File size: 24,875 Bytes
ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 ca82763 d52c538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import math
import torch
from torch import device, nn, einsum
import torch.nn.functional as F
from inspect import isfunction
from functools import partial
import numpy as np
from tqdm import tqdm
def _warmup_beta(linear_start, linear_end, n_timestep, warmup_frac):
betas = linear_end * np.ones(n_timestep, dtype=np.float64)
warmup_time = int(n_timestep * warmup_frac)
betas[:warmup_time] = np.linspace(
linear_start, linear_end, warmup_time, dtype=np.float64)
return betas
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if schedule == 'quad':
betas = np.linspace(linear_start ** 0.5, linear_end ** 0.5,
n_timestep, dtype=np.float64) ** 2
elif schedule == 'linear':
betas = np.linspace(linear_start, linear_end,
n_timestep, dtype=np.float64)
elif schedule == 'warmup10':
betas = _warmup_beta(linear_start, linear_end,
n_timestep, 0.1)
elif schedule == 'warmup50':
betas = _warmup_beta(linear_start, linear_end,
n_timestep, 0.5)
elif schedule == 'const':
betas = linear_end * np.ones(n_timestep, dtype=np.float64)
elif schedule == 'jsd': # 1/T, 1/(T-1), 1/(T-2), ..., 1
betas = 1. / np.linspace(n_timestep,
1, n_timestep, dtype=np.float64)
elif schedule == "cosine":
print('======================adopting cosine scheduler========================')
timesteps = (
torch.arange(n_timestep + 1, dtype=torch.float64) /
n_timestep + cosine_s
)
alphas = timesteps / (1 + cosine_s) * math.pi / 2
alphas = torch.cos(alphas).pow(2)
alphas = alphas / alphas[0]
betas = 1 - alphas[1:] / alphas[:-1]
betas = betas.clamp(max=0.999)
else:
raise NotImplementedError(schedule)
return betas
# gaussian diffusion trainer class
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
class GaussianDiffusion(nn.Module):
def __init__(
self,
denoise_fn,
image_size,
channels=3,
loss_type='l1',
conditional=True,
schedule_opt=None,
xT_noise_r=0.1,
seed = 1,
opt=None
):
super().__init__()
self.lq_noiselevel_val = schedule_opt["lq_noiselevel"]
self.opt = opt
self.channels = channels
self.image_size = image_size
self.denoise_fn = denoise_fn
self.loss_type = loss_type
self.conditional = conditional
self.ddim = schedule_opt['ddim']
self.xT_noise_r = xT_noise_r
self.seed = seed
if schedule_opt is not None:
pass
# self.set_new_noise_schedule(schedule_opt)
def set_loss(self, device):
if self.loss_type == 'l1':
self.loss_func = nn.L1Loss(reduction='sum').to(device)
elif self.loss_type == 'l2':
self.loss_func = nn.MSELoss(reduction='sum').to(device)
else:
raise NotImplementedError()
def betas_for_alpha_bar(
num_diffusion_timesteps,
max_beta=0.999,
alpha_transform_type="cosine",
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
Choose from `cosine` or `exp`
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(t):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(t):
return math.exp(t * -12.0)
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
def set_new_noise_schedule(self, schedule_opt, device, num_train_timesteps=1000):
self.ddim = schedule_opt['ddim']
self.num_train_timesteps = num_train_timesteps
to_torch = partial(torch.tensor, dtype=torch.float32, device=device)
betas = make_beta_schedule(
schedule=schedule_opt['schedule'],
n_timestep=num_train_timesteps,
linear_start=schedule_opt['linear_start'],
linear_end=schedule_opt['linear_end'])
betas = betas.detach().cpu().numpy() if isinstance(
betas, torch.Tensor) else betas
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
self.sqrt_alphas_cumprod_prev = np.sqrt(
np.append(1., alphas_cumprod))
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev',
to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod',
to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod',
to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod',
to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod',
to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod',
to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * \
(1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance',
to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(
np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
self.schedule_type = schedule_opt['schedule']
if self.ddim>0: # use ddim
print('================ddim scheduler is adopted===================')
self.ddim_num_steps = schedule_opt['n_timestep']
print('==========ddim sampling steps: {}==========='.format(self.ddim_num_steps))
def predict_start_from_noise(self, x_t, t, noise):
return self.sqrt_recip_alphas_cumprod[t] * x_t - \
self.sqrt_recipm1_alphas_cumprod[t] * noise
def q_posterior(self, x_start, x_t, t):
posterior_mean = self.posterior_mean_coef1[t] * \
x_start + self.posterior_mean_coef2[t] * x_t
posterior_log_variance_clipped = self.posterior_log_variance_clipped[t]
return posterior_mean, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool, condition_x=None): # ddpm sample
batch_size = x.shape[0]
noise_level = torch.FloatTensor(
[self.sqrt_alphas_cumprod_prev[t+1]]).repeat(batch_size, 1).to(x.device)
if condition_x is not None:
x_recon = self.predict_start_from_noise(
x, t=t, noise=self.denoise_fn(torch.cat([condition_x, x], dim=1), noise_level, t))
else:
x_recon = self.predict_start_from_noise(
x, t=t, noise=self.denoise_fn(x, noise_level))
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_log_variance, x_recon
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, 0.995, dim=1)
s = torch.clamp(s, min=1, max=1.0) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample
def ddim_sample(self, condition_x, img_or_shape, device, seed=1, img_s1=None):
# self.device = torch.device('cuda:0')
# self.num_train_timesteps = 2000
# self.ddim_num_steps = 50
if self.schedule_type=='linear':
self.ddim_sampling_eta = 0.8
simple_var=False
threshold_x = False # threshold_x 和 clip_x
elif self.schedule_type=='cosine':
self.ddim_sampling_eta = 0.8
simple_var=False
threshold_x = False
# torch.manual_seed(seed)
batch, total_timesteps, sampling_timesteps, eta= \
img_or_shape[0], self.num_train_timesteps, \
self.ddim_num_steps, self.ddim_sampling_eta
# ----------------------------------------------------------------
#----------------conditioned augmentation------------------
# max_noise_level = 400
# b = img_s1.shape[0]
# low_res_noise = torch.randn_like(img_s1).to(img_s1.device)
# low_res_timesteps = self.lq_noiselevel_val #
# lq_noise_level = torch.FloatTensor(
# [self.sqrt_alphas_cumprod_prev[low_res_timesteps]]).repeat(b, 1).to(img_s1.device)
# noisy_img_s1 = self.q_sample(
# x_start=img_s1, continuous_sqrt_alpha_cumprod=lq_noise_level.view(-1, 1, 1, 1), noise=low_res_noise)
noisy_img_s1 = None
#----------------------------------------------------
if simple_var:
eta = 1
ts = torch.linspace(total_timesteps, 0, (sampling_timesteps + 1)).to(device).to(torch.long)
x = torch.randn(img_or_shape).to(device)
batch_size = x.shape[0]
# net = self.denoise_fn
imgs = [x]
img_onestep = [condition_x[:,:self.channels,...]]
if self.opt['stage']!=2:
tbar = tqdm(range(1, sampling_timesteps + 1),f'seed{seed} DDIM sampling ({self.schedule_type}) with eta {eta} simple_var {simple_var}')
else:
tbar = range(1, sampling_timesteps + 1)
for i in tbar:
cur_t = ts[i - 1] - 1
prev_t = ts[i] - 1
noise_level = torch.FloatTensor(
# [self.sqrt_alphas_cumprod_prev[cur_t+1]]).repeat(batch_size, 1).to(x.device)
[self.sqrt_alphas_cumprod_prev[cur_t]]).repeat(batch_size, 1).to(x.device)
alpha_prod_t = self.alphas_cumprod[cur_t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else 1
beta_prod_t = 1 - alpha_prod_t
# t_tensor = torch.tensor([cur_t] * batch_size,
# dtype=torch.long).to(device).unsqueeze(1)
# pred noise
model_output = self.denoise_fn(torch.cat([condition_x, x], dim=1), noise_level)
sigma_2 = eta * (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
noise = torch.randn_like(x)
# first_term = (alpha_prod_t_prev / alpha_prod_t)**0.5 * x
# second_term = ((1 - alpha_prod_t_prev - sigma_2)**0.5 -(alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t)**0.5) * model_output
# x_start = first_term - (alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t)**0.5 * model_output
pred_original_sample = (x - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
if threshold_x:
pred_original_sample = self._threshold_sample(pred_original_sample)
else:
pred_original_sample = pred_original_sample.clamp(-1, 1)
pred_sample_direction = (1 - alpha_prod_t_prev - sigma_2) ** (0.5) * model_output
if simple_var:
third_term = (1 - alpha_prod_t / alpha_prod_t_prev)**0.5 * noise # var of ddpm
else:
third_term = sigma_2**0.5 * noise #ddpm
# x = first_term + second_term + third_term
x = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction + third_term
imgs.append(x)
img_onestep.append(pred_original_sample)
imgs = torch.concat(imgs, dim = 0)
img_onestep = torch.concat(img_onestep, dim = 0)
# torch.seed()
return imgs, img_onestep
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, condition_x=None): # sr3 sample
model_mean, model_log_variance, x_recon = self.p_mean_variance(
x=x, t=t, clip_denoised=clip_denoised, condition_x=condition_x)
noise = torch.randn_like(x) if t > 0 else torch.zeros_like(x)
return model_mean + noise * (0.5 * model_log_variance).exp(), x_recon
@torch.no_grad()
def p_sample_loop(self, x_in, continous=False, seed=1, img_s1=None):
device = self.betas.device
# sample_inter = (1 | (self.num_timesteps//20))
sample_inter = 1
if not self.conditional:
shape = x_in
img = torch.randn(shape, device=device)
ret_img = img
if not self.ddim:
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
img, x_recon = self.p_sample(img, i)
if i % sample_inter == 0:
ret_img = torch.cat([ret_img, img], dim=0)
else:
for i in tqdm(range(0, len(self.ddim_timesteps)), desc='sampling loop time step', total=len(self.ddim_timesteps)):
ddim_t = self.ddim_timesteps[i]
img = self.ddim_sample(img, ddim_t)
if i % sample_inter == 0:
ret_img = torch.cat([ret_img, img], dim=0)
else:
x = x_in
shape = (x.shape[0], self.channels, x.shape[-2], x.shape[-1])
# ---------ddpm zT as the inital noise------------------------------------
if self.xT_noise_r>0:
# ratio = 0.1
print('adopting ddpm inversion as initial noise, ratio is {}'.format(self.xT_noise_r))
img0 = torch.randn(shape, device=device)
x_start = x_in[:, 0:1, ...]
continuous_sqrt_alpha_cumprod = torch.FloatTensor(
np.random.uniform(
self.sqrt_alphas_cumprod_prev[self.num_timesteps-1],
self.sqrt_alphas_cumprod_prev[self.num_timesteps],
size=x_start.shape[0]
)).to(x_start.device)
continuous_sqrt_alpha_cumprod = continuous_sqrt_alpha_cumprod.view(x_start.shape[0], -1)
noise = default(x_start, lambda: torch.randn_like(x_start))
img = self.q_sample(
x_start=x_start, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod.view(-1, 1, 1, 1), noise=noise)
img = self.xT_noise_r*img + (1-self.xT_noise_r)*img0
#-------------------------------------------------------------------------
else:
img = torch.randn(shape, device=device)
ret_img = x
img_onestep = x
if self.opt['stage']!=2:
if not self.ddim:
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='ddpm sampling loop time step', total=self.num_timesteps):
img, x_recon = self.p_sample(img, i, condition_x=x)
if i % sample_inter == 0:
ret_img = torch.cat([ret_img[:,:self.channels,...], img], dim=0)
if i % sample_inter==0 or i==self.num_timesteps-1:
img_onestep = torch.cat([img_onestep[:,:self.channels,...], x_recon], dim=0)
else:
ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=device, seed=seed, img_s1=img_s1)
if continous:
return ret_img, img_onestep
else:
return ret_img[-x_in.shape[0]:], img_onestep
else:
# timestep = self.num_timesteps-1
self.ddim_num_steps = self.opt['ddim_steps']
ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=device, seed=seed, img_s1=img_s1)
# img, x_recon = self.p_sample(img, timestep, condition_x=x)
# ret_img = torch.cat([ret_img[:,:self.channels,...], x_recon], dim=0)
# img_onestep = torch.cat([img_onestep[:,:self.channels,...], x_recon], dim=0)
if continous:
return ret_img, img_onestep
else:
return ret_img[-x_in.shape[0]:], img_onestep
# for i in tqdm(range(0, len(self.ddim_timesteps)), desc='ddim sampling loop time step', total=len(self.ddim_timesteps)):
# ddim_t = self.ddim_timesteps[i]
# img = self.ddim_sample(img, ddim_t, condition_x=x)
# if i % sample_inter == 0:
# ret_img = torch.cat([ret_img[:,:self.channels,...], img], dim=0)
# 20, 8, 2hw
@torch.no_grad()
def sample(self, batch_size=1, continous=False):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop((batch_size, channels, image_size, image_size), continous)
@torch.no_grad()
def super_resolution(self, x_in, continous=False, seed=1, img_s1=None): # test
return self.p_sample_loop(x_in, continous, seed=seed, img_s1=img_s1)
def q_sample(self, x_start, continuous_sqrt_alpha_cumprod, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
# random gama
return (
continuous_sqrt_alpha_cumprod * x_start +
(1 - continuous_sqrt_alpha_cumprod**2).sqrt() * noise
)
def p_losses(self, x_in, noise=None):
# x_in {'HR': img_EO[0:1], 'LR': img_s1[0:1], 'condition': img_ppb[0:1], 'SR': img_s1[0:1], 'Index': index, 'filename':filename}
x_start = x_in['HR']
[b, c, h, w] = x_start.shape
if self.opt['stage'] ==2:
t = 999
self.ddim_num_steps = self.opt['ddim_steps']
x = x_in['SR']
shape = (x.shape[0], self.channels, x.shape[-2], x.shape[-1])
ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=x.device, seed=self.seed, img_s1=x)
x_recon = ret_img[-x.shape[0]:]
else:
t = np.random.randint(1, self.num_timesteps + 1)
continuous_sqrt_alpha_cumprod = torch.FloatTensor(
np.random.uniform(
self.sqrt_alphas_cumprod_prev[t-1],
self.sqrt_alphas_cumprod_prev[t],
size=b
)).to(x_start.device)
continuous_sqrt_alpha_cumprod = continuous_sqrt_alpha_cumprod.view(b, -1)
#-----------pixel loss-------------
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(
x_start=x_start, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod.view(-1, 1, 1, 1), noise=noise)
##low_res_timesteps in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level
if not self.conditional:
x_recon = self.denoise_fn(x_noisy, continuous_sqrt_alpha_cumprod)
else:
x_recon, condition_feats = self.denoise_fn(
torch.cat([x_in['SR'], x_noisy], dim=1),
continuous_sqrt_alpha_cumprod,
# noisy_img_s1,
# class_label=lq_continuous_sqrt_alpha_cumprod,
return_condition=True
)
if self.opt['stage']==2:
l_pix = self.loss_func(x_start, x_recon)
else:
l_pix = self.loss_func(noise, x_recon)
x_pred = x_recon
condition_feats=None
return l_pix, x_start, x_pred, condition_feats, torch.tensor(t, device=l_pix.device)
def forward(self, x, *args, **kwargs):
return self.p_losses(x, *args, **kwargs)
|