Yassine Mhirsi
commited on
Commit
·
d289997
1
Parent(s):
6ba8f9f
Enhance KpaModelManager to load fine-tuned weights from Hugging Face and update requirements to include huggingface_hub
Browse files- requirements.txt +1 -0
- services/label_model_manage.py +28 -12
requirements.txt
CHANGED
|
@@ -6,4 +6,5 @@ torch>=2.0.0
|
|
| 6 |
transformers>=4.35.0
|
| 7 |
accelerate>=0.24.0
|
| 8 |
protobuf>=3.20.0
|
|
|
|
| 9 |
|
|
|
|
| 6 |
transformers>=4.35.0
|
| 7 |
accelerate>=0.24.0
|
| 8 |
protobuf>=3.20.0
|
| 9 |
+
huggingface_hub>=0.19.0
|
| 10 |
|
services/label_model_manage.py
CHANGED
|
@@ -3,6 +3,7 @@
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 6 |
import logging
|
| 7 |
|
| 8 |
logger = logging.getLogger(__name__)
|
|
@@ -20,7 +21,7 @@ class KpaModelManager:
|
|
| 20 |
self.model_id = None
|
| 21 |
|
| 22 |
def load_model(self, model_id: str, api_key: str = None):
|
| 23 |
-
"""Load model
|
| 24 |
if self.model_loaded:
|
| 25 |
logger.info("KPA model already loaded")
|
| 26 |
return
|
|
@@ -38,20 +39,35 @@ class KpaModelManager:
|
|
| 38 |
# Prepare token for authentication if API key is provided
|
| 39 |
token = api_key if api_key else None
|
| 40 |
|
| 41 |
-
# Load tokenizer
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
token=token,
|
| 46 |
-
trust_remote_code=True
|
| 47 |
-
)
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
self.model.to(self.device)
|
| 56 |
self.model.eval()
|
| 57 |
|
|
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
import logging
|
| 8 |
|
| 9 |
logger = logging.getLogger(__name__)
|
|
|
|
| 21 |
self.model_id = None
|
| 22 |
|
| 23 |
def load_model(self, model_id: str, api_key: str = None):
|
| 24 |
+
"""Load model with weights from Hugging Face repository"""
|
| 25 |
if self.model_loaded:
|
| 26 |
logger.info("KPA model already loaded")
|
| 27 |
return
|
|
|
|
| 39 |
# Prepare token for authentication if API key is provided
|
| 40 |
token = api_key if api_key else None
|
| 41 |
|
| 42 |
+
# Load base tokenizer (distilbert-base-uncased)
|
| 43 |
+
base_model_name = "distilbert-base-uncased"
|
| 44 |
+
logger.info(f"Loading tokenizer from {base_model_name}...")
|
| 45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# Load base model architecture
|
| 48 |
+
logger.info(f"Loading base model architecture from {base_model_name}...")
|
| 49 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 50 |
+
base_model_name,
|
| 51 |
+
num_labels=2
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Download and load fine-tuned weights from Hugging Face
|
| 55 |
+
logger.info(f"Downloading fine-tuned weights from {model_id}...")
|
| 56 |
+
weights_path = hf_hub_download(
|
| 57 |
+
repo_id=model_id,
|
| 58 |
+
filename="modele_appariement_rapide.pth",
|
| 59 |
+
token=token
|
| 60 |
)
|
| 61 |
+
|
| 62 |
+
logger.info(f"Loading fine-tuned weights from {weights_path}...")
|
| 63 |
+
checkpoint = torch.load(weights_path, map_location=self.device)
|
| 64 |
+
|
| 65 |
+
# Load state dict
|
| 66 |
+
if "model_state_dict" in checkpoint:
|
| 67 |
+
self.model.load_state_dict(checkpoint["model_state_dict"])
|
| 68 |
+
else:
|
| 69 |
+
self.model.load_state_dict(checkpoint)
|
| 70 |
+
|
| 71 |
self.model.to(self.device)
|
| 72 |
self.model.eval()
|
| 73 |
|