File size: 24,875 Bytes
ca82763
 
d52c538
ca82763
 
 
 
d52c538
ca82763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52c538
 
ca82763
d52c538
 
ca82763
 
d52c538
 
 
ca82763
d52c538
 
ca82763
 
 
 
 
 
 
 
 
 
 
 
 
 
d52c538
 
ca82763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52c538
ca82763
d52c538
ca82763
 
 
 
 
 
 
 
 
 
 
 
d52c538
 
 
ca82763
 
 
 
 
 
 
d52c538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca82763
 
 
 
 
 
 
d52c538
 
 
 
ca82763
 
 
 
 
 
 
 
 
 
 
 
d52c538
 
ca82763
 
d52c538
 
 
 
 
 
 
 
 
 
ca82763
 
d52c538
 
 
 
 
 
ca82763
 
 
 
 
 
d52c538
ca82763
d52c538
 
ca82763
d52c538
 
 
 
ca82763
 
 
 
 
 
 
 
 
 
 
d52c538
ca82763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52c538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca82763
d52c538
 
 
 
ca82763
d52c538
 
 
ca82763
d52c538
ca82763
d52c538
ca82763
d52c538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca82763
 
d52c538
 
 
 
 
ca82763
 
 
 
 
 
d52c538
ca82763
d52c538
 
 
 
 
 
ca82763
 
 
d52c538
 
 
ca82763
 
 
 
 
d52c538
 
ca82763
d52c538
ca82763
 
 
 
d52c538
 
 
ca82763
d52c538
 
ca82763
 
 
 
d52c538
ca82763
d52c538
 
ca82763
 
d52c538
ca82763
d52c538
 
ca82763
 
 
 
d52c538
 
ca82763
d52c538
 
 
ca82763
 
d52c538
ca82763
 
 
 
 
 
 
 
d52c538
ca82763
 
 
 
 
 
d52c538
ca82763
 
 
 
d52c538
ca82763
 
 
 
d52c538
ca82763
 
 
 
d52c538
 
 
 
ca82763
 
 
d52c538
 
 
 
 
ca82763
d52c538
ca82763
 
d52c538
 
 
 
 
ca82763
 
 
 
 
 
d52c538
ca82763
d52c538
ca82763
 
d52c538
 
 
 
ca82763
 
d52c538
 
ca82763
 
 
 
 
d52c538
ca82763
 
 
d52c538
 
 
 
 
ca82763
 
 
 
 
d52c538
 
 
 
 
 
 
 
 
 
 
ca82763
 
 
 
 
 
d52c538
ca82763
d52c538
 
ca82763
 
d52c538
 
 
 
 
ca82763
 
d52c538
 
ca82763
 
d52c538
ca82763
d52c538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import math
import torch
from torch import device, nn, einsum
import torch.nn.functional as F
from inspect import isfunction
from functools import partial
import numpy as np
from tqdm import tqdm


def _warmup_beta(linear_start, linear_end, n_timestep, warmup_frac):
    betas = linear_end * np.ones(n_timestep, dtype=np.float64)
    warmup_time = int(n_timestep * warmup_frac)
    betas[:warmup_time] = np.linspace(
        linear_start, linear_end, warmup_time, dtype=np.float64)
    return betas


def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
    if schedule == 'quad':
        betas = np.linspace(linear_start ** 0.5, linear_end ** 0.5,
                            n_timestep, dtype=np.float64) ** 2
    elif schedule == 'linear':
        betas = np.linspace(linear_start, linear_end,
                            n_timestep, dtype=np.float64)
    elif schedule == 'warmup10':
        betas = _warmup_beta(linear_start, linear_end,
                             n_timestep, 0.1)
    elif schedule == 'warmup50':
        betas = _warmup_beta(linear_start, linear_end,
                             n_timestep, 0.5)
    elif schedule == 'const':
        betas = linear_end * np.ones(n_timestep, dtype=np.float64)
    elif schedule == 'jsd':  # 1/T, 1/(T-1), 1/(T-2), ..., 1
        betas = 1. / np.linspace(n_timestep,
                                 1, n_timestep, dtype=np.float64)
    elif schedule == "cosine":
        print('======================adopting cosine scheduler========================')
        
        timesteps = (
            torch.arange(n_timestep + 1, dtype=torch.float64) /
            n_timestep + cosine_s
        )
        alphas = timesteps / (1 + cosine_s) * math.pi / 2
        alphas = torch.cos(alphas).pow(2)
        alphas = alphas / alphas[0]
        betas = 1 - alphas[1:] / alphas[:-1]
        betas = betas.clamp(max=0.999)
    else:
        raise NotImplementedError(schedule)
    return betas


# gaussian diffusion trainer class

def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


class GaussianDiffusion(nn.Module):
    def __init__(

        self,

        denoise_fn,

        image_size,

        channels=3,

        loss_type='l1',

        conditional=True,

        schedule_opt=None,

        xT_noise_r=0.1,

        seed = 1,

        opt=None

        

    ):
        super().__init__()
        self.lq_noiselevel_val = schedule_opt["lq_noiselevel"]
        self.opt = opt
        self.channels = channels
        self.image_size = image_size
        self.denoise_fn = denoise_fn
        self.loss_type = loss_type
        self.conditional = conditional
        self.ddim = schedule_opt['ddim']
        self.xT_noise_r = xT_noise_r
        self.seed = seed
        if schedule_opt is not None:
            pass
            # self.set_new_noise_schedule(schedule_opt)

    def set_loss(self, device):
        if self.loss_type == 'l1':
            self.loss_func = nn.L1Loss(reduction='sum').to(device)
        elif self.loss_type == 'l2':
            self.loss_func = nn.MSELoss(reduction='sum').to(device)
        else:
            raise NotImplementedError() 
        
        

        
    def betas_for_alpha_bar(

        num_diffusion_timesteps,

        max_beta=0.999,

        alpha_transform_type="cosine",

        ):
        """

        Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of

        (1-beta) over time from t = [0,1].



        Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up

        to that part of the diffusion process.



        Args:

            num_diffusion_timesteps (`int`): the number of betas to produce.

            max_beta (`float`): the maximum beta to use; use values lower than 1 to

                        prevent singularities.

            alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.

                        Choose from `cosine` or `exp`



        Returns:

            betas (`np.ndarray`): the betas used by the scheduler to step the model outputs

        """
        if alpha_transform_type == "cosine":
            def alpha_bar_fn(t):
                return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
        elif alpha_transform_type == "exp":

            def alpha_bar_fn(t):
                return math.exp(t * -12.0)
        else:
            raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")

        betas = []
        for i in range(num_diffusion_timesteps):
            t1 = i / num_diffusion_timesteps
            t2 = (i + 1) / num_diffusion_timesteps
            betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
        return torch.tensor(betas, dtype=torch.float32)



    def set_new_noise_schedule(self, schedule_opt, device, num_train_timesteps=1000):
        self.ddim = schedule_opt['ddim']
        self.num_train_timesteps = num_train_timesteps
        to_torch = partial(torch.tensor, dtype=torch.float32, device=device)

        betas = make_beta_schedule(
                schedule=schedule_opt['schedule'],
                n_timestep=num_train_timesteps,
                linear_start=schedule_opt['linear_start'],
                linear_end=schedule_opt['linear_end'])
        betas = betas.detach().cpu().numpy() if isinstance(
            betas, torch.Tensor) else betas
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
        self.sqrt_alphas_cumprod_prev = np.sqrt(
            np.append(1., alphas_cumprod))

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev',
                            to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod',
                            to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod',
                            to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod',
                            to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod',
                            to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod',
                            to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = betas * \
            (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance',
                            to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(
            np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
        
        self.schedule_type = schedule_opt['schedule']
        if self.ddim>0:  # use ddim
            print('================ddim scheduler is adopted===================')
            self.ddim_num_steps = schedule_opt['n_timestep']
            print('==========ddim sampling steps: {}==========='.format(self.ddim_num_steps))
            
            


    def predict_start_from_noise(self, x_t, t, noise):
        return self.sqrt_recip_alphas_cumprod[t] * x_t - \
            self.sqrt_recipm1_alphas_cumprod[t] * noise

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = self.posterior_mean_coef1[t] * \
            x_start + self.posterior_mean_coef2[t] * x_t
        posterior_log_variance_clipped = self.posterior_log_variance_clipped[t]
        return posterior_mean, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, clip_denoised: bool, condition_x=None):  # ddpm sample
        batch_size = x.shape[0]
        noise_level = torch.FloatTensor(
            [self.sqrt_alphas_cumprod_prev[t+1]]).repeat(batch_size, 1).to(x.device)
        if condition_x is not None:
            x_recon = self.predict_start_from_noise(
                x, t=t, noise=self.denoise_fn(torch.cat([condition_x, x], dim=1), noise_level, t))
        else:
            x_recon = self.predict_start_from_noise(
                x, t=t, noise=self.denoise_fn(x, noise_level))

        if clip_denoised:
            x_recon.clamp_(-1., 1.)

        model_mean, posterior_log_variance = self.q_posterior(
            x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_log_variance, x_recon




    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        """

        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the

        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by

        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing

        pixels from saturation at each step. We find that dynamic thresholding results in significantly better

        photorealism as well as better image-text alignment, especially when using very large guidance weights."



        https://arxiv.org/abs/2205.11487

        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, 0.995, dim=1)
        s = torch.clamp(s, min=1, max=1.0)  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample
    
    def ddim_sample(self, condition_x, img_or_shape, device, seed=1, img_s1=None):
        # self.device = torch.device('cuda:0')
        # self.num_train_timesteps = 2000
        # self.ddim_num_steps = 50
        if self.schedule_type=='linear':
            self.ddim_sampling_eta = 0.8
            simple_var=False
            threshold_x = False   # threshold_x  和 clip_x
        elif self.schedule_type=='cosine':
            self.ddim_sampling_eta = 0.8
            simple_var=False

            threshold_x = False

        # torch.manual_seed(seed)
        batch, total_timesteps, sampling_timesteps, eta= \
                                img_or_shape[0], self.num_train_timesteps, \
                                self.ddim_num_steps, self.ddim_sampling_eta
        # ----------------------------------------------------------------
        
        #----------------conditioned augmentation------------------
        # max_noise_level = 400
        # b = img_s1.shape[0]
        # low_res_noise = torch.randn_like(img_s1).to(img_s1.device)
        # low_res_timesteps = self.lq_noiselevel_val  #
        # lq_noise_level = torch.FloatTensor(
        #             [self.sqrt_alphas_cumprod_prev[low_res_timesteps]]).repeat(b, 1).to(img_s1.device)

        # noisy_img_s1 = self.q_sample(
        #     x_start=img_s1, continuous_sqrt_alpha_cumprod=lq_noise_level.view(-1, 1, 1, 1), noise=low_res_noise)
        noisy_img_s1 = None

        #----------------------------------------------------



        
        if simple_var:
            eta = 1
        ts = torch.linspace(total_timesteps, 0, (sampling_timesteps + 1)).to(device).to(torch.long)

        x = torch.randn(img_or_shape).to(device)
        batch_size = x.shape[0]
        # net = self.denoise_fn
        imgs = [x]
        img_onestep = [condition_x[:,:self.channels,...]]
        if self.opt['stage']!=2:
            tbar = tqdm(range(1, sampling_timesteps + 1),f'seed{seed} DDIM sampling ({self.schedule_type}) with eta {eta} simple_var {simple_var}')
        else:
            tbar = range(1, sampling_timesteps + 1)
        for i in tbar:  
            cur_t = ts[i - 1] - 1
            prev_t = ts[i] - 1
            noise_level = torch.FloatTensor(
                    # [self.sqrt_alphas_cumprod_prev[cur_t+1]]).repeat(batch_size, 1).to(x.device)
                    [self.sqrt_alphas_cumprod_prev[cur_t]]).repeat(batch_size, 1).to(x.device)


            alpha_prod_t = self.alphas_cumprod[cur_t]
            alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else 1
            beta_prod_t = 1 - alpha_prod_t

            # t_tensor = torch.tensor([cur_t] * batch_size,
            #                         dtype=torch.long).to(device).unsqueeze(1)
            # pred noise
            model_output = self.denoise_fn(torch.cat([condition_x, x], dim=1), noise_level) 

            sigma_2 = eta * (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
            noise = torch.randn_like(x)

            # first_term = (alpha_prod_t_prev / alpha_prod_t)**0.5 * x
            # second_term = ((1 - alpha_prod_t_prev - sigma_2)**0.5 -(alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t)**0.5) * model_output
            # x_start = first_term - (alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t)**0.5 * model_output
            pred_original_sample = (x - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
            
            
            if threshold_x:
                pred_original_sample = self._threshold_sample(pred_original_sample)
            else:
                pred_original_sample = pred_original_sample.clamp(-1, 1)
            
            pred_sample_direction = (1 - alpha_prod_t_prev - sigma_2) ** (0.5) * model_output
            


            if simple_var:
                third_term = (1 - alpha_prod_t / alpha_prod_t_prev)**0.5 * noise  # var of ddpm 
            else:
                third_term = sigma_2**0.5 * noise   #ddpm
            # x = first_term + second_term + third_term
            x = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction + third_term
            imgs.append(x)
            img_onestep.append(pred_original_sample)

        imgs =  torch.concat(imgs, dim = 0)
        img_onestep =  torch.concat(img_onestep, dim = 0)

        # torch.seed()
        return imgs, img_onestep    
    

    @torch.no_grad()
    def p_sample(self, x, t, clip_denoised=True, condition_x=None):  # sr3 sample
        model_mean, model_log_variance, x_recon = self.p_mean_variance(
            x=x, t=t, clip_denoised=clip_denoised, condition_x=condition_x)
        noise = torch.randn_like(x) if t > 0 else torch.zeros_like(x)
        return model_mean + noise * (0.5 * model_log_variance).exp(), x_recon

    @torch.no_grad()
    def p_sample_loop(self, x_in, continous=False, seed=1, img_s1=None):
        device = self.betas.device
        # sample_inter = (1 | (self.num_timesteps//20))  
        sample_inter = 1
        if not self.conditional:
            shape = x_in
            img = torch.randn(shape, device=device)
            ret_img = img
            if not self.ddim:
                for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
                    img, x_recon = self.p_sample(img, i)
                    if i % sample_inter == 0:
                        ret_img = torch.cat([ret_img, img], dim=0)
            else:
                for i in tqdm(range(0, len(self.ddim_timesteps)), desc='sampling loop time step', total=len(self.ddim_timesteps)):
                    ddim_t = self.ddim_timesteps[i]
                    img = self.ddim_sample(img, ddim_t)
                    if i % sample_inter == 0:
                        ret_img = torch.cat([ret_img, img], dim=0)
                
        else:
            x = x_in
            shape = (x.shape[0], self.channels, x.shape[-2], x.shape[-1])

            # ---------ddpm zT as the inital noise------------------------------------
            if self.xT_noise_r>0:
                # ratio = 0.1
                print('adopting ddpm inversion as initial noise, ratio is {}'.format(self.xT_noise_r))
                img0 = torch.randn(shape, device=device)
                x_start = x_in[:, 0:1, ...]
                continuous_sqrt_alpha_cumprod = torch.FloatTensor(
                                                            np.random.uniform(
                                                                self.sqrt_alphas_cumprod_prev[self.num_timesteps-1],
                                                                self.sqrt_alphas_cumprod_prev[self.num_timesteps],
                                                                size=x_start.shape[0]
                                                            )).to(x_start.device)
                continuous_sqrt_alpha_cumprod = continuous_sqrt_alpha_cumprod.view(x_start.shape[0], -1)
            
                noise = default(x_start, lambda: torch.randn_like(x_start))
                img = self.q_sample(
                            x_start=x_start, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod.view(-1, 1, 1, 1), noise=noise)
                
                
                img = self.xT_noise_r*img + (1-self.xT_noise_r)*img0
            #-------------------------------------------------------------------------
            else:
                img = torch.randn(shape, device=device)

            ret_img = x
            img_onestep = x

            if self.opt['stage']!=2:
                if not self.ddim:
                    for i in tqdm(reversed(range(0, self.num_timesteps)), desc='ddpm sampling loop time step', total=self.num_timesteps):
                        img, x_recon = self.p_sample(img, i, condition_x=x)
                        if i % sample_inter == 0:
                            ret_img = torch.cat([ret_img[:,:self.channels,...], img], dim=0)
                        if i % sample_inter==0 or i==self.num_timesteps-1:
                            img_onestep = torch.cat([img_onestep[:,:self.channels,...], x_recon], dim=0)

                else:
                    ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=device, seed=seed, img_s1=img_s1)
            
                
                if continous:
                    return ret_img, img_onestep
                else:
                    return ret_img[-x_in.shape[0]:], img_onestep
            else:
                # timestep = self.num_timesteps-1
                self.ddim_num_steps = self.opt['ddim_steps']
                ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=device, seed=seed, img_s1=img_s1)


                # img, x_recon = self.p_sample(img, timestep, condition_x=x)
                # ret_img = torch.cat([ret_img[:,:self.channels,...], x_recon], dim=0)
                # img_onestep = torch.cat([img_onestep[:,:self.channels,...], x_recon], dim=0)

                if continous:
                    return ret_img, img_onestep
                else:
                    return ret_img[-x_in.shape[0]:], img_onestep

                # for i in tqdm(range(0, len(self.ddim_timesteps)), desc='ddim sampling loop time step', total=len(self.ddim_timesteps)):
                #     ddim_t = self.ddim_timesteps[i]
                #     img = self.ddim_sample(img, ddim_t, condition_x=x)
                #     if i % sample_inter == 0:
                #         ret_img = torch.cat([ret_img[:,:self.channels,...], img], dim=0)
                
                
        #  20, 8, 2hw



    @torch.no_grad()
    def sample(self, batch_size=1, continous=False):
        image_size = self.image_size
        channels = self.channels
        return self.p_sample_loop((batch_size, channels, image_size, image_size), continous)


    @torch.no_grad()
    def super_resolution(self, x_in, continous=False, seed=1, img_s1=None):   # test

        return self.p_sample_loop(x_in, continous, seed=seed, img_s1=img_s1)






    def q_sample(self, x_start, continuous_sqrt_alpha_cumprod, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))

        # random gama
        return (
            continuous_sqrt_alpha_cumprod * x_start +
            (1 - continuous_sqrt_alpha_cumprod**2).sqrt() * noise
        )

    def p_losses(self, x_in, noise=None):
        # x_in    {'HR': img_EO[0:1], 'LR': img_s1[0:1], 'condition': img_ppb[0:1], 'SR': img_s1[0:1], 'Index': index, 'filename':filename}
        x_start = x_in['HR']



        [b, c, h, w] = x_start.shape
        if self.opt['stage'] ==2:
            t = 999
            self.ddim_num_steps = self.opt['ddim_steps']
            x = x_in['SR']
            shape = (x.shape[0], self.channels, x.shape[-2], x.shape[-1])
            ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=x.device, seed=self.seed, img_s1=x)
            x_recon = ret_img[-x.shape[0]:]
            

        else:
            t = np.random.randint(1, self.num_timesteps + 1)

            continuous_sqrt_alpha_cumprod = torch.FloatTensor(
                np.random.uniform(
                    self.sqrt_alphas_cumprod_prev[t-1],
                    self.sqrt_alphas_cumprod_prev[t],
                    size=b
                )).to(x_start.device)
            continuous_sqrt_alpha_cumprod = continuous_sqrt_alpha_cumprod.view(b, -1)

            #-----------pixel loss-------------
            noise = default(noise, lambda: torch.randn_like(x_start))
            x_noisy = self.q_sample(
                x_start=x_start, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod.view(-1, 1, 1, 1), noise=noise)

 
            ##low_res_timesteps in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level
            if not self.conditional:
                x_recon = self.denoise_fn(x_noisy, continuous_sqrt_alpha_cumprod)
            else:
                
                x_recon, condition_feats = self.denoise_fn(
                                                        torch.cat([x_in['SR'], x_noisy], dim=1), 
                                                        continuous_sqrt_alpha_cumprod, 
                                                        # noisy_img_s1, 
                                                        # class_label=lq_continuous_sqrt_alpha_cumprod,
                                                        return_condition=True
                                                        )
        if self.opt['stage']==2:
            l_pix = self.loss_func(x_start, x_recon)    

        else:
            l_pix = self.loss_func(noise, x_recon)    

 
        x_pred = x_recon
        condition_feats=None
 
        
        return l_pix, x_start, x_pred, condition_feats, torch.tensor(t, device=l_pix.device)


    def forward(self, x, *args, **kwargs):
        return self.p_losses(x, *args, **kwargs)