malek-messaoudii
commited on
Commit
·
d9d9974
1
Parent(s):
9af5350
Update training script and model files
Browse files- services/label_model_manage.py +18 -30
- services/stance_model_manager.py +52 -70
services/label_model_manage.py
CHANGED
|
@@ -3,7 +3,6 @@
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
-
from huggingface_hub import hf_hub_download
|
| 7 |
import logging
|
| 8 |
|
| 9 |
logger = logging.getLogger(__name__)
|
|
@@ -21,7 +20,7 @@ class KpaModelManager:
|
|
| 21 |
self.model_id = None
|
| 22 |
|
| 23 |
def load_model(self, model_id: str, api_key: str = None):
|
| 24 |
-
"""Load model
|
| 25 |
if self.model_loaded:
|
| 26 |
logger.info("KPA model already loaded")
|
| 27 |
return
|
|
@@ -39,35 +38,20 @@ class KpaModelManager:
|
|
| 39 |
# Prepare token for authentication if API key is provided
|
| 40 |
token = api_key if api_key else None
|
| 41 |
|
| 42 |
-
# Load
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
logger.info(f"Loading base model architecture from {base_model_name}...")
|
| 49 |
-
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 50 |
-
base_model_name,
|
| 51 |
-
num_labels=2
|
| 52 |
)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
token=token
|
| 60 |
)
|
| 61 |
-
|
| 62 |
-
logger.info(f"Loading fine-tuned weights from {weights_path}...")
|
| 63 |
-
checkpoint = torch.load(weights_path, map_location=self.device)
|
| 64 |
-
|
| 65 |
-
# Load state dict
|
| 66 |
-
if "model_state_dict" in checkpoint:
|
| 67 |
-
self.model.load_state_dict(checkpoint["model_state_dict"])
|
| 68 |
-
else:
|
| 69 |
-
self.model.load_state_dict(checkpoint)
|
| 70 |
-
|
| 71 |
self.model.to(self.device)
|
| 72 |
self.model.eval()
|
| 73 |
|
|
@@ -118,6 +102,10 @@ class KpaModelManager:
|
|
| 118 |
raise RuntimeError(f"KPA prediction failed: {str(e)}")
|
| 119 |
|
| 120 |
def get_model_info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
return {
|
| 122 |
"model_name": self.model_id,
|
| 123 |
"device": str(self.device),
|
|
@@ -127,5 +115,5 @@ class KpaModelManager:
|
|
| 127 |
}
|
| 128 |
|
| 129 |
|
| 130 |
-
|
| 131 |
-
kpa_model_manager = KpaModelManager()
|
|
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 6 |
import logging
|
| 7 |
|
| 8 |
logger = logging.getLogger(__name__)
|
|
|
|
| 20 |
self.model_id = None
|
| 21 |
|
| 22 |
def load_model(self, model_id: str, api_key: str = None):
|
| 23 |
+
"""Load complete model and tokenizer directly from Hugging Face"""
|
| 24 |
if self.model_loaded:
|
| 25 |
logger.info("KPA model already loaded")
|
| 26 |
return
|
|
|
|
| 38 |
# Prepare token for authentication if API key is provided
|
| 39 |
token = api_key if api_key else None
|
| 40 |
|
| 41 |
+
# Load tokenizer and model directly from Hugging Face
|
| 42 |
+
logger.info("Loading tokenizer...")
|
| 43 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 44 |
+
model_id,
|
| 45 |
+
token=token,
|
| 46 |
+
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
+
logger.info("Loading model...")
|
| 50 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 51 |
+
model_id,
|
| 52 |
+
token=token,
|
| 53 |
+
trust_remote_code=True
|
|
|
|
| 54 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
self.model.to(self.device)
|
| 56 |
self.model.eval()
|
| 57 |
|
|
|
|
| 102 |
raise RuntimeError(f"KPA prediction failed: {str(e)}")
|
| 103 |
|
| 104 |
def get_model_info(self):
|
| 105 |
+
"""Get model information"""
|
| 106 |
+
if not self.model_loaded:
|
| 107 |
+
return {"loaded": False}
|
| 108 |
+
|
| 109 |
return {
|
| 110 |
"model_name": self.model_id,
|
| 111 |
"device": str(self.device),
|
|
|
|
| 115 |
}
|
| 116 |
|
| 117 |
|
| 118 |
+
# Initialize singleton instance
|
| 119 |
+
kpa_model_manager = KpaModelManager()
|
services/stance_model_manager.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
"""Model manager for
|
| 2 |
|
| 3 |
import os
|
| 4 |
import torch
|
|
@@ -8,39 +8,34 @@ import logging
|
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
|
| 11 |
-
class
|
| 12 |
-
"""Manages
|
| 13 |
-
|
| 14 |
def __init__(self):
|
| 15 |
self.model = None
|
| 16 |
self.tokenizer = None
|
| 17 |
self.device = None
|
| 18 |
self.model_loaded = False
|
| 19 |
-
|
| 20 |
-
self.model_id = None
|
| 21 |
-
|
| 22 |
def load_model(self, model_id: str, api_key: str = None):
|
| 23 |
-
"""Load
|
| 24 |
if self.model_loaded:
|
| 25 |
-
logger.info("
|
| 26 |
return
|
| 27 |
-
|
| 28 |
try:
|
| 29 |
-
logger.info(f"Loading
|
| 30 |
|
| 31 |
# Determine device
|
| 32 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
logger.info(f"Using device: {self.device}")
|
| 34 |
|
| 35 |
-
# Store model ID
|
| 36 |
-
self.model_id = model_id
|
| 37 |
-
|
| 38 |
# Prepare token for authentication if API key is provided
|
| 39 |
token = api_key if api_key else None
|
| 40 |
|
| 41 |
-
# Load tokenizer and model
|
| 42 |
logger.info("Loading tokenizer...")
|
| 43 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 44 |
model_id,
|
| 45 |
token=token,
|
| 46 |
trust_remote_code=True
|
|
@@ -54,66 +49,53 @@ class KpaModelManager:
|
|
| 54 |
)
|
| 55 |
self.model.to(self.device)
|
| 56 |
self.model.eval()
|
| 57 |
-
|
| 58 |
self.model_loaded = True
|
| 59 |
-
logger.info("✓
|
| 60 |
-
|
| 61 |
except Exception as e:
|
| 62 |
-
logger.error(f"Error loading
|
| 63 |
-
raise RuntimeError(f"Failed to load
|
| 64 |
-
|
| 65 |
-
def predict(self,
|
| 66 |
-
"""
|
| 67 |
if not self.model_loaded:
|
| 68 |
-
raise RuntimeError("
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
"non_apparie": probabilities[0][0].item(),
|
| 96 |
-
"apparie": probabilities[0][1].item(),
|
| 97 |
-
},
|
| 98 |
-
}
|
| 99 |
-
|
| 100 |
-
except Exception as e:
|
| 101 |
-
logger.error(f"Error during prediction: {str(e)}")
|
| 102 |
-
raise RuntimeError(f"KPA prediction failed: {str(e)}")
|
| 103 |
|
| 104 |
-
def get_model_info(self):
|
| 105 |
-
"""Get model information"""
|
| 106 |
-
if not self.model_loaded:
|
| 107 |
-
return {"loaded": False}
|
| 108 |
-
|
| 109 |
return {
|
| 110 |
-
"
|
| 111 |
-
"
|
| 112 |
-
"
|
| 113 |
-
"
|
| 114 |
-
"loaded": self.model_loaded
|
| 115 |
}
|
| 116 |
|
| 117 |
|
| 118 |
# Initialize singleton instance
|
| 119 |
-
|
|
|
|
|
|
| 1 |
+
"""Model manager for stance detection model"""
|
| 2 |
|
| 3 |
import os
|
| 4 |
import torch
|
|
|
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
|
| 11 |
+
class StanceModelManager:
|
| 12 |
+
"""Manages stance detection model loading and predictions"""
|
| 13 |
+
|
| 14 |
def __init__(self):
|
| 15 |
self.model = None
|
| 16 |
self.tokenizer = None
|
| 17 |
self.device = None
|
| 18 |
self.model_loaded = False
|
| 19 |
+
|
|
|
|
|
|
|
| 20 |
def load_model(self, model_id: str, api_key: str = None):
|
| 21 |
+
"""Load model and tokenizer from Hugging Face"""
|
| 22 |
if self.model_loaded:
|
| 23 |
+
logger.info("Stance model already loaded")
|
| 24 |
return
|
| 25 |
+
|
| 26 |
try:
|
| 27 |
+
logger.info(f"Loading stance model from Hugging Face: {model_id}")
|
| 28 |
|
| 29 |
# Determine device
|
| 30 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 31 |
logger.info(f"Using device: {self.device}")
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
# Prepare token for authentication if API key is provided
|
| 34 |
token = api_key if api_key else None
|
| 35 |
|
| 36 |
+
# Load tokenizer and model from Hugging Face
|
| 37 |
logger.info("Loading tokenizer...")
|
| 38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 39 |
model_id,
|
| 40 |
token=token,
|
| 41 |
trust_remote_code=True
|
|
|
|
| 49 |
)
|
| 50 |
self.model.to(self.device)
|
| 51 |
self.model.eval()
|
| 52 |
+
|
| 53 |
self.model_loaded = True
|
| 54 |
+
logger.info("✓ Stance model loaded successfully from Hugging Face!")
|
| 55 |
+
|
| 56 |
except Exception as e:
|
| 57 |
+
logger.error(f"Error loading stance model: {str(e)}")
|
| 58 |
+
raise RuntimeError(f"Failed to load stance model: {str(e)}")
|
| 59 |
+
|
| 60 |
+
def predict(self, topic: str, argument: str) -> dict:
|
| 61 |
+
"""Make a single stance prediction"""
|
| 62 |
if not self.model_loaded:
|
| 63 |
+
raise RuntimeError("Stance model not loaded")
|
| 64 |
+
|
| 65 |
+
# Format input
|
| 66 |
+
text = f"Topic: {topic} [SEP] Argument: {argument}"
|
| 67 |
+
|
| 68 |
+
# Tokenize
|
| 69 |
+
inputs = self.tokenizer(
|
| 70 |
+
text,
|
| 71 |
+
return_tensors="pt",
|
| 72 |
+
truncation=True,
|
| 73 |
+
max_length=512,
|
| 74 |
+
padding=True
|
| 75 |
+
).to(self.device)
|
| 76 |
+
|
| 77 |
+
# Predict
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
outputs = self.model(**inputs)
|
| 80 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 81 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
| 82 |
+
|
| 83 |
+
# Extract probabilities
|
| 84 |
+
prob_con = probabilities[0][0].item()
|
| 85 |
+
prob_pro = probabilities[0][1].item()
|
| 86 |
+
|
| 87 |
+
# Determine stance
|
| 88 |
+
stance = "PRO" if predicted_class == 1 else "CON"
|
| 89 |
+
confidence = probabilities[0][predicted_class].item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
return {
|
| 92 |
+
"predicted_stance": stance,
|
| 93 |
+
"confidence": confidence,
|
| 94 |
+
"probability_con": prob_con,
|
| 95 |
+
"probability_pro": prob_pro
|
|
|
|
| 96 |
}
|
| 97 |
|
| 98 |
|
| 99 |
# Initialize singleton instance
|
| 100 |
+
stance_model_manager = StanceModelManager()
|
| 101 |
+
|