Spaces:
Build error
Build error
File size: 2,371 Bytes
6ffc1e4 805c2f3 6ffc1e4 f03edb7 6ffc1e4 c8aae99 6ffc1e4 805c2f3 6ffc1e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
"""
Ryan Tietjen
Aug 2024
Demo application for a food classificiation demonstration
"""
from model import vit_b_16
from timeit import default_timer as timer
import torch
import os
import gradio as gr
with open("class_names.txt", 'r') as file:
class_names = [line.strip() for line in file]
model, transforms = vit_b_16(num_classes=101,
seed=31,
freeze_gradients=True,
unfreeze_blocks=0)
model.load_state_dict(torch.load('vit_b_16_unfreeze_one_encoder_block_10_total_epochs.pth',
map_location=torch.device("cpu")))
def predict_single_image(img):
start_time = timer()
model.eval()
#Add batch dim
img = transforms(img).unsqueeze(dim=0)
with torch.inference_mode():
# Obtain prediction logits -> prediction probabilities from image
logits = model(img)
probabilities = torch.softmax(logits, dim=1)
class_probabilities = {}
for i in range(len(class_names)):
class_probabilities[class_names[i]] = float(probabilities[0][i])
end_time = timer()
pred_time = round(end_time - start_time, 3)
return class_probabilities, pred_time
title = "Food Image Classification With PyTorch by Ryan Tietjen"
description = f"""
Determines what type of food is presented in a given image.
This model is capable of classifying [101 different types of food](https://github.com/RyanTietjen/Food-Classifier-pytorch-ver.-/blob/main/demo/class_names.txt) by
utilizing a [pre-trained Vision Transformer](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html#torchvision.models.ViT_B_16_Weights),
and fine-tuning the results for specific food categories. You can find more information in [my GitHub repo.](https://github.com/RyanTietjen/Food-Classifier-pytorch-ver.-)
This model achieved a Top-1 accuracy of 91.55% and a Top-5 accuracy of 98.56%
"""
sample_list = [["samples/" + sample] for sample in os.listdir("samples")]
#Gradio interface
demo = gr.Interface(
fn=predict_single_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=5, label="Predictions"),
gr.Number(label="Prediction time (s)"),
],
examples=sample_list,
title=title,
description=description,
)
demo.launch(share=True) |