", - "# print(f\"Stance: {stance.upper()}\")\n", - "# print(f\"{'─'*60}\")\n", - " \n", - "# argument = generate_argument(model, tokenizer, topic, stance, device)\n", - "# diversity = evaluator.calculate_diversity(argument)\n", - " \n", - "# print(f\"\\nGenerated Argument:\")\n", - "# print(f\"{argument}\")\n", - "# print(f\"\\n📊 Diversity Score: {diversity:.3f}\")\n", - "# print(f\"📏 Length: {len(argument.split())} words\")\n", - " \n", - "# return argument\n", - "\n", - "# # Example test\n", - "# print(\"\\n🔍 Example Test:\")\n", - "# test_custom_topic(\"Video games should be considered a sport\", \"positive\")2, 2, figsize=(15, 10))\n", - "\n", - "# # 1. Stance distribution\n", - "# stance_counts.plot(kind='bar', ax=axes[0, 0], color=['#FF6B6B', '#4ECDC4'])\n", - "# axes[0, 0].set_title('Stance Distribution', fontsize=14, fontweight='bold')\n", - "# axes[0, 0].set_xlabel('Stance')\n", - "# axes[0, 0].set_ylabel('Count')\n", - "# axes[0, 0].tick_params(axis='x', rotation=0)\n", - "\n", - "# # 2. Argument length distribution\n", - "# df['arg_length'] = df['argument'].str.len()\n", - "# axes[0, 1].hist(df['arg_length'], bins=50, color='#95E1D3', edgecolor='black')\n", - "# axes[0, 1].set_title('Argument Length Distribution', fontsize=14, fontweight='bold')\n", - "# axes[0, 1].set_xlabel('Character Count')\n", - "# axes[0, 1].set_ylabel('Frequency')\n", - "# axes[0, 1].axvline(df['arg_length'].mean(), color='red', linestyle='--', label=f'Mean: {df[\"arg_length\"].mean():.0f}')\n", - "# axes[0, 1].legend()\n", - "\n", - "# # 3. Top 10 topics\n", - "# top_topics = df['topic'].value_counts().head(10)\n", - "# axes[1, 0].barh(range(len(top_topics)), top_topics.values, color='#F38181')\n", - "# axes[1, 0].set_yticks(range(len(top_topics)))\n", - "# axes[1, 0].set_yticklabels([topic[:40] + '...' if len(topic) > 40 else topic for topic in top_topics.index])\n", - "# axes[1, 0].set_title('Top 10 Topics', fontsize=14, fontweight='bold')\n", - "# axes[1, 0].set_xlabel('Count')\n", - "# axes[1, 0].invert_yaxis()\n", - "\n", - "# # 4. Stance by argument length\n", - "# df.boxplot(column='arg_length', by='stance', ax=axes[1, 1])\n", - "# axes[1, 1].set_title('Argument Length by Stance', fontsize=14, fontweight='bold')\n", - "# axes[1, 1].set_xlabel('Stance')\n", - "# axes[1, 1].set_ylabel('Character Count')\n", - "# plt.suptitle('') # Remove automatic title\n", - "\n", - "# plt.tight_layout()\n", - "# plt.show()\n" - ] - } - ], - "metadata": { - "kaggle": { - "accelerator": "gpu", - "dataSources": [ - { - "datasetId": 8778750, - "sourceId": 13789705, - "sourceType": "datasetVersion" - } - ], - "dockerImageVersionId": 31193, - "isGpuEnabled": true, - "isInternetEnabled": true, - "language": "python", - "sourceType": "notebook" - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.13" - }, - "papermill": { - "default_parameters": {}, - "duration": 8025.343302, - "end_time": "2025-12-11T06:19:09.994257", - "environment_variables": {}, - "exception": null, - "input_path": "__notebook__.ipynb", - "output_path": "__notebook__.ipynb", - "parameters": {}, - "start_time": "2025-12-11T04:05:24.650955", - "version": "2.6.0" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "00cc86c7e12b4f99b1f40971f1f3b2ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "02b33c24a28146f49dd74edf6040709a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d0c533874b194ad5a20618beb9314c14", - "placeholder": "​", - "style": "IPY_MODEL_36ed617c6df04895aca52b4304aafa01", - "tabbable": null, - "tooltip": null, - "value": "Training: 100%" - } - }, - "02f266fc482c464db6eef3999b266c8d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "040b1f9a4c25446d9b0aed8982c368e5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "046d04672eef4a7cb62f8d3d44d7caf7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d59f1acbdf104206b9ad5b89488b87ba", - "placeholder": "​", - "style": "IPY_MODEL_1e8bc2749e9f4f4b932404f0b7ebe6bc", - "tabbable": null, - "tooltip": null, - "value": "merges.txt: 100%" - } - }, - "04833cf04d99400cbf11fe13d8c27e73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "06cde143131f46c79fdb1ed5e4264700": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09160bee752b4e5998a28259dfb96f84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e805d4fad5b4746888f463b4f33386f", - "placeholder": "​", - "style": "IPY_MODEL_92995f850263458faa98c769b3ac8f95", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "09b697949b054374a4338a67f8605fbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0a4d47e10c314cb0bc5dad175f66e112": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0a84f1d208984888a401cf50463c556b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0b47eca41e7a4e70a72aceea7effba98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0bb801ab311a4a9388db16cd9f7afe4c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0cad3a0a987d400b9dca8cf4e381eee8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0cc8964397394e369aafdc9dbf2dca16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0e1de722cd624c339cd957f9c9811baf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd90be08a7d8446687eab02bf469f11e", - "placeholder": "​", - "style": "IPY_MODEL_6980070f6767461ba80f88b6d3704bcc", - "tabbable": null, - "tooltip": null, - "value": " 1.39M/1.39M [00:00<00:00, 5.55MB/s]" - } - }, - "1022c731ffbc46b6818154d788eb3505": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2baa68c015e5403690292fae6847fc02", - "placeholder": "​", - "style": "IPY_MODEL_04833cf04d99400cbf11fe13d8c27e73", - "tabbable": null, - "tooltip": null, - "value": " 3352/3352 [24:19<00:00,  2.63it/s, loss=1.7256, lr=6.67e-06]" - } - }, - "113d819756e34ecba54338ed1fc6fa52": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "12fab2e14889400b89a5e3007d93fd50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "15f54f113e0546aa90e97649c6e5f6b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "16598430c72043798823f153bb3d041d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d792630f57194f49967bafce92d4a53d", - "max": 3352.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f2682d0b028247bcba6c3045176492a8", - "tabbable": null, - "tooltip": null, - "value": 3352.0 - } - }, - "16643fd9c1a241149741248cccba15b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "18b0b9895dab4164af708e76e7f11dcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6dd9f369a2354477816c7bd2bbd78417", - "IPY_MODEL_76d33c0bc8b74bd79d0facbe24f1ba27", - "IPY_MODEL_87161493576549229d4fc6fc9fdbf3c8" - ], - "layout": "IPY_MODEL_c92097b0909c4d1f93cfd383628158a0", - "tabbable": null, - "tooltip": null - } - }, - "1a08cc6f300a4002b5f52ebcab1fb291": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ba96f2d91e646c68611427e83ab7d73", - "placeholder": "​", - "style": "IPY_MODEL_aaaf72e37c9744ae944dc1d581589d04", - "tabbable": null, - "tooltip": null, - "value": " 671/671 [01:30<00:00,  7.43it/s, loss=1.6809]" - } - }, - "1b7b41b1d2b84a99820a2c074f2fb177": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1c169452dff049afbf4e8d097e753fe5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1cc20de218454e8a9090b391b17bbbde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1d01e1b37e7240d291a302855590b805": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1e8bc2749e9f4f4b932404f0b7ebe6bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1eff7800b1ba45fc8e543b316a98fb8b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "222c7de4a65f4e519d32ccee13742ee3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "22835baee36b44ee8e5071174354f93e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2571dcb495fb46fe954a1c0490ad3c84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a52bf7d5f7b406d84e854b43d026f24", - "placeholder": "​", - "style": "IPY_MODEL_eed74f3ac5c54e6f9719f00f5098abe3", - "tabbable": null, - "tooltip": null, - "value": "Training: 100%" - } - }, - "25c12049189d4e8fa2987b70591330c9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "25dd7c33e52a44158a754cf0a6a01119": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "262104721abc45d5902970fcb187dc2a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "270e5f83b1f0410a896c55d94278f8e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "27356df1c2ff4e98a1a8dc23da3bcb39": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "27624ab9d5464841b7df7cebdc354cd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "27b9566b154440feadfb8820ebdc6111": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66483b780546494baad95f184390bee7", - "placeholder": "​", - "style": "IPY_MODEL_0cc8964397394e369aafdc9dbf2dca16", - "tabbable": null, - "tooltip": null, - "value": " 3352/3352 [24:27<00:00,  2.62it/s, loss=2.5583, lr=2.67e-05]" - } - }, - "288d7da3dfd946ef91b49c25136ffd58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_046d04672eef4a7cb62f8d3d44d7caf7", - "IPY_MODEL_c465d5a2ecdc43d9ba74f957c59036fb", - "IPY_MODEL_4695492b09d945cd9237b8a6ad4f063e" - ], - "layout": "IPY_MODEL_25c12049189d4e8fa2987b70591330c9", - "tabbable": null, - "tooltip": null - } - }, - "29642dad89d640b0b1f90b5b511ed788": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2baa68c015e5403690292fae6847fc02": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2d496f5ffa07445080c28d1219308c24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fff73628f58448079f6c91cdb2dcef49", - "placeholder": "​", - "style": "IPY_MODEL_270e5f83b1f0410a896c55d94278f8e4", - "tabbable": null, - "tooltip": null, - "value": " 899k/899k [00:00<00:00, 4.74MB/s]" - } - }, - "2d5aa2090a6f48f5b3dc4eb87495001c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2571dcb495fb46fe954a1c0490ad3c84", - "IPY_MODEL_16598430c72043798823f153bb3d041d", - "IPY_MODEL_aea48983503a4c5a8661886a7de24438" - ], - "layout": "IPY_MODEL_f55a975af962425baede7577d2cb25bf", - "tabbable": null, - "tooltip": null - } - }, - "2e866e0a40554b349cc5859d67e1b43c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2fd8aab8bf5343c7acb7eefa8c5a5021": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_45135e68368242c4a810deb82855e348", - "max": 3352.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fff2f0a73230449eaeec27bac183ac04", - "tabbable": null, - "tooltip": null, - "value": 3352.0 - } - }, - "2ff6333dcc1c49b8a5cb9a0f8c92966c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2ff6b355f7304405b053f6b3f0dd7432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "314fd10da0a9461891cd64b0edaa6f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b7b41b1d2b84a99820a2c074f2fb177", - "max": 25.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cae99586e0242738b944105594f4899", - "tabbable": null, - "tooltip": null, - "value": 25.0 - } - }, - "3276f2b59c754300af1d4355ab32bdd8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "336d4cddc1004f71bfb6bff7d3d53646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_614300df659d4866a3d9bcd6b85d4c59", - "IPY_MODEL_ff4bc4e5ce9a4e328716d18988ffd743", - "IPY_MODEL_dc74eac03d5a4cdf81f27743649c8574" - ], - "layout": "IPY_MODEL_d2ce9c2e521e433596a20de6aeb8b414", - "tabbable": null, - "tooltip": null - } - }, - "36ed617c6df04895aca52b4304aafa01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "370f94e8e57e42fc826200d6d9ca3929": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "38f8b319c125448b977125b93fd45ab1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd0c8fb6e71d49d5ae56bfdd0c91e146", - "IPY_MODEL_fd6602676d174b26bb8334a8e38883ae", - "IPY_MODEL_0e1de722cd624c339cd957f9c9811baf" - ], - "layout": "IPY_MODEL_73d0c949eda54527adb47e14b0ef390b", - "tabbable": null, - "tooltip": null - } - }, - "39e18b27ec6b479abc53da6640445fcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2ea21432e3f4e78977f0a69635926e4", - "placeholder": "​", - "style": "IPY_MODEL_2ff6b355f7304405b053f6b3f0dd7432", - "tabbable": null, - "tooltip": null, - "value": "Validation: 100%" - } - }, - "3a7ebfbfc92d476c9a6cc36051dcfa80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3276f2b59c754300af1d4355ab32bdd8", - "max": 1355863.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15f54f113e0546aa90e97649c6e5f6b1", - "tabbable": null, - "tooltip": null, - "value": 1355863.0 - } - }, - "3ba96f2d91e646c68611427e83ab7d73": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3bacf926790d4cadabff06624c9afe4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c9209eba0cb4f529a5392333487b64b", - "max": 671.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d143d90adac436d9bed610e3dcfd6b1", - "tabbable": null, - "tooltip": null, - "value": 671.0 - } - }, - "3d6c1d423f1940d48fd426a057ba20fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3fb843c3042843738f5f9cad3b428d0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4017433f316145968a632355c5ceb67a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c4dad9fa25c440b2ab8a70aa4f74c281", - "IPY_MODEL_314fd10da0a9461891cd64b0edaa6f2d", - "IPY_MODEL_f8b49b3ea8324c1398fe2d1a83c05f9a" - ], - "layout": "IPY_MODEL_448902a043194afdb1dcde1f0e206184", - "tabbable": null, - "tooltip": null - } - }, - "43bcb8bb792843be9b44382baf8139dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9dd48d1d0f1848b99d70b1b8537c5d36", - "placeholder": "​", - "style": "IPY_MODEL_aec1d284066a45fc825699d88a6a3a0b", - "tabbable": null, - "tooltip": null, - "value": " 100/100 [01:12<00:00,  1.45it/s]" - } - }, - "448902a043194afdb1dcde1f0e206184": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "45135e68368242c4a810deb82855e348": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "45c77bbcae954843b11cb875f12cb08a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8caa9d6bfd684ba8bf6b1d5b2062dbeb", - "placeholder": "​", - "style": "IPY_MODEL_0a84f1d208984888a401cf50463c556b", - "tabbable": null, - "tooltip": null, - "value": "generation_config.json: 100%" - } - }, - "4695492b09d945cd9237b8a6ad4f063e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92c638623b214a05bfc21b272ebd9be4", - "placeholder": "​", - "style": "IPY_MODEL_0a4d47e10c314cb0bc5dad175f66e112", - "tabbable": null, - "tooltip": null, - "value": " 456k/456k [00:00<00:00, 3.59MB/s]" - } - }, - "473f4c7cdbdb40398aa031067db9983e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f71501f9416a4f01bb310d37b970b81f", - "IPY_MODEL_3a7ebfbfc92d476c9a6cc36051dcfa80", - "IPY_MODEL_4d6b4498de85446e811bb45aae467d24" - ], - "layout": "IPY_MODEL_a64d9d44612b4148bf427302dcdabd4a", - "tabbable": null, - "tooltip": null - } - }, - "492d253a75124af8b982aefba848569e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "49b8d5a65b4e446f87d5b6e9cf002cbc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c4f7458b0b84e1b8e6b2422e3fc3bd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_113d819756e34ecba54338ed1fc6fa52", - "max": 671.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b42998f8a824a9890f4e303aaefc74b", - "tabbable": null, - "tooltip": null, - "value": 671.0 - } - }, - "4cae99586e0242738b944105594f4899": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4cec80bcee384f1f904118735649b979": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4d6b4498de85446e811bb45aae467d24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0cad3a0a987d400b9dca8cf4e381eee8", - "placeholder": "​", - "style": "IPY_MODEL_27624ab9d5464841b7df7cebdc354cd2", - "tabbable": null, - "tooltip": null, - "value": " 1.36M/1.36M [00:00<00:00, 5.87MB/s]" - } - }, - "4dc98a4c4f264f2aa2eb23f2422a82c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4e1f9adc49ff4d95a690e4cd8ddce7d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0bb801ab311a4a9388db16cd9f7afe4c", - "placeholder": "​", - "style": "IPY_MODEL_c55a80537d234e0a9df6bde7bc6b096d", - "tabbable": null, - "tooltip": null, - "value": "Validation: 100%" - } - }, - "4ec8004b02e84b5ea3fb28eadcc7daaa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4f8978f175214467b2a24902cfce303c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4fafd3f0d42642a498b6a69e9d62a42f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aea865a18de14a6bacf34848eca0e822", - "max": 3352.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_77d14d24d842461d9512043abcd4b599", - "tabbable": null, - "tooltip": null, - "value": 3352.0 - } - }, - "4fc442ecf30449349e98bcc6caa139ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "50701232a76c47c4b9daa7ce3cc90676": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "51d50f0148f44c639026e778676fc899": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "51e0f4398f1542629dc79b22b30b0e98": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5212507f3fd6449f887b172ab3f61b34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5719fbde7b5d4142973b7873010b4ee3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a3712307d6d54b499dbe09ac1be89904", - "max": 898823.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4dc98a4c4f264f2aa2eb23f2422a82c9", - "tabbable": null, - "tooltip": null, - "value": 898823.0 - } - }, - "5bef17f6f5c445198412dd738ec50260": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c16345cbf507498da1a1d1c2be870f60", - "IPY_MODEL_5719fbde7b5d4142973b7873010b4ee3", - "IPY_MODEL_2d496f5ffa07445080c28d1219308c24" - ], - "layout": "IPY_MODEL_040b1f9a4c25446d9b0aed8982c368e5", - "tabbable": null, - "tooltip": null - } - }, - "5c8ed5cc5fbb4fb4a9f5c615afa95cd1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5c9209eba0cb4f529a5392333487b64b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5dd428fb00f34ece9b129ceb67427513": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_858fbdad7fd7448887485a0ee748fb37", - "placeholder": "​", - "style": "IPY_MODEL_16643fd9c1a241149741248cccba15b0", - "tabbable": null, - "tooltip": null, - "value": " 1.42G/1.42G [00:03<00:00, 990MB/s]" - } - }, - "5f158f58c255464aa0989eeb722f3127": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92137e1dc376454d928130ec1c346ba1", - "IPY_MODEL_3bacf926790d4cadabff06624c9afe4e", - "IPY_MODEL_1a08cc6f300a4002b5f52ebcab1fb291" - ], - "layout": "IPY_MODEL_67d05020eb344a309d9ddd9fa36dce7c", - "tabbable": null, - "tooltip": null - } - }, - "5fb61b458fa2408ea770749eafde4440": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "609125e66800444682425de2b7192b6d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "610eb7bce96041fbbcc00dcba23b69d7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "614300df659d4866a3d9bcd6b85d4c59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a49a19191f9341799c903c1373e538ed", - "placeholder": "​", - "style": "IPY_MODEL_4fc442ecf30449349e98bcc6caa139ff", - "tabbable": null, - "tooltip": null, - "value": "spiece.model: 100%" - } - }, - "645da897f1a44e2292837f9b4795944a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "64e97d75ff804aa18758e7b956caa07f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "66483b780546494baad95f184390bee7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "67d05020eb344a309d9ddd9fa36dce7c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6980070f6767461ba80f88b6d3704bcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a52bf7d5f7b406d84e854b43d026f24": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6c4aab5edc6348e3b804bdaa43497713": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6ca575d104b842ac953c63ff67038b24": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6dd9f369a2354477816c7bd2bbd78417": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_986bd7c352db4a1c999886ec36687af6", - "placeholder": "​", - "style": "IPY_MODEL_06cde143131f46c79fdb1ed5e4264700", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "6fff02d50d3f425aa4b96c3bbd509b9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "720e2e02a6684c60833e8477d74f58d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5a56773428e444686caba1f036667d2", - "max": 100.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9101fc30664e43a7ab34afcaa197505d", - "tabbable": null, - "tooltip": null, - "value": 100.0 - } - }, - "72e7dc7162c24520b32add19f7733555": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "73d0c949eda54527adb47e14b0ef390b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "74080c2dec9e4e7e8ea400c204def3d1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7418a2921d4047dbb3891ceabb22d373": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7513920143624c999f86b6336bfcafda": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "76d33c0bc8b74bd79d0facbe24f1ba27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c8ed5cc5fbb4fb4a9f5c615afa95cd1", - "max": 482.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7f1a35aaec764a48974983bddfbe9a81", - "tabbable": null, - "tooltip": null, - "value": 482.0 - } - }, - "77d14d24d842461d9512043abcd4b599": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a3b9690faea4d68973b42d6e85bbd75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ba746d8cc454c879153db09bbe3d8c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7f1a35aaec764a48974983bddfbe9a81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7f3ee7ffa48c45f8871bd37d6cdd0f65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c52fa6a1ebc240f0a4108fd301b312ea", - "IPY_MODEL_eab8f8f835f5464f87e6e665cb6cbf43", - "IPY_MODEL_a454111d2bbc4449ac9a454b8f25f99e" - ], - "layout": "IPY_MODEL_72e7dc7162c24520b32add19f7733555", - "tabbable": null, - "tooltip": null - } - }, - "858fbdad7fd7448887485a0ee748fb37": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "859ea251006d478aa959c2ea57b2fcdf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "87161493576549229d4fc6fc9fdbf3c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25dd7c33e52a44158a754cf0a6a01119", - "placeholder": "​", - "style": "IPY_MODEL_1cc20de218454e8a9090b391b17bbbde", - "tabbable": null, - "tooltip": null, - "value": " 482/482 [00:00<00:00, 60.5kB/s]" - } - }, - "8763054e165a4816aba61a69ac5fa6fb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "887d7becc8d444f3a473f639f67bdd12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8975b95862a5439abc34253ba85ebd49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_645da897f1a44e2292837f9b4795944a", - "placeholder": "​", - "style": "IPY_MODEL_cb7a76c33e064828aef2661209e3bdc1", - "tabbable": null, - "tooltip": null, - "value": " 671/671 [01:31<00:00,  7.36it/s, loss=2.0250]" - } - }, - "8b40396922884dc3ae5e3ba3b06fc264": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02b33c24a28146f49dd74edf6040709a", - "IPY_MODEL_4fafd3f0d42642a498b6a69e9d62a42f", - "IPY_MODEL_900a52a4e6d44df59fad7d9ecb500a4d" - ], - "layout": "IPY_MODEL_6c4aab5edc6348e3b804bdaa43497713", - "tabbable": null, - "tooltip": null - } - }, - "8caa9d6bfd684ba8bf6b1d5b2062dbeb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8e805d4fad5b4746888f463b4f33386f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8ecaf147ad6a4f0484a6d1e5e9ceb817": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1eff7800b1ba45fc8e543b316a98fb8b", - "placeholder": "​", - "style": "IPY_MODEL_64e97d75ff804aa18758e7b956caa07f", - "tabbable": null, - "tooltip": null, - "value": "Validation: 100%" - } - }, - "8ffe15359b614d3096331af14d380316": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_90e46153168e4e89823bdb120d436b75", - "placeholder": "​", - "style": "IPY_MODEL_887d7becc8d444f3a473f639f67bdd12", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "900a52a4e6d44df59fad7d9ecb500a4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9216d8e3d2846f882855b446357fe25", - "placeholder": "​", - "style": "IPY_MODEL_00cc86c7e12b4f99b1f40971f1f3b2ed", - "tabbable": null, - "tooltip": null, - "value": " 3352/3352 [24:17<00:00,  2.63it/s, loss=1.9146, lr=0.00e+00]" - } - }, - "90e46153168e4e89823bdb120d436b75": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9101fc30664e43a7ab34afcaa197505d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9200e2a65d9f4050a692578a50b82580": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_51e0f4398f1542629dc79b22b30b0e98", - "placeholder": "​", - "style": "IPY_MODEL_4f8978f175214467b2a24902cfce303c", - "tabbable": null, - "tooltip": null, - "value": "Training: 100%" - } - }, - "92137e1dc376454d928130ec1c346ba1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7958c3660254b079834db894bf1c812", - "placeholder": "​", - "style": "IPY_MODEL_370f94e8e57e42fc826200d6d9ca3929", - "tabbable": null, - "tooltip": null, - "value": "Validation: 100%" - } - }, - "92995f850263458faa98c769b3ac8f95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "92c638623b214a05bfc21b272ebd9be4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "986bd7c352db4a1c999886ec36687af6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "991f0126f4f14e0cb7d13c4b1e4102cb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9a283c797b6547ed8d0682d7e0c2d976": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9a9023c00d9a4b8d9f08651b12ea0e61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8763054e165a4816aba61a69ac5fa6fb", - "max": 3352.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a4d5f61e8c244405a71c3ee665fce5ac", - "tabbable": null, - "tooltip": null, - "value": 3352.0 - } - }, - "9ad3a6ebcf3a4d75b3133bbf42aba5db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_39e18b27ec6b479abc53da6640445fcf", - "IPY_MODEL_de84c19e0ebe4539b1e4ed38a8080885", - "IPY_MODEL_ed0142cc193b4deba3dfcbb03b2f7cd9" - ], - "layout": "IPY_MODEL_492d253a75124af8b982aefba848569e", - "tabbable": null, - "tooltip": null - } - }, - "9b42998f8a824a9890f4e303aaefc74b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9cb4d7ffd73d40a5b3bcac83be7cf960": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9d143d90adac436d9bed610e3dcfd6b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9dd48d1d0f1848b99d70b1b8537c5d36": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9e84aad620b8436a8298522564ad5a2a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c169452dff049afbf4e8d097e753fe5", - "placeholder": "​", - "style": "IPY_MODEL_d2a7acea05ad49899322f2cae21ab60a", - "tabbable": null, - "tooltip": null, - "value": " 3352/3352 [24:23<00:00,  2.61it/s, loss=2.2210, lr=1.33e-05]" - } - }, - "9f0a35b5dc8b4a4c93e85115ec923cd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2f4bb3bf60a408ba57d60d8684b80b7", - "max": 1421700479.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6fff02d50d3f425aa4b96c3bbd509b9e", - "tabbable": null, - "tooltip": null, - "value": 1421700479.0 - } - }, - "a1eedb8f8a1c4a09beed689eee853ff7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a26a3f0304f34e65ad5687cf787bc978": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a29a5e538801429b8cadd64a604f9e2b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a2f4bb3bf60a408ba57d60d8684b80b7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a3712307d6d54b499dbe09ac1be89904": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a3a27c72890548548ad38fe8f58aaf5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a454111d2bbc4449ac9a454b8f25f99e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_02f266fc482c464db6eef3999b266c8d", - "placeholder": "​", - "style": "IPY_MODEL_e52eaee0575c433bbd1fdc798b207cbe", - "tabbable": null, - "tooltip": null, - "value": " 671/671 [01:29<00:00,  7.48it/s, loss=1.6023]" - } - }, - "a49a19191f9341799c903c1373e538ed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a4d5f61e8c244405a71c3ee665fce5ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a61083861e654ef29ae673f5e83384a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1751678b1a74eccb59d0bc0779f631a", - "placeholder": "​", - "style": "IPY_MODEL_4cec80bcee384f1f904118735649b979", - "tabbable": null, - "tooltip": null, - "value": " 671/671 [01:29<00:00,  7.46it/s, loss=1.6108]" - } - }, - "a6318028c7b7417d8af80e9a822b06db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_09160bee752b4e5998a28259dfb96f84", - "IPY_MODEL_c43056e04b41441ea2cfc670aef3baca", - "IPY_MODEL_b30df6295aaf453a9274a2eeeaee7a11" - ], - "layout": "IPY_MODEL_b652d472afee43369fd1df78dc373f91", - "tabbable": null, - "tooltip": null - } - }, - "a64d9d44612b4148bf427302dcdabd4a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a7a249f0fac94bee939d92b48f27d3ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_859ea251006d478aa959c2ea57b2fcdf", - "placeholder": "​", - "style": "IPY_MODEL_f183c384bc93465caf8f066d7e47de37", - "tabbable": null, - "tooltip": null, - "value": " 147/147 [00:00<00:00, 16.3kB/s]" - } - }, - "a9267c24f46549a8aea150d89873cd1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4e1f9adc49ff4d95a690e4cd8ddce7d9", - "IPY_MODEL_4c4f7458b0b84e1b8e6b2422e3fc3bd4", - "IPY_MODEL_8975b95862a5439abc34253ba85ebd49" - ], - "layout": "IPY_MODEL_262104721abc45d5902970fcb187dc2a", - "tabbable": null, - "tooltip": null - } - }, - "aa5a40b62746404e846bf2b2adf7f86d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "aaaf72e37c9744ae944dc1d581589d04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ab6aa8493d654e0c80b2206073c370aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "aba7aebdf3674e40b264e51696ff6fa4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "abf81077aba44eaba406b0246a51c073": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ad8289f79b5e40b3a7acca21bc03f9d0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "adaa324ae0f445d08778cf3f2583d4bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "add50c26be294195b5edd884848faf47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49b8d5a65b4e446f87d5b6e9cf002cbc", - "max": 147.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f3dfabc1d20f4c198da8e5c62ec61e98", - "tabbable": null, - "tooltip": null, - "value": 147.0 - } - }, - "adeacd73458e4e63b45ed8db97d7b5db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aea48983503a4c5a8661886a7de24438": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2e866e0a40554b349cc5859d67e1b43c", - "placeholder": "​", - "style": "IPY_MODEL_fa036545f5ac464191eaa7945e44de2f", - "tabbable": null, - "tooltip": null, - "value": " 3352/3352 [24:26<00:00,  2.61it/s, loss=1.9415, lr=2.00e-05]" - } - }, - "aea865a18de14a6bacf34848eca0e822": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "aec1d284066a45fc825699d88a6a3a0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b1751678b1a74eccb59d0bc0779f631a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b30df6295aaf453a9274a2eeeaee7a11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_991f0126f4f14e0cb7d13c4b1e4102cb", - "placeholder": "​", - "style": "IPY_MODEL_b51dcff8311943bf907a1c5d6328dc9a", - "tabbable": null, - "tooltip": null, - "value": " 1.21k/1.21k [00:00<00:00, 124kB/s]" - } - }, - "b51dcff8311943bf907a1c5d6328dc9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b5a56773428e444686caba1f036667d2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b652d472afee43369fd1df78dc373f91": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b9d0513943f848d49dbadf1e3197417d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbfe6e7b6a394500b96dcc80fa5b46b6", - "placeholder": "​", - "style": "IPY_MODEL_adeacd73458e4e63b45ed8db97d7b5db", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "bbc477d17ab0497caef18b45ceecd0ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dfac2c1b1be841a0817bb4f84a6e36cd", - "IPY_MODEL_9a9023c00d9a4b8d9f08651b12ea0e61", - "IPY_MODEL_27b9566b154440feadfb8820ebdc6111" - ], - "layout": "IPY_MODEL_cad51c54143c47f49f6e8afa55d0118b", - "tabbable": null, - "tooltip": null - } - }, - "bce20354a10d48b4a0efcccb4c0ffd9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_45c77bbcae954843b11cb875f12cb08a", - "IPY_MODEL_add50c26be294195b5edd884848faf47", - "IPY_MODEL_a7a249f0fac94bee939d92b48f27d3ba" - ], - "layout": "IPY_MODEL_7418a2921d4047dbb3891ceabb22d373", - "tabbable": null, - "tooltip": null - } - }, - "bd31672a1fbc4859aab74421908c73a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bd90be08a7d8446687eab02bf469f11e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "be39831b0d7a43c29d99ee8d67dae5f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8ffe15359b614d3096331af14d380316", - "IPY_MODEL_9f0a35b5dc8b4a4c93e85115ec923cd6", - "IPY_MODEL_5dd428fb00f34ece9b129ceb67427513" - ], - "layout": "IPY_MODEL_ab6aa8493d654e0c80b2206073c370aa", - "tabbable": null, - "tooltip": null - } - }, - "be70fc4a8df445a7823510efccd9a1f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3d373210d27477f90d216c697ce0bca", - "placeholder": "​", - "style": "IPY_MODEL_c9f8a91b60914597af063574ebf21498", - "tabbable": null, - "tooltip": null, - "value": "Evaluating: 100%" - } - }, - "bf71f92a02e14f238777bb791de9fe9c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c16345cbf507498da1a1d1c2be870f60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a283c797b6547ed8d0682d7e0c2d976", - "placeholder": "​", - "style": "IPY_MODEL_12fab2e14889400b89a5e3007d93fd50", - "tabbable": null, - "tooltip": null, - "value": "vocab.json: 100%" - } - }, - "c1a4273fa3ab4c8283f236b5920998f8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c1f11116bda948079e6274f4025592e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9d0513943f848d49dbadf1e3197417d", - "IPY_MODEL_e1f7ecff17444a3185f48399e9caea9a", - "IPY_MODEL_f1d9ed7ec1d74074a1d1bbdb1b04af40" - ], - "layout": "IPY_MODEL_610eb7bce96041fbbcc00dcba23b69d7", - "tabbable": null, - "tooltip": null - } - }, - "c43056e04b41441ea2cfc670aef3baca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_50701232a76c47c4b9daa7ce3cc90676", - "max": 1208.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa5a40b62746404e846bf2b2adf7f86d", - "tabbable": null, - "tooltip": null, - "value": 1208.0 - } - }, - "c465d5a2ecdc43d9ba74f957c59036fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ca575d104b842ac953c63ff67038b24", - "max": 456318.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5fb61b458fa2408ea770749eafde4440", - "tabbable": null, - "tooltip": null, - "value": 456318.0 - } - }, - "c4dad9fa25c440b2ab8a70aa4f74c281": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d01e1b37e7240d291a302855590b805", - "placeholder": "​", - "style": "IPY_MODEL_0b47eca41e7a4e70a72aceea7effba98", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "c510ce268a2e433f9fcc084bc2c0ae4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c52fa6a1ebc240f0a4108fd301b312ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aba7aebdf3674e40b264e51696ff6fa4", - "placeholder": "​", - "style": "IPY_MODEL_a26a3f0304f34e65ad5687cf787bc978", - "tabbable": null, - "tooltip": null, - "value": "Validation: 100%" - } - }, - "c55a80537d234e0a9df6bde7bc6b096d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c92097b0909c4d1f93cfd383628158a0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c9565c09f1974a2ba25c85b8f4461678": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8ecaf147ad6a4f0484a6d1e5e9ceb817", - "IPY_MODEL_d4c1fbca7abf4fd486a0b5bfb103e935", - "IPY_MODEL_a61083861e654ef29ae673f5e83384a8" - ], - "layout": "IPY_MODEL_d6018e1fe7d542d198d91616f5ae038a", - "tabbable": null, - "tooltip": null - } - }, - "c9f8a91b60914597af063574ebf21498": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cad51c54143c47f49f6e8afa55d0118b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cb7a76c33e064828aef2661209e3bdc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0c533874b194ad5a20618beb9314c14": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d2a7acea05ad49899322f2cae21ab60a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d2ce9c2e521e433596a20de6aeb8b414": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d4c1fbca7abf4fd486a0b5bfb103e935": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_609125e66800444682425de2b7192b6d", - "max": 671.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7ba746d8cc454c879153db09bbe3d8c1", - "tabbable": null, - "tooltip": null, - "value": 671.0 - } - }, - "d59f1acbdf104206b9ad5b89488b87ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d6018e1fe7d542d198d91616f5ae038a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d792630f57194f49967bafce92d4a53d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d8161e90bb5b44cc8ecafae9ae7e9293": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9200e2a65d9f4050a692578a50b82580", - "IPY_MODEL_2fd8aab8bf5343c7acb7eefa8c5a5021", - "IPY_MODEL_9e84aad620b8436a8298522564ad5a2a" - ], - "layout": "IPY_MODEL_f784d6ec375845dda6023012234d65e9", - "tabbable": null, - "tooltip": null - } - }, - "d9216d8e3d2846f882855b446357fe25": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dbfe6e7b6a394500b96dcc80fa5b46b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dc74eac03d5a4cdf81f27743649c8574": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7513920143624c999f86b6336bfcafda", - "placeholder": "​", - "style": "IPY_MODEL_7a3b9690faea4d68973b42d6e85bbd75", - "tabbable": null, - "tooltip": null, - "value": " 792k/792k [00:00<00:00, 4.33MB/s]" - } - }, - "de84c19e0ebe4539b1e4ed38a8080885": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1a4273fa3ab4c8283f236b5920998f8", - "max": 671.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_222c7de4a65f4e519d32ccee13742ee3", - "tabbable": null, - "tooltip": null, - "value": 671.0 - } - }, - "dfac2c1b1be841a0817bb4f84a6e36cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ff6333dcc1c49b8a5cb9a0f8c92966c", - "placeholder": "​", - "style": "IPY_MODEL_3d6c1d423f1940d48fd426a057ba20fc", - "tabbable": null, - "tooltip": null, - "value": "Training: 100%" - } - }, - "e00487a26845459eab2cf73177800dfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd31672a1fbc4859aab74421908c73a3", - "placeholder": "​", - "style": "IPY_MODEL_3fb843c3042843738f5f9cad3b428d0f", - "tabbable": null, - "tooltip": null, - "value": "Training: 100%" - } - }, - "e1f7ecff17444a3185f48399e9caea9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_74080c2dec9e4e7e8ea400c204def3d1", - "max": 891646390.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f125cd46eb8040629517c48da5f76944", - "tabbable": null, - "tooltip": null, - "value": 891646390.0 - } - }, - "e225f6e4bbd04242ad29233b872f5ef3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e00487a26845459eab2cf73177800dfd", - "IPY_MODEL_e79b251c0b8c4b2ab737ef7b96493a70", - "IPY_MODEL_1022c731ffbc46b6818154d788eb3505" - ], - "layout": "IPY_MODEL_f6fecb24f2c44b46adbb5443185e1390", - "tabbable": null, - "tooltip": null - } - }, - "e2ea21432e3f4e78977f0a69635926e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e52eaee0575c433bbd1fdc798b207cbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e79b251c0b8c4b2ab737ef7b96493a70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a29a5e538801429b8cadd64a604f9e2b", - "max": 3352.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5212507f3fd6449f887b172ab3f61b34", - "tabbable": null, - "tooltip": null, - "value": 3352.0 - } - }, - "e8ad7a9f1aaa4d29bcb7e7b3d69707a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_be70fc4a8df445a7823510efccd9a1f4", - "IPY_MODEL_720e2e02a6684c60833e8477d74f58d0", - "IPY_MODEL_43bcb8bb792843be9b44382baf8139dd" - ], - "layout": "IPY_MODEL_ad8289f79b5e40b3a7acca21bc03f9d0", - "tabbable": null, - "tooltip": null - } - }, - "eab8f8f835f5464f87e6e665cb6cbf43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22835baee36b44ee8e5071174354f93e", - "max": 671.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_27356df1c2ff4e98a1a8dc23da3bcb39", - "tabbable": null, - "tooltip": null, - "value": 671.0 - } - }, - "ebd1a018667643c6842aefd5ca195701": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ececbeda5b70486881475e6cc645c781": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ed0142cc193b4deba3dfcbb03b2f7cd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_51d50f0148f44c639026e778676fc899", - "placeholder": "​", - "style": "IPY_MODEL_adaa324ae0f445d08778cf3f2583d4bc", - "tabbable": null, - "tooltip": null, - "value": " 671/671 [01:31<00:00,  7.33it/s, loss=1.7964]" - } - }, - "eed74f3ac5c54e6f9719f00f5098abe3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f125cd46eb8040629517c48da5f76944": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f183c384bc93465caf8f066d7e47de37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f1d9ed7ec1d74074a1d1bbdb1b04af40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cb4d7ffd73d40a5b3bcac83be7cf960", - "placeholder": "​", - "style": "IPY_MODEL_c510ce268a2e433f9fcc084bc2c0ae4f", - "tabbable": null, - "tooltip": null, - "value": " 892M/892M [00:02<00:00, 684MB/s]" - } - }, - "f2682d0b028247bcba6c3045176492a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f3d373210d27477f90d216c697ce0bca": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f3dfabc1d20f4c198da8e5c62ec61e98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f55a975af962425baede7577d2cb25bf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f6fecb24f2c44b46adbb5443185e1390": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f71501f9416a4f01bb310d37b970b81f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1eedb8f8a1c4a09beed689eee853ff7", - "placeholder": "​", - "style": "IPY_MODEL_09b697949b054374a4338a67f8605fbe", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "f784d6ec375845dda6023012234d65e9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f7958c3660254b079834db894bf1c812": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f8b49b3ea8324c1398fe2d1a83c05f9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ececbeda5b70486881475e6cc645c781", - "placeholder": "​", - "style": "IPY_MODEL_29642dad89d640b0b1f90b5b511ed788", - "tabbable": null, - "tooltip": null, - "value": " 25.0/25.0 [00:00<00:00, 3.40kB/s]" - } - }, - "fa036545f5ac464191eaa7945e44de2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fd0c8fb6e71d49d5ae56bfdd0c91e146": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf71f92a02e14f238777bb791de9fe9c", - "placeholder": "​", - "style": "IPY_MODEL_ebd1a018667643c6842aefd5ca195701", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "fd2098819ad2433d86fb2674ea0f1100": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fd6602676d174b26bb8334a8e38883ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abf81077aba44eaba406b0246a51c073", - "max": 1389353.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd2098819ad2433d86fb2674ea0f1100", - "tabbable": null, - "tooltip": null, - "value": 1389353.0 - } - }, - "ff4bc4e5ce9a4e328716d18988ffd743": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4ec8004b02e84b5ea3fb28eadcc7daaa", - "max": 791656.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a3a27c72890548548ad38fe8f58aaf5a", - "tabbable": null, - "tooltip": null, - "value": 791656.0 - } - }, - "fff2f0a73230449eaeec27bac183ac04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fff73628f58448079f6c91cdb2dcef49": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } - }, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}