Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py —
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import logging
|
|
@@ -8,7 +8,10 @@ from fastapi.responses import StreamingResponse
|
|
| 8 |
from pydantic import BaseModel
|
| 9 |
from typing import Any, Dict, List
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
| 12 |
import router_model
|
| 13 |
import coder_model
|
| 14 |
import chat_model
|
|
@@ -19,14 +22,33 @@ logger = logging.getLogger("nexari.app")
|
|
| 19 |
app = FastAPI()
|
| 20 |
|
| 21 |
MODEL_DIR = "./models"
|
| 22 |
-
# Limit history to keep CPU processing fast (System + 6 recent messages)
|
| 23 |
-
# Isse response time increase nahi hoga chahe chat kitni bhi lambi ho.
|
| 24 |
MAX_HISTORY_MESSAGES = 6
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def ensure_model_dir_or_fail():
|
| 27 |
try:
|
| 28 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 29 |
-
logger.info("Model directory ensured: %s", MODEL_DIR)
|
| 30 |
except Exception as e:
|
| 31 |
logger.critical("Unable to create model dir: %s", e)
|
| 32 |
raise
|
|
@@ -40,15 +62,26 @@ async def startup_event():
|
|
| 40 |
coder_model.BASE_DIR = os.path.join(MODEL_DIR, "coder")
|
| 41 |
chat_model.BASE_DIR = os.path.join(MODEL_DIR, "chat")
|
| 42 |
|
|
|
|
| 43 |
tasks = [
|
| 44 |
asyncio.create_task(router_model.load_model_async()),
|
| 45 |
asyncio.create_task(coder_model.load_model_async()),
|
| 46 |
asyncio.create_task(chat_model.load_model_async()),
|
| 47 |
]
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
logger.info("Startup complete.")
|
| 53 |
|
| 54 |
class Message(BaseModel):
|
|
@@ -60,19 +93,61 @@ class ChatRequest(BaseModel):
|
|
| 60 |
stream: bool = True
|
| 61 |
temperature: float = 0.7
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def get_intent(last_user_message: str):
|
| 64 |
-
#
|
| 65 |
-
|
|
|
|
| 66 |
return "chat", "neutral"
|
| 67 |
|
| 68 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
if not getattr(router_model, "model", None):
|
| 70 |
-
|
| 71 |
-
if any(tok in text for tok in ["code", "bug", "fix", "error", "function", "python", "js", "html", "css"]):
|
| 72 |
-
return "coding", "neutral"
|
| 73 |
-
if any(tok in text for tok in ["why", "how", "prove", "reason", "think"]):
|
| 74 |
-
return "reasoning", "neutral"
|
| 75 |
-
return "chat", "neutral"
|
| 76 |
|
| 77 |
sys_prompt = "Analyze intent. Return JSON like {'intent':'coding'|'chat'|'reasoning', 'sentiment':'neutral'|'sad'}"
|
| 78 |
try:
|
|
@@ -80,54 +155,25 @@ def get_intent(last_user_message: str):
|
|
| 80 |
messages=[{"role":"system","content":sys_prompt},{"role":"user","content": last_user_message}],
|
| 81 |
temperature=0.1, max_tokens=50
|
| 82 |
)
|
| 83 |
-
content =
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
content = res['choices'][0]['text'].lower()
|
| 89 |
-
except Exception:
|
| 90 |
-
content = ""
|
| 91 |
-
if "coding" in content:
|
| 92 |
-
return "coding", "neutral"
|
| 93 |
-
if "reasoning" in content or "think" in content or "solve" in content:
|
| 94 |
-
return "reasoning", "neutral"
|
| 95 |
-
if "sad" in content:
|
| 96 |
-
return "chat", "sad"
|
| 97 |
return "chat", "neutral"
|
| 98 |
-
except Exception
|
| 99 |
-
logger.exception("Router failure: %s", e)
|
| 100 |
return "chat", "neutral"
|
| 101 |
|
| 102 |
def sanitize_chunk(chunk: Any) -> Dict[str, Any]:
|
| 103 |
-
"""
|
| 104 |
-
Ensure chunk is a JSON-serializable mapping for SSE.
|
| 105 |
-
Remove any 'status' fields so we never send an unintended status overwrite.
|
| 106 |
-
"""
|
| 107 |
if isinstance(chunk, dict):
|
| 108 |
out = {}
|
| 109 |
for k, v in chunk.items():
|
| 110 |
-
if k == "status":
|
| 111 |
-
|
| 112 |
-
continue
|
| 113 |
-
if isinstance(v, (str, int, float, bool, type(None))):
|
| 114 |
-
out[k] = v
|
| 115 |
-
else:
|
| 116 |
-
try:
|
| 117 |
-
json.dumps(v)
|
| 118 |
-
out[k] = v
|
| 119 |
-
except Exception:
|
| 120 |
-
out[k] = str(v)
|
| 121 |
return out
|
| 122 |
-
|
| 123 |
-
try:
|
| 124 |
-
txt = str(chunk)
|
| 125 |
-
return {"text": txt}
|
| 126 |
-
except Exception:
|
| 127 |
-
return {"text": "[UNSERIALIZABLE_CHUNK]"}
|
| 128 |
|
| 129 |
-
# ===
|
| 130 |
-
# Static system identity prefix to include in system prompts:
|
| 131 |
SYSTEM_IDENTITY_PREFIX = (
|
| 132 |
"You are Nexari-G1, an advanced AI created by Piyush, the CEO of Nexari AI. "
|
| 133 |
"always understand the user behaviour and request. "
|
|
@@ -137,73 +183,49 @@ SYSTEM_IDENTITY_PREFIX = (
|
|
| 137 |
)
|
| 138 |
|
| 139 |
def limit_context(messages: List[Dict]) -> List[Dict]:
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
This ensures processing time stays fast even after 100 turns.
|
| 145 |
-
"""
|
| 146 |
-
if not messages:
|
| 147 |
-
return []
|
| 148 |
|
| 149 |
-
|
| 150 |
-
chat_history = []
|
| 151 |
-
|
| 152 |
-
# Separate system message
|
| 153 |
-
if messages[0].get("role") == "system":
|
| 154 |
-
system_msg = messages[0]
|
| 155 |
-
remaining = messages[1:]
|
| 156 |
-
else:
|
| 157 |
-
remaining = messages
|
| 158 |
-
|
| 159 |
-
# Keep only the last N messages
|
| 160 |
if len(remaining) > MAX_HISTORY_MESSAGES:
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
chat_history = remaining
|
| 164 |
-
|
| 165 |
-
# Reconstruct
|
| 166 |
final_msgs = []
|
| 167 |
-
if system_msg:
|
| 168 |
-
|
| 169 |
-
final_msgs.extend(chat_history)
|
| 170 |
-
|
| 171 |
return final_msgs
|
| 172 |
|
| 173 |
@app.post("/v1/chat/completions")
|
| 174 |
async def chat_endpoint(request: ChatRequest):
|
| 175 |
-
# Validate incoming
|
| 176 |
raw_messages = [m.dict() for m in request.messages] if request.messages else []
|
| 177 |
-
if not raw_messages:
|
| 178 |
-
return {"error": "No messages provided."}
|
| 179 |
last = raw_messages[-1]['content']
|
| 180 |
|
|
|
|
| 181 |
intent, sentiment = get_intent(last)
|
| 182 |
|
| 183 |
selected_model = None
|
| 184 |
-
# base system message will always include identity prefix
|
| 185 |
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are a helpful assistant."
|
| 186 |
-
status_indicator = "Thinking..."
|
| 187 |
|
| 188 |
if intent == "coding":
|
| 189 |
if not getattr(coder_model, "model", None):
|
| 190 |
-
logger.error("Coder model not available.")
|
| 191 |
return {"error":"Coder model not available."}
|
| 192 |
selected_model = coder_model.model
|
| 193 |
-
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are an expert Coding Assistant. Write clean, efficient code with comments
|
| 194 |
-
status_indicator = "Coding..."
|
| 195 |
-
logger.info("Intent: CODING")
|
| 196 |
elif intent == "reasoning":
|
| 197 |
if not getattr(chat_model, "model", None):
|
| 198 |
-
logger.error("Chat model not available for reasoning.")
|
| 199 |
return {"error":"Model not available."}
|
| 200 |
selected_model = chat_model.model
|
| 201 |
-
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are a reasoning-focused assistant. Walk through your thinking clearly
|
| 202 |
-
status_indicator = "Reasoning..."
|
| 203 |
-
logger.info("Intent: REASONING")
|
| 204 |
else:
|
| 205 |
if not getattr(chat_model, "model", None):
|
| 206 |
-
logger.error("Chat model missing.")
|
| 207 |
return {"error":"Chat model not available."}
|
| 208 |
selected_model = chat_model.model
|
| 209 |
logger.info("Intent: CHAT (%s)", sentiment)
|
|
@@ -211,60 +233,30 @@ async def chat_endpoint(request: ChatRequest):
|
|
| 211 |
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are empathic and calm. Provide supportive, concise responses."
|
| 212 |
status_indicator = "Empathizing..."
|
| 213 |
else:
|
| 214 |
-
# default chat system message with identity included
|
| 215 |
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are a helpful conversational assistant."
|
| 216 |
|
| 217 |
-
# ensure system prompt is present (first message)
|
| 218 |
if raw_messages[0].get("role") != "system":
|
| 219 |
raw_messages.insert(0, {"role":"system","content": sys_msg})
|
| 220 |
else:
|
| 221 |
-
# replace existing system content to ensure identity is present and consistent
|
| 222 |
raw_messages[0]["content"] = sys_msg
|
| 223 |
|
| 224 |
-
# === APPLY OPTIMIZATION: TRIM CONTEXT ===
|
| 225 |
-
# Yeh line add ki hai taaki model sirf relevant history process kare aur fast rahe
|
| 226 |
optimized_messages = limit_context(raw_messages)
|
| 227 |
|
| 228 |
-
# Streaming generator
|
| 229 |
def iter_response():
|
| 230 |
try:
|
| 231 |
-
|
| 232 |
-
status_payload = json.dumps({"status": status_indicator})
|
| 233 |
-
event_payload = f"event: status\n"
|
| 234 |
-
event_payload += f"data: {status_payload}\n\n"
|
| 235 |
-
logger.info("Sending authoritative status event: %s", status_indicator)
|
| 236 |
-
yield event_payload
|
| 237 |
-
|
| 238 |
-
# 2) small flush hint
|
| 239 |
yield ":\n\n"
|
| 240 |
-
|
| 241 |
-
# 3) Start streaming model output
|
| 242 |
stream = selected_model.create_chat_completion(
|
| 243 |
-
messages=optimized_messages,
|
| 244 |
temperature=request.temperature,
|
| 245 |
stream=True
|
| 246 |
)
|
| 247 |
-
|
| 248 |
-
# Iterate model generator and sanitize every chunk
|
| 249 |
for chunk in stream:
|
| 250 |
-
|
| 251 |
-
try:
|
| 252 |
-
yield f"data: {json.dumps(safe)}\n\n"
|
| 253 |
-
except Exception:
|
| 254 |
-
# fallback to a safe string representation
|
| 255 |
-
yield f"data: {json.dumps({'text': str(safe)})}\n\n"
|
| 256 |
-
|
| 257 |
-
# 4) final done marker
|
| 258 |
yield "data: [DONE]\n\n"
|
| 259 |
-
logger.info("Stream finished for request (status was: %s)", status_indicator)
|
| 260 |
-
|
| 261 |
except Exception as e:
|
| 262 |
-
logger.exception("
|
| 263 |
-
|
| 264 |
-
try:
|
| 265 |
-
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
| 266 |
-
except Exception:
|
| 267 |
-
yield "data: {\"error\":\"streaming failure\"}\n\n"
|
| 268 |
-
yield "data: [DONE]\n\n"
|
| 269 |
|
| 270 |
return StreamingResponse(iter_response(), media_type="text/event-stream")
|
|
|
|
| 1 |
+
# app.py — Hybrid Neural Router + Optimized Performance + Original Identity
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import logging
|
|
|
|
| 8 |
from pydantic import BaseModel
|
| 9 |
from typing import Any, Dict, List
|
| 10 |
|
| 11 |
+
# New Neural Network Library
|
| 12 |
+
from sentence_transformers import SentenceTransformer, util
|
| 13 |
+
|
| 14 |
+
# Local model modules
|
| 15 |
import router_model
|
| 16 |
import coder_model
|
| 17 |
import chat_model
|
|
|
|
| 22 |
app = FastAPI()
|
| 23 |
|
| 24 |
MODEL_DIR = "./models"
|
|
|
|
|
|
|
| 25 |
MAX_HISTORY_MESSAGES = 6
|
| 26 |
|
| 27 |
+
# === NEURAL NETWORK CONFIGURATION ===
|
| 28 |
+
# Using a lightweight, high-speed embedding model (State of the Art for speed/accuracy)
|
| 29 |
+
NEURAL_MODEL_NAME = "all-MiniLM-L6-v2"
|
| 30 |
+
neural_classifier = None
|
| 31 |
+
|
| 32 |
+
# "Anchors" define the center of gravity for each intent in the Neural Space
|
| 33 |
+
INTENT_ANCHORS = {
|
| 34 |
+
"coding": [
|
| 35 |
+
"write python code", "fix this bug", "create a function", "html css script",
|
| 36 |
+
"debug this error", "generate java code", "react component", "sql query"
|
| 37 |
+
],
|
| 38 |
+
"reasoning": [
|
| 39 |
+
"solve this math problem", "explain the logic", "why does this happen",
|
| 40 |
+
"prove that", "step by step reasoning", "analyze this complex topic"
|
| 41 |
+
],
|
| 42 |
+
"sad": [
|
| 43 |
+
"i am feeling sad", "i am depressed", "life is hard", "i am lonely",
|
| 44 |
+
"i feel like crying", "everything is going wrong"
|
| 45 |
+
]
|
| 46 |
+
}
|
| 47 |
+
encoded_anchors = {}
|
| 48 |
+
|
| 49 |
def ensure_model_dir_or_fail():
|
| 50 |
try:
|
| 51 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
|
|
|
| 52 |
except Exception as e:
|
| 53 |
logger.critical("Unable to create model dir: %s", e)
|
| 54 |
raise
|
|
|
|
| 62 |
coder_model.BASE_DIR = os.path.join(MODEL_DIR, "coder")
|
| 63 |
chat_model.BASE_DIR = os.path.join(MODEL_DIR, "chat")
|
| 64 |
|
| 65 |
+
# Load LLMs asynchronously
|
| 66 |
tasks = [
|
| 67 |
asyncio.create_task(router_model.load_model_async()),
|
| 68 |
asyncio.create_task(coder_model.load_model_async()),
|
| 69 |
asyncio.create_task(chat_model.load_model_async()),
|
| 70 |
]
|
| 71 |
+
|
| 72 |
+
# Load Neural Network Classifier (Runs on CPU, very fast)
|
| 73 |
+
global neural_classifier, encoded_anchors
|
| 74 |
+
try:
|
| 75 |
+
logger.info("Loading Neural Intent Classifier...")
|
| 76 |
+
neural_classifier = SentenceTransformer(NEURAL_MODEL_NAME)
|
| 77 |
+
# Pre-calculate anchor vectors so we don't do it every request (Optimization)
|
| 78 |
+
for intent, texts in INTENT_ANCHORS.items():
|
| 79 |
+
encoded_anchors[intent] = neural_classifier.encode(texts, convert_to_tensor=True)
|
| 80 |
+
logger.info("Neural Intent Classifier Ready.")
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logger.error(f"Failed to load Neural Classifier: {e}")
|
| 83 |
+
|
| 84 |
+
await asyncio.gather(*tasks, return_exceptions=True)
|
| 85 |
logger.info("Startup complete.")
|
| 86 |
|
| 87 |
class Message(BaseModel):
|
|
|
|
| 93 |
stream: bool = True
|
| 94 |
temperature: float = 0.7
|
| 95 |
|
| 96 |
+
def get_intent_neural(text: str):
|
| 97 |
+
"""
|
| 98 |
+
Uses Vector Embeddings & Cosine Similarity to detect intent.
|
| 99 |
+
This is the "Neural Function" connecting the router.
|
| 100 |
+
"""
|
| 101 |
+
if not neural_classifier:
|
| 102 |
+
return None, None
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
# 1. Convert user text to Vector
|
| 106 |
+
user_embedding = neural_classifier.encode(text, convert_to_tensor=True)
|
| 107 |
+
|
| 108 |
+
scores = {}
|
| 109 |
+
# 2. Compare against all Anchor Vectors (Cosine Similarity)
|
| 110 |
+
for intent, anchor_embeddings in encoded_anchors.items():
|
| 111 |
+
# Find max similarity with any anchor phrase in this category
|
| 112 |
+
cosine_scores = util.cos_sim(user_embedding, anchor_embeddings)
|
| 113 |
+
best_score = float(cosine_scores.max())
|
| 114 |
+
scores[intent] = best_score
|
| 115 |
+
|
| 116 |
+
# Find the winner
|
| 117 |
+
best_intent = max(scores, key=scores.get)
|
| 118 |
+
confidence = scores[best_intent]
|
| 119 |
+
|
| 120 |
+
logger.info(f"Neural Intent Analysis: {scores} -> Winner: {best_intent}")
|
| 121 |
+
|
| 122 |
+
# Threshold check: If confidence is low (< 0.3), treat as general chat
|
| 123 |
+
if confidence < 0.35:
|
| 124 |
+
return "chat", "neutral"
|
| 125 |
+
|
| 126 |
+
if best_intent == "coding": return "coding", "neutral"
|
| 127 |
+
if best_intent == "reasoning": return "reasoning", "neutral"
|
| 128 |
+
if best_intent == "sad": return "chat", "sad"
|
| 129 |
+
|
| 130 |
+
return "chat", "neutral"
|
| 131 |
+
except Exception as e:
|
| 132 |
+
logger.error(f"Neural Check Failed: {e}")
|
| 133 |
+
return None, None
|
| 134 |
+
|
| 135 |
def get_intent(last_user_message: str):
|
| 136 |
+
# 1. Ultra-Fast Keyword Check (Legacy)
|
| 137 |
+
# Short circuit for very short messages
|
| 138 |
+
if len(last_user_message) < 5:
|
| 139 |
return "chat", "neutral"
|
| 140 |
|
| 141 |
+
# 2. NEURAL NETWORK CHECK (The Upgrade)
|
| 142 |
+
# This understands meaning, not just keywords.
|
| 143 |
+
neural_intent, neural_sentiment = get_intent_neural(last_user_message)
|
| 144 |
+
if neural_intent:
|
| 145 |
+
return neural_intent, neural_sentiment
|
| 146 |
+
|
| 147 |
+
# 3. Fallback to Generative Router (If Neural Network is unsure or fails)
|
| 148 |
+
# Only runs if neural check was inconclusive or library failed
|
| 149 |
if not getattr(router_model, "model", None):
|
| 150 |
+
return "chat", "neutral"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
sys_prompt = "Analyze intent. Return JSON like {'intent':'coding'|'chat'|'reasoning', 'sentiment':'neutral'|'sad'}"
|
| 153 |
try:
|
|
|
|
| 155 |
messages=[{"role":"system","content":sys_prompt},{"role":"user","content": last_user_message}],
|
| 156 |
temperature=0.1, max_tokens=50
|
| 157 |
)
|
| 158 |
+
content = res['choices'][0]['message']['content'].lower()
|
| 159 |
+
|
| 160 |
+
if "coding" in content: return "coding", "neutral"
|
| 161 |
+
if "reasoning" in content: return "reasoning", "neutral"
|
| 162 |
+
if "sad" in content: return "chat", "sad"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
return "chat", "neutral"
|
| 164 |
+
except Exception:
|
|
|
|
| 165 |
return "chat", "neutral"
|
| 166 |
|
| 167 |
def sanitize_chunk(chunk: Any) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
if isinstance(chunk, dict):
|
| 169 |
out = {}
|
| 170 |
for k, v in chunk.items():
|
| 171 |
+
if k == "status": continue
|
| 172 |
+
out[k] = v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
return out
|
| 174 |
+
return {"text": str(chunk)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
# === ORIGINAL SYSTEM INSTRUCTIONS ===
|
|
|
|
| 177 |
SYSTEM_IDENTITY_PREFIX = (
|
| 178 |
"You are Nexari-G1, an advanced AI created by Piyush, the CEO of Nexari AI. "
|
| 179 |
"always understand the user behaviour and request. "
|
|
|
|
| 183 |
)
|
| 184 |
|
| 185 |
def limit_context(messages: List[Dict]) -> List[Dict]:
|
| 186 |
+
if not messages: return []
|
| 187 |
+
system_msg = messages[0] if messages[0].get("role") == "system" else None
|
| 188 |
+
start_idx = 1 if system_msg else 0
|
| 189 |
+
remaining = messages[start_idx:]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
+
# Smart Trimming
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
if len(remaining) > MAX_HISTORY_MESSAGES:
|
| 193 |
+
remaining = remaining[-MAX_HISTORY_MESSAGES:]
|
| 194 |
+
|
|
|
|
|
|
|
|
|
|
| 195 |
final_msgs = []
|
| 196 |
+
if system_msg: final_msgs.append(system_msg)
|
| 197 |
+
final_msgs.extend(remaining)
|
|
|
|
|
|
|
| 198 |
return final_msgs
|
| 199 |
|
| 200 |
@app.post("/v1/chat/completions")
|
| 201 |
async def chat_endpoint(request: ChatRequest):
|
|
|
|
| 202 |
raw_messages = [m.dict() for m in request.messages] if request.messages else []
|
| 203 |
+
if not raw_messages: return {"error": "No messages provided."}
|
|
|
|
| 204 |
last = raw_messages[-1]['content']
|
| 205 |
|
| 206 |
+
# Get Intent using the new Neural Pipeline
|
| 207 |
intent, sentiment = get_intent(last)
|
| 208 |
|
| 209 |
selected_model = None
|
|
|
|
| 210 |
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are a helpful assistant."
|
| 211 |
+
status_indicator = "Thinking..."
|
| 212 |
|
| 213 |
if intent == "coding":
|
| 214 |
if not getattr(coder_model, "model", None):
|
|
|
|
| 215 |
return {"error":"Coder model not available."}
|
| 216 |
selected_model = coder_model.model
|
| 217 |
+
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are an expert Coding Assistant. Write clean, efficient code with comments."
|
| 218 |
+
status_indicator = "Coding (Neural Mode)..."
|
| 219 |
+
logger.info("Intent: CODING (Neural)")
|
| 220 |
elif intent == "reasoning":
|
| 221 |
if not getattr(chat_model, "model", None):
|
|
|
|
| 222 |
return {"error":"Model not available."}
|
| 223 |
selected_model = chat_model.model
|
| 224 |
+
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are a reasoning-focused assistant. Walk through your thinking clearly."
|
| 225 |
+
status_indicator = "Reasoning (Neural Mode)..."
|
| 226 |
+
logger.info("Intent: REASONING (Neural)")
|
| 227 |
else:
|
| 228 |
if not getattr(chat_model, "model", None):
|
|
|
|
| 229 |
return {"error":"Chat model not available."}
|
| 230 |
selected_model = chat_model.model
|
| 231 |
logger.info("Intent: CHAT (%s)", sentiment)
|
|
|
|
| 233 |
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are empathic and calm. Provide supportive, concise responses."
|
| 234 |
status_indicator = "Empathizing..."
|
| 235 |
else:
|
|
|
|
| 236 |
sys_msg = SYSTEM_IDENTITY_PREFIX + "You are a helpful conversational assistant."
|
| 237 |
|
|
|
|
| 238 |
if raw_messages[0].get("role") != "system":
|
| 239 |
raw_messages.insert(0, {"role":"system","content": sys_msg})
|
| 240 |
else:
|
|
|
|
| 241 |
raw_messages[0]["content"] = sys_msg
|
| 242 |
|
|
|
|
|
|
|
| 243 |
optimized_messages = limit_context(raw_messages)
|
| 244 |
|
|
|
|
| 245 |
def iter_response():
|
| 246 |
try:
|
| 247 |
+
yield f"event: status\ndata: {json.dumps({'status': status_indicator})}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
yield ":\n\n"
|
| 249 |
+
|
|
|
|
| 250 |
stream = selected_model.create_chat_completion(
|
| 251 |
+
messages=optimized_messages,
|
| 252 |
temperature=request.temperature,
|
| 253 |
stream=True
|
| 254 |
)
|
|
|
|
|
|
|
| 255 |
for chunk in stream:
|
| 256 |
+
yield f"data: {json.dumps(sanitize_chunk(chunk))}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
yield "data: [DONE]\n\n"
|
|
|
|
|
|
|
| 258 |
except Exception as e:
|
| 259 |
+
logger.exception("Stream Error: %s", e)
|
| 260 |
+
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
return StreamingResponse(iter_response(), media_type="text/event-stream")
|