File size: 8,419 Bytes
1d5f27f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# Math Question Classifier - Quick Start Guide
## Execution Order
### Setup (Blocks 1-7)
**Run once to setup environment and define classes**
1. **Block 1**: Install packages
2. **Block 2**: Import libraries
3. **Block 3**: Set data path
4. **Block 4**: Convert JSON to Parquet (one-time data preparation)
5. **Block 5**: Define MathDatasetLoader class
6. **Block 6**: Define MathFeatureExtractor class
7. **Block 7**: Define MathQuestionClassifier class
### Training & Evaluation (Blocks 8-13)
**Run to train and evaluate models**
8. **Block 8**: Load dataset from Parquet files
9. **Block 9**: Extract features (text preprocessing + math symbols + numeric)
10. **Block 10**: Vectorize features (TF-IDF + scaling)
11. **Block 11**: Train 5 models and compare performance
12. **Block 12**: Detailed evaluation of best model
13. **Block 13**: Complete test set analysis with 6 visualizations
---
## What Each Block Does
### Block 1-3: Environment Setup
- Installs scikit-learn, pandas, matplotlib, seaborn, nltk
- Imports all necessary libraries
- Sets path to data directory (`./math`)
### Block 4: Data Consolidation
**Purpose**: Convert JSON files to Parquet format
- **Input**: `./math/train/` and `./math/test/` folders with JSON files
- **Output**: `train.parquet` and `test.parquet`
- **Benefit**: 10-100x faster loading than JSON
- **Run**: Only once (skip if Parquet files already exist)
### Block 5-7: Class Definitions
Define three main classes:
- **MathDatasetLoader**: Loads Parquet files, shows statistics
- **MathFeatureExtractor**: Cleans LaTeX, extracts math symbols, preprocesses text
- **MathQuestionClassifier**: Trains models, evaluates performance
### Block 8: Load Data
- Loads `train.parquet` and `test.parquet`
- Shows class distribution for train and test sets
- Displays 2 bar charts (train/test distribution)
### Block 9: Feature Extraction
Extracts three types of features:
1. **Text features**: Preprocessed text (LaTeX cleaning, lemmatization)
2. **Math symbol features**: 10 binary indicators (has_fraction, has_sqrt, etc.)
3. **Numeric features**: 5 statistical measures (num_count, avg_number, etc.)
### Block 10: Vectorization
- Creates TF-IDF features (5000 dimensions, trigrams)
- Scales additional features to [0,1] using MinMaxScaler
- **Critical**: Fits ONLY on training data (prevents data leakage)
- Converts to CSR format for efficient operations
### Block 11: Model Training
Trains 5 optimized models:
1. **Naive Bayes** (baseline)
2. **Logistic Regression** (linear classifier)
3. **SVM** (maximum margin)
4. **Random Forest** (ensemble)
5. **Gradient Boosting** (sequential ensemble)
**Output**:
- Comparison table with Accuracy, F1-Score, Training Time
- 2 bar charts comparing performance and speed
- Selects best model automatically
### Block 12: Detailed Evaluation
- Confusion matrix visualization
- Classification report (precision, recall, F1 per class)
- Feature importance (for tree-based models)
### Block 13: Complete Analysis
**Comprehensive evaluation on entire test set**
**6 Visualizations**:
1. Confusion Matrix (absolute counts)
2. Normalized Confusion Matrix (proportions)
3. F1-Score by Topic (horizontal bar chart)
4. Precision vs Recall (scatter plot, size = support)
5. Test Set Distribution (bar chart)
6. Confidence Distribution (histogram: correct vs incorrect)
**Analysis Sections**:
- Overall performance (accuracy, F1-score)
- Per-class metrics table
- Confusion pair analysis
- Summary statistics
---
## Expected Results
### Model Performance (F1-Score)
- **Gradient Boosting**: 86-90%
- **Logistic Regression**: 85-89%
- **SVM**: 84-88%
- **Naive Bayes**: 78-82%
- **Random Forest**: 75-82% (expected to underperform on sparse features)
### Training Time
- **Naive Bayes**: ~10 seconds
- **Logistic Regression**: ~30 seconds
- **SVM**: ~2 minutes
- **Random Forest**: ~3 minutes
- **Gradient Boosting**: ~5 minutes
### Per-Topic Performance
**High Performance** (F1 > 90%):
- counting_and_probability
- number_theory
**Medium Performance** (F1: 85-90%):
- geometry
- precalculus
**Challenging** (F1: 80-85%):
- algebra โ intermediate_algebra (similar concepts)
- prealgebra โ algebra (overlapping operations)
---
## Key Design Decisions
### 1. Data Leakage Prevention
**Critical**: TF-IDF vectorizer fitted ONLY on training data
```
Train/Test Split โ Fit Vectorizer on Train โ Transform Both
```
Without this, test vocabulary leaks into training, inflating performance by 1-3%.
### 2. Feature Engineering
**Hybrid approach**:
- TF-IDF (5000 features): Captures text content
- Math symbols (10 features): Topic indicators (e.g., integrals โ calculus)
- Numeric features (5 features): Statistical properties
**Why no hand-crafted keywords?**
Avoided topic-specific keyword lists to prevent heuristic bias. Let the model learn discriminative vocabulary from data.
### 3. Hyperparameter Optimization
All models use optimized parameters:
- **C=1.0** (SVM/Logistic): Balanced regularization
- **max_depth=30** (Random Forest): Sufficient complexity
- **subsample=0.8** (Gradient Boosting): Stochastic sampling prevents overfitting
### 4. Class Imbalance Handling
`class_weight='balanced'` automatically adjusts weights inversely proportional to class frequencies.
---
## Methodology
### Problem Type
**Supervised Multi-Class Text Classification**
**Why Classification (not Clustering)?**
- Categories are predefined and labeled
- Objective: Assign to known subtopic
- Not discovering latent groups
- Supervised learning with known labels
### Pipeline
```
JSON Files
โ
Parquet Conversion (Block 4)
โ
Feature Extraction (Block 9)
โ
TF-IDF Vectorization (Block 10)
โ
Model Training (Block 11)
โ
Evaluation (Blocks 12-13)
```
### Feature Vector
```
Total: 5015 dimensions
โโโ TF-IDF: 5000 (unigrams, bigrams, trigrams)
โโโ Math Symbols: 10 (binary indicators)
โโโ Numeric: 5 (scaled to [0,1])
```
---
## Troubleshooting
### "No data loaded"
**Solution**: Check data path in Block 3
```python
DATA_PATH = './math' # Adjust to your path
```
### "NameError: name 'results' is not defined"
**Solution**: Run blocks in order. Block 12-13 need Block 11 first.
### "ValueError: Negative values"
**Solution**: Block 10 should complete successfully. MinMaxScaler scales features to [0,1].
### "TypeError: coo_matrix not subscriptable"
**Solution**: Block 10 converts to CSR format. Ensure it runs completely.
### Model underperforms
**Check**:
1. Data leakage prevented? (Vectorizer fitted on train only)
2. Features extracted correctly? (Block 9 output)
3. Class distribution balanced? (Block 8 charts)
---
## Performance Optimization
### Speed Up Training
```python
# Reduce vocabulary
vectorizer_config = {'max_features': 2000}
# Fewer trees
RandomForestClassifier(n_estimators=100)
# Fewer boosting rounds
GradientBoostingClassifier(n_estimators=50)
```
### Reduce Memory
```python
# Smaller vocabulary
vectorizer_config = {'max_features': 3000}
# Fewer n-grams
vectorizer_config = {'ngram_range': (1, 2)}
```
---
## Output Files
After Block 13 completes, you'll have:
- **train.parquet**: Training data (consolidated)
- **test.parquet**: Test data (consolidated)
- Performance metrics and visualizations
- Model saved in memory (classifier.best_model)
---
## Next Steps
### Save Model
Add after Block 13:
```python
import pickle
model_data = {
'model': classifier.best_model,
'vectorizer': classifier.vectorizer,
'scaler': classifier.scaler,
'label_encoder': classifier.label_encoder
}
with open('model.pkl', 'wb') as f:
pickle.dump(model_data, f)
```
### Batch Prediction
```python
# Load model
with open('model.pkl', 'rb') as f:
model_data = pickle.load(f)
# Predict
new_problems = ["Solve x^2 = 16", "Find area of circle"]
for problem in new_problems:
# Preprocess โ Extract features โ Predict
prediction = model.predict(...)
```
---
## Summary
**13 Blocks, 3 Stages**:
1. **Setup** (Blocks 1-7): One-time environment setup
2. **Training** (Blocks 8-11): Data loading and model training
3. **Evaluation** (Blocks 12-13): Comprehensive analysis
**Key Features**:
- Data leakage prevention
- 5 optimized models
- 6 visualization types
- Probability predictions
- Error analysis
**Expected Time**: 10-15 minutes total (including training)
**Expected Performance**: 85-90% F1-score on test set
|