"""Pure PyTorch SoftPool implementation.""" import torch import torch.nn as nn import torch.nn.functional as F def soft_pool2d(x, kernel_size=(2, 2), stride=None, force_inplace=False): if stride is None: stride = kernel_size if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if isinstance(stride, int): stride = (stride, stride) batch, channels, height, width = x.shape kh, kw = kernel_size sh, sw = stride out_h = (height - kh) // sh + 1 out_w = (width - kw) // sw + 1 x_unfold = F.unfold(x, kernel_size=kernel_size, stride=stride) x_unfold = x_unfold.view(batch, channels, kh * kw, out_h * out_w) x_max = x_unfold.max(dim=2, keepdim=True)[0] exp_x = torch.exp(x_unfold - x_max) softpool = (x_unfold * exp_x).sum(dim=2) / (exp_x.sum(dim=2) + 1e-8) return softpool.view(batch, channels, out_h, out_w) class SoftPool2d(nn.Module): def __init__(self, kernel_size=(2, 2), stride=None, force_inplace=False): super(SoftPool2d, self).__init__() self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size) self.stride = stride if stride is not None else self.kernel_size def forward(self, x): return soft_pool2d(x, self.kernel_size, self.stride)