import gradio as gr import numpy as np import time, json, hashlib from datetime import datetime # ============================================================= # Rendered Frame Theory — Adaptive Computing Kernel (v1.0) # ============================================================= def rft_kernel(profile, workload, cycles, seed): np.random.seed(seed) t0 = time.time() # Simulated compute rates (items/sec × noise) base_speed = {"CPU": 0.45, "GPU": 0.83, "TPU": 0.78}[profile] noise = np.random.uniform(-0.05, 0.05) rate = base_speed * (1 + noise) # Harmonic metrics QΩ = round(0.8 + np.random.uniform(-0.05, 0.05), 3) ζ_sync = round(0.78 + np.random.uniform(-0.05, 0.05), 3) status = "nominal" if ζ_sync > 0.76 else "perturbed" # Hash-log for proof of run log = { "profile": profile, "workload": workload, "cycles": cycles, "rate_items_per_sec": round(rate * 1e9, 2), "QΩ": QΩ, "ζ_sync": ζ_sync, "status": status, "timestamp_utc": datetime.utcnow().isoformat() + "Z" } log["sha512"] = hashlib.sha512(json.dumps(log).encode()).hexdigest() time.sleep(0.5) return json.dumps(log, indent=2) # ============================================================= # Interface # ============================================================= iface = gr.Interface( fn=rft_kernel, inputs=[ gr.Radio(["CPU","GPU","TPU"], label="Compute Profile"), gr.Radio(["matrix","transformer","mixed"], label="Workload Type"), gr.Slider(1,10,step=1,value=3,label="Cycles"), gr.Number(value=123, label="Seed") ], outputs=gr.JSON(label="Simulation Log"), title="🧠 Rendered Frame Theory — Adaptive Computing Kernel", description=( "Simulates harmonic-stable computation under the RFT model.\n" "Returns QΩ, ζ_sync, and items/sec metrics with SHA-512-sealed logs." ) ) iface.launch()