Upload loss.py
Browse files- utils/loss.py +1697 -0
utils/loss.py
ADDED
|
@@ -0,0 +1,1697 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Loss functions
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy
|
| 8 |
+
from utils.torch_utils import is_parallel
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
| 12 |
+
# return positive, negative label smoothing BCE targets
|
| 13 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class BCEBlurWithLogitsLoss(nn.Module):
|
| 17 |
+
# BCEwithLogitLoss() with reduced missing label effects.
|
| 18 |
+
def __init__(self, alpha=0.05):
|
| 19 |
+
super(BCEBlurWithLogitsLoss, self).__init__()
|
| 20 |
+
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
| 21 |
+
self.alpha = alpha
|
| 22 |
+
|
| 23 |
+
def forward(self, pred, true):
|
| 24 |
+
loss = self.loss_fcn(pred, true)
|
| 25 |
+
pred = torch.sigmoid(pred) # prob from logits
|
| 26 |
+
dx = pred - true # reduce only missing label effects
|
| 27 |
+
# dx = (pred - true).abs() # reduce missing label and false label effects
|
| 28 |
+
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
| 29 |
+
loss *= alpha_factor
|
| 30 |
+
return loss.mean()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class SigmoidBin(nn.Module):
|
| 34 |
+
stride = None # strides computed during build
|
| 35 |
+
export = False # onnx export
|
| 36 |
+
|
| 37 |
+
def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0):
|
| 38 |
+
super(SigmoidBin, self).__init__()
|
| 39 |
+
|
| 40 |
+
self.bin_count = bin_count
|
| 41 |
+
self.length = bin_count + 1
|
| 42 |
+
self.min = min
|
| 43 |
+
self.max = max
|
| 44 |
+
self.scale = float(max - min)
|
| 45 |
+
self.shift = self.scale / 2.0
|
| 46 |
+
|
| 47 |
+
self.use_loss_regression = use_loss_regression
|
| 48 |
+
self.use_fw_regression = use_fw_regression
|
| 49 |
+
self.reg_scale = reg_scale
|
| 50 |
+
self.BCE_weight = BCE_weight
|
| 51 |
+
|
| 52 |
+
start = min + (self.scale/2.0) / self.bin_count
|
| 53 |
+
end = max - (self.scale/2.0) / self.bin_count
|
| 54 |
+
step = self.scale / self.bin_count
|
| 55 |
+
self.step = step
|
| 56 |
+
#print(f" start = {start}, end = {end}, step = {step} ")
|
| 57 |
+
|
| 58 |
+
bins = torch.range(start, end + 0.0001, step).float()
|
| 59 |
+
self.register_buffer('bins', bins)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
self.cp = 1.0 - 0.5 * smooth_eps
|
| 63 |
+
self.cn = 0.5 * smooth_eps
|
| 64 |
+
|
| 65 |
+
self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight]))
|
| 66 |
+
self.MSELoss = nn.MSELoss()
|
| 67 |
+
|
| 68 |
+
def get_length(self):
|
| 69 |
+
return self.length
|
| 70 |
+
|
| 71 |
+
def forward(self, pred):
|
| 72 |
+
assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
|
| 73 |
+
|
| 74 |
+
pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step
|
| 75 |
+
pred_bin = pred[..., 1:(1+self.bin_count)]
|
| 76 |
+
|
| 77 |
+
_, bin_idx = torch.max(pred_bin, dim=-1)
|
| 78 |
+
bin_bias = self.bins[bin_idx]
|
| 79 |
+
|
| 80 |
+
if self.use_fw_regression:
|
| 81 |
+
result = pred_reg + bin_bias
|
| 82 |
+
else:
|
| 83 |
+
result = bin_bias
|
| 84 |
+
result = result.clamp(min=self.min, max=self.max)
|
| 85 |
+
|
| 86 |
+
return result
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def training_loss(self, pred, target):
|
| 90 |
+
assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
|
| 91 |
+
assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0])
|
| 92 |
+
device = pred.device
|
| 93 |
+
|
| 94 |
+
pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step
|
| 95 |
+
pred_bin = pred[..., 1:(1+self.bin_count)]
|
| 96 |
+
|
| 97 |
+
diff_bin_target = torch.abs(target[..., None] - self.bins)
|
| 98 |
+
_, bin_idx = torch.min(diff_bin_target, dim=-1)
|
| 99 |
+
|
| 100 |
+
bin_bias = self.bins[bin_idx]
|
| 101 |
+
bin_bias.requires_grad = False
|
| 102 |
+
result = pred_reg + bin_bias
|
| 103 |
+
|
| 104 |
+
target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets
|
| 105 |
+
n = pred.shape[0]
|
| 106 |
+
target_bins[range(n), bin_idx] = self.cp
|
| 107 |
+
|
| 108 |
+
loss_bin = self.BCEbins(pred_bin, target_bins) # BCE
|
| 109 |
+
|
| 110 |
+
if self.use_loss_regression:
|
| 111 |
+
loss_regression = self.MSELoss(result, target) # MSE
|
| 112 |
+
loss = loss_bin + loss_regression
|
| 113 |
+
else:
|
| 114 |
+
loss = loss_bin
|
| 115 |
+
|
| 116 |
+
out_result = result.clamp(min=self.min, max=self.max)
|
| 117 |
+
|
| 118 |
+
return loss, out_result
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class FocalLoss(nn.Module):
|
| 122 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
| 123 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
| 124 |
+
super(FocalLoss, self).__init__()
|
| 125 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
| 126 |
+
self.gamma = gamma
|
| 127 |
+
self.alpha = alpha
|
| 128 |
+
self.reduction = loss_fcn.reduction
|
| 129 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
| 130 |
+
|
| 131 |
+
def forward(self, pred, true):
|
| 132 |
+
loss = self.loss_fcn(pred, true)
|
| 133 |
+
# p_t = torch.exp(-loss)
|
| 134 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
| 135 |
+
|
| 136 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
| 137 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
| 138 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
| 139 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
| 140 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
| 141 |
+
loss *= alpha_factor * modulating_factor
|
| 142 |
+
|
| 143 |
+
if self.reduction == 'mean':
|
| 144 |
+
return loss.mean()
|
| 145 |
+
elif self.reduction == 'sum':
|
| 146 |
+
return loss.sum()
|
| 147 |
+
else: # 'none'
|
| 148 |
+
return loss
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class QFocalLoss(nn.Module):
|
| 152 |
+
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
| 153 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
| 154 |
+
super(QFocalLoss, self).__init__()
|
| 155 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
| 156 |
+
self.gamma = gamma
|
| 157 |
+
self.alpha = alpha
|
| 158 |
+
self.reduction = loss_fcn.reduction
|
| 159 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
| 160 |
+
|
| 161 |
+
def forward(self, pred, true):
|
| 162 |
+
loss = self.loss_fcn(pred, true)
|
| 163 |
+
|
| 164 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
| 165 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
| 166 |
+
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
| 167 |
+
loss *= alpha_factor * modulating_factor
|
| 168 |
+
|
| 169 |
+
if self.reduction == 'mean':
|
| 170 |
+
return loss.mean()
|
| 171 |
+
elif self.reduction == 'sum':
|
| 172 |
+
return loss.sum()
|
| 173 |
+
else: # 'none'
|
| 174 |
+
return loss
|
| 175 |
+
|
| 176 |
+
class RankSort(torch.autograd.Function):
|
| 177 |
+
@staticmethod
|
| 178 |
+
def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10):
|
| 179 |
+
|
| 180 |
+
classification_grads=torch.zeros(logits.shape).cuda()
|
| 181 |
+
|
| 182 |
+
#Filter fg logits
|
| 183 |
+
fg_labels = (targets > 0.)
|
| 184 |
+
fg_logits = logits[fg_labels]
|
| 185 |
+
fg_targets = targets[fg_labels]
|
| 186 |
+
fg_num = len(fg_logits)
|
| 187 |
+
|
| 188 |
+
#Do not use bg with scores less than minimum fg logit
|
| 189 |
+
#since changing its score does not have an effect on precision
|
| 190 |
+
threshold_logit = torch.min(fg_logits)-delta_RS
|
| 191 |
+
relevant_bg_labels=((targets==0) & (logits>=threshold_logit))
|
| 192 |
+
|
| 193 |
+
relevant_bg_logits = logits[relevant_bg_labels]
|
| 194 |
+
relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
|
| 195 |
+
sorting_error=torch.zeros(fg_num).cuda()
|
| 196 |
+
ranking_error=torch.zeros(fg_num).cuda()
|
| 197 |
+
fg_grad=torch.zeros(fg_num).cuda()
|
| 198 |
+
|
| 199 |
+
#sort the fg logits
|
| 200 |
+
order=torch.argsort(fg_logits)
|
| 201 |
+
#Loops over each positive following the order
|
| 202 |
+
for ii in order:
|
| 203 |
+
# Difference Transforms (x_ij)
|
| 204 |
+
fg_relations=fg_logits-fg_logits[ii]
|
| 205 |
+
bg_relations=relevant_bg_logits-fg_logits[ii]
|
| 206 |
+
|
| 207 |
+
if delta_RS > 0:
|
| 208 |
+
fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1)
|
| 209 |
+
bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1)
|
| 210 |
+
else:
|
| 211 |
+
fg_relations = (fg_relations >= 0).float()
|
| 212 |
+
bg_relations = (bg_relations >= 0).float()
|
| 213 |
+
|
| 214 |
+
# Rank of ii among pos and false positive number (bg with larger scores)
|
| 215 |
+
rank_pos=torch.sum(fg_relations)
|
| 216 |
+
FP_num=torch.sum(bg_relations)
|
| 217 |
+
|
| 218 |
+
# Rank of ii among all examples
|
| 219 |
+
rank=rank_pos+FP_num
|
| 220 |
+
|
| 221 |
+
# Ranking error of example ii. target_ranking_error is always 0. (Eq. 7)
|
| 222 |
+
ranking_error[ii]=FP_num/rank
|
| 223 |
+
|
| 224 |
+
# Current sorting error of example ii. (Eq. 7)
|
| 225 |
+
current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos
|
| 226 |
+
|
| 227 |
+
#Find examples in the target sorted order for example ii
|
| 228 |
+
iou_relations = (fg_targets >= fg_targets[ii])
|
| 229 |
+
target_sorted_order = iou_relations * fg_relations
|
| 230 |
+
|
| 231 |
+
#The rank of ii among positives in sorted order
|
| 232 |
+
rank_pos_target = torch.sum(target_sorted_order)
|
| 233 |
+
|
| 234 |
+
#Compute target sorting error. (Eq. 8)
|
| 235 |
+
#Since target ranking error is 0, this is also total target error
|
| 236 |
+
target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target
|
| 237 |
+
|
| 238 |
+
#Compute sorting error on example ii
|
| 239 |
+
sorting_error[ii] = current_sorting_error - target_sorting_error
|
| 240 |
+
|
| 241 |
+
#Identity Update for Ranking Error
|
| 242 |
+
if FP_num > eps:
|
| 243 |
+
#For ii the update is the ranking error
|
| 244 |
+
fg_grad[ii] -= ranking_error[ii]
|
| 245 |
+
#For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num)
|
| 246 |
+
relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num))
|
| 247 |
+
|
| 248 |
+
#Find the positives that are misranked (the cause of the error)
|
| 249 |
+
#These are the ones with smaller IoU but larger logits
|
| 250 |
+
missorted_examples = (~ iou_relations) * fg_relations
|
| 251 |
+
|
| 252 |
+
#Denominotor of sorting pmf
|
| 253 |
+
sorting_pmf_denom = torch.sum(missorted_examples)
|
| 254 |
+
|
| 255 |
+
#Identity Update for Sorting Error
|
| 256 |
+
if sorting_pmf_denom > eps:
|
| 257 |
+
#For ii the update is the sorting error
|
| 258 |
+
fg_grad[ii] -= sorting_error[ii]
|
| 259 |
+
#For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom)
|
| 260 |
+
fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom))
|
| 261 |
+
|
| 262 |
+
#Normalize gradients by number of positives
|
| 263 |
+
classification_grads[fg_labels]= (fg_grad/fg_num)
|
| 264 |
+
classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num)
|
| 265 |
+
|
| 266 |
+
ctx.save_for_backward(classification_grads)
|
| 267 |
+
|
| 268 |
+
return ranking_error.mean(), sorting_error.mean()
|
| 269 |
+
|
| 270 |
+
@staticmethod
|
| 271 |
+
def backward(ctx, out_grad1, out_grad2):
|
| 272 |
+
g1, =ctx.saved_tensors
|
| 273 |
+
return g1*out_grad1, None, None, None
|
| 274 |
+
|
| 275 |
+
class aLRPLoss(torch.autograd.Function):
|
| 276 |
+
@staticmethod
|
| 277 |
+
def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5):
|
| 278 |
+
classification_grads=torch.zeros(logits.shape).cuda()
|
| 279 |
+
|
| 280 |
+
#Filter fg logits
|
| 281 |
+
fg_labels = (targets == 1)
|
| 282 |
+
fg_logits = logits[fg_labels]
|
| 283 |
+
fg_num = len(fg_logits)
|
| 284 |
+
|
| 285 |
+
#Do not use bg with scores less than minimum fg logit
|
| 286 |
+
#since changing its score does not have an effect on precision
|
| 287 |
+
threshold_logit = torch.min(fg_logits)-delta
|
| 288 |
+
|
| 289 |
+
#Get valid bg logits
|
| 290 |
+
relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
|
| 291 |
+
relevant_bg_logits=logits[relevant_bg_labels]
|
| 292 |
+
relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
|
| 293 |
+
rank=torch.zeros(fg_num).cuda()
|
| 294 |
+
prec=torch.zeros(fg_num).cuda()
|
| 295 |
+
fg_grad=torch.zeros(fg_num).cuda()
|
| 296 |
+
|
| 297 |
+
max_prec=0
|
| 298 |
+
#sort the fg logits
|
| 299 |
+
order=torch.argsort(fg_logits)
|
| 300 |
+
#Loops over each positive following the order
|
| 301 |
+
for ii in order:
|
| 302 |
+
#x_ij s as score differences with fgs
|
| 303 |
+
fg_relations=fg_logits-fg_logits[ii]
|
| 304 |
+
#Apply piecewise linear function and determine relations with fgs
|
| 305 |
+
fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
|
| 306 |
+
#Discard i=j in the summation in rank_pos
|
| 307 |
+
fg_relations[ii]=0
|
| 308 |
+
|
| 309 |
+
#x_ij s as score differences with bgs
|
| 310 |
+
bg_relations=relevant_bg_logits-fg_logits[ii]
|
| 311 |
+
#Apply piecewise linear function and determine relations with bgs
|
| 312 |
+
bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
|
| 313 |
+
|
| 314 |
+
#Compute the rank of the example within fgs and number of bgs with larger scores
|
| 315 |
+
rank_pos=1+torch.sum(fg_relations)
|
| 316 |
+
FP_num=torch.sum(bg_relations)
|
| 317 |
+
#Store the total since it is normalizer also for aLRP Regression error
|
| 318 |
+
rank[ii]=rank_pos+FP_num
|
| 319 |
+
|
| 320 |
+
#Compute precision for this example to compute classification loss
|
| 321 |
+
prec[ii]=rank_pos/rank[ii]
|
| 322 |
+
#For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads
|
| 323 |
+
if FP_num > eps:
|
| 324 |
+
fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii]
|
| 325 |
+
relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num))
|
| 326 |
+
|
| 327 |
+
#aLRP with grad formulation fg gradient
|
| 328 |
+
classification_grads[fg_labels]= fg_grad
|
| 329 |
+
#aLRP with grad formulation bg gradient
|
| 330 |
+
classification_grads[relevant_bg_labels]= relevant_bg_grad
|
| 331 |
+
|
| 332 |
+
classification_grads /= (fg_num)
|
| 333 |
+
|
| 334 |
+
cls_loss=1-prec.mean()
|
| 335 |
+
ctx.save_for_backward(classification_grads)
|
| 336 |
+
|
| 337 |
+
return cls_loss, rank, order
|
| 338 |
+
|
| 339 |
+
@staticmethod
|
| 340 |
+
def backward(ctx, out_grad1, out_grad2, out_grad3):
|
| 341 |
+
g1, =ctx.saved_tensors
|
| 342 |
+
return g1*out_grad1, None, None, None, None
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class APLoss(torch.autograd.Function):
|
| 346 |
+
@staticmethod
|
| 347 |
+
def forward(ctx, logits, targets, delta=1.):
|
| 348 |
+
classification_grads=torch.zeros(logits.shape).cuda()
|
| 349 |
+
|
| 350 |
+
#Filter fg logits
|
| 351 |
+
fg_labels = (targets == 1)
|
| 352 |
+
fg_logits = logits[fg_labels]
|
| 353 |
+
fg_num = len(fg_logits)
|
| 354 |
+
|
| 355 |
+
#Do not use bg with scores less than minimum fg logit
|
| 356 |
+
#since changing its score does not have an effect on precision
|
| 357 |
+
threshold_logit = torch.min(fg_logits)-delta
|
| 358 |
+
|
| 359 |
+
#Get valid bg logits
|
| 360 |
+
relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
|
| 361 |
+
relevant_bg_logits=logits[relevant_bg_labels]
|
| 362 |
+
relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
|
| 363 |
+
rank=torch.zeros(fg_num).cuda()
|
| 364 |
+
prec=torch.zeros(fg_num).cuda()
|
| 365 |
+
fg_grad=torch.zeros(fg_num).cuda()
|
| 366 |
+
|
| 367 |
+
max_prec=0
|
| 368 |
+
#sort the fg logits
|
| 369 |
+
order=torch.argsort(fg_logits)
|
| 370 |
+
#Loops over each positive following the order
|
| 371 |
+
for ii in order:
|
| 372 |
+
#x_ij s as score differences with fgs
|
| 373 |
+
fg_relations=fg_logits-fg_logits[ii]
|
| 374 |
+
#Apply piecewise linear function and determine relations with fgs
|
| 375 |
+
fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
|
| 376 |
+
#Discard i=j in the summation in rank_pos
|
| 377 |
+
fg_relations[ii]=0
|
| 378 |
+
|
| 379 |
+
#x_ij s as score differences with bgs
|
| 380 |
+
bg_relations=relevant_bg_logits-fg_logits[ii]
|
| 381 |
+
#Apply piecewise linear function and determine relations with bgs
|
| 382 |
+
bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
|
| 383 |
+
|
| 384 |
+
#Compute the rank of the example within fgs and number of bgs with larger scores
|
| 385 |
+
rank_pos=1+torch.sum(fg_relations)
|
| 386 |
+
FP_num=torch.sum(bg_relations)
|
| 387 |
+
#Store the total since it is normalizer also for aLRP Regression error
|
| 388 |
+
rank[ii]=rank_pos+FP_num
|
| 389 |
+
|
| 390 |
+
#Compute precision for this example
|
| 391 |
+
current_prec=rank_pos/rank[ii]
|
| 392 |
+
|
| 393 |
+
#Compute interpolated AP and store gradients for relevant bg examples
|
| 394 |
+
if (max_prec<=current_prec):
|
| 395 |
+
max_prec=current_prec
|
| 396 |
+
relevant_bg_grad += (bg_relations/rank[ii])
|
| 397 |
+
else:
|
| 398 |
+
relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec)))
|
| 399 |
+
|
| 400 |
+
#Store fg gradients
|
| 401 |
+
fg_grad[ii]=-(1-max_prec)
|
| 402 |
+
prec[ii]=max_prec
|
| 403 |
+
|
| 404 |
+
#aLRP with grad formulation fg gradient
|
| 405 |
+
classification_grads[fg_labels]= fg_grad
|
| 406 |
+
#aLRP with grad formulation bg gradient
|
| 407 |
+
classification_grads[relevant_bg_labels]= relevant_bg_grad
|
| 408 |
+
|
| 409 |
+
classification_grads /= fg_num
|
| 410 |
+
|
| 411 |
+
cls_loss=1-prec.mean()
|
| 412 |
+
ctx.save_for_backward(classification_grads)
|
| 413 |
+
|
| 414 |
+
return cls_loss
|
| 415 |
+
|
| 416 |
+
@staticmethod
|
| 417 |
+
def backward(ctx, out_grad1):
|
| 418 |
+
g1, =ctx.saved_tensors
|
| 419 |
+
return g1*out_grad1, None, None
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class ComputeLoss:
|
| 423 |
+
# Compute losses
|
| 424 |
+
def __init__(self, model, autobalance=False):
|
| 425 |
+
super(ComputeLoss, self).__init__()
|
| 426 |
+
device = next(model.parameters()).device # get model device
|
| 427 |
+
h = model.hyp # hyperparameters
|
| 428 |
+
|
| 429 |
+
# Define criteria
|
| 430 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
| 431 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
| 432 |
+
|
| 433 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
| 434 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
| 435 |
+
|
| 436 |
+
# Focal loss
|
| 437 |
+
g = h['fl_gamma'] # focal loss gamma
|
| 438 |
+
if g > 0:
|
| 439 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
| 440 |
+
|
| 441 |
+
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
| 442 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
| 443 |
+
#self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7
|
| 444 |
+
#self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7
|
| 445 |
+
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
| 446 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
| 447 |
+
for k in 'na', 'nc', 'nl', 'anchors':
|
| 448 |
+
setattr(self, k, getattr(det, k))
|
| 449 |
+
|
| 450 |
+
def __call__(self, p, targets): # predictions, targets, model
|
| 451 |
+
device = targets.device
|
| 452 |
+
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
| 453 |
+
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
|
| 454 |
+
|
| 455 |
+
# Losses
|
| 456 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
| 457 |
+
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
| 458 |
+
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
| 459 |
+
|
| 460 |
+
n = b.shape[0] # number of targets
|
| 461 |
+
if n:
|
| 462 |
+
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
| 463 |
+
|
| 464 |
+
# Regression
|
| 465 |
+
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
| 466 |
+
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
| 467 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
| 468 |
+
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
| 469 |
+
lbox += (1.0 - iou).mean() # iou loss
|
| 470 |
+
|
| 471 |
+
# Objectness
|
| 472 |
+
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
| 473 |
+
|
| 474 |
+
# Classification
|
| 475 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
| 476 |
+
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
|
| 477 |
+
t[range(n), tcls[i]] = self.cp
|
| 478 |
+
#t[t==self.cp] = iou.detach().clamp(0).type(t.dtype)
|
| 479 |
+
lcls += self.BCEcls(ps[:, 5:], t) # BCE
|
| 480 |
+
|
| 481 |
+
# Append targets to text file
|
| 482 |
+
# with open('targets.txt', 'a') as file:
|
| 483 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
| 484 |
+
|
| 485 |
+
obji = self.BCEobj(pi[..., 4], tobj)
|
| 486 |
+
lobj += obji * self.balance[i] # obj loss
|
| 487 |
+
if self.autobalance:
|
| 488 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
| 489 |
+
|
| 490 |
+
if self.autobalance:
|
| 491 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
| 492 |
+
lbox *= self.hyp['box']
|
| 493 |
+
lobj *= self.hyp['obj']
|
| 494 |
+
lcls *= self.hyp['cls']
|
| 495 |
+
bs = tobj.shape[0] # batch size
|
| 496 |
+
|
| 497 |
+
loss = lbox + lobj + lcls
|
| 498 |
+
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
| 499 |
+
|
| 500 |
+
def build_targets(self, p, targets):
|
| 501 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
| 502 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
| 503 |
+
tcls, tbox, indices, anch = [], [], [], []
|
| 504 |
+
gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
|
| 505 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
| 506 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
| 507 |
+
|
| 508 |
+
g = 0.5 # bias
|
| 509 |
+
off = torch.tensor([[0, 0],
|
| 510 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
| 511 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
| 512 |
+
], device=targets.device).float() * g # offsets
|
| 513 |
+
|
| 514 |
+
for i in range(self.nl):
|
| 515 |
+
anchors = self.anchors[i]
|
| 516 |
+
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
| 517 |
+
|
| 518 |
+
# Match targets to anchors
|
| 519 |
+
t = targets * gain
|
| 520 |
+
if nt:
|
| 521 |
+
# Matches
|
| 522 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
| 523 |
+
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
| 524 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
| 525 |
+
t = t[j] # filter
|
| 526 |
+
|
| 527 |
+
# Offsets
|
| 528 |
+
gxy = t[:, 2:4] # grid xy
|
| 529 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
| 530 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
| 531 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
| 532 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
| 533 |
+
t = t.repeat((5, 1, 1))[j]
|
| 534 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
| 535 |
+
else:
|
| 536 |
+
t = targets[0]
|
| 537 |
+
offsets = 0
|
| 538 |
+
|
| 539 |
+
# Define
|
| 540 |
+
b, c = t[:, :2].long().T # image, class
|
| 541 |
+
gxy = t[:, 2:4] # grid xy
|
| 542 |
+
gwh = t[:, 4:6] # grid wh
|
| 543 |
+
gij = (gxy - offsets).long()
|
| 544 |
+
gi, gj = gij.T # grid xy indices
|
| 545 |
+
|
| 546 |
+
# Append
|
| 547 |
+
a = t[:, 6].long() # anchor indices
|
| 548 |
+
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
| 549 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
| 550 |
+
anch.append(anchors[a]) # anchors
|
| 551 |
+
tcls.append(c) # class
|
| 552 |
+
|
| 553 |
+
return tcls, tbox, indices, anch
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
class ComputeLossOTA:
|
| 557 |
+
# Compute losses
|
| 558 |
+
def __init__(self, model, autobalance=False):
|
| 559 |
+
super(ComputeLossOTA, self).__init__()
|
| 560 |
+
device = next(model.parameters()).device # get model device
|
| 561 |
+
h = model.hyp # hyperparameters
|
| 562 |
+
|
| 563 |
+
# Define criteria
|
| 564 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
| 565 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
| 566 |
+
|
| 567 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
| 568 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
| 569 |
+
|
| 570 |
+
# Focal loss
|
| 571 |
+
g = h['fl_gamma'] # focal loss gamma
|
| 572 |
+
if g > 0:
|
| 573 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
| 574 |
+
|
| 575 |
+
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
| 576 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
| 577 |
+
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
| 578 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
| 579 |
+
for k in 'na', 'nc', 'nl', 'anchors', 'stride':
|
| 580 |
+
setattr(self, k, getattr(det, k))
|
| 581 |
+
|
| 582 |
+
def __call__(self, p, targets, imgs): # predictions, targets, model
|
| 583 |
+
device = targets.device
|
| 584 |
+
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
| 585 |
+
bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
|
| 586 |
+
pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
# Losses
|
| 590 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
| 591 |
+
b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
|
| 592 |
+
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
| 593 |
+
|
| 594 |
+
n = b.shape[0] # number of targets
|
| 595 |
+
if n:
|
| 596 |
+
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
| 597 |
+
|
| 598 |
+
# Regression
|
| 599 |
+
grid = torch.stack([gi, gj], dim=1)
|
| 600 |
+
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
| 601 |
+
#pxy = ps[:, :2].sigmoid() * 3. - 1.
|
| 602 |
+
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
| 603 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
| 604 |
+
selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
|
| 605 |
+
selected_tbox[:, :2] -= grid
|
| 606 |
+
iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
| 607 |
+
lbox += (1.0 - iou).mean() # iou loss
|
| 608 |
+
|
| 609 |
+
# Objectness
|
| 610 |
+
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
| 611 |
+
|
| 612 |
+
# Classification
|
| 613 |
+
selected_tcls = targets[i][:, 1].long()
|
| 614 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
| 615 |
+
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
|
| 616 |
+
t[range(n), selected_tcls] = self.cp
|
| 617 |
+
lcls += self.BCEcls(ps[:, 5:], t) # BCE
|
| 618 |
+
|
| 619 |
+
# Append targets to text file
|
| 620 |
+
# with open('targets.txt', 'a') as file:
|
| 621 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
| 622 |
+
|
| 623 |
+
obji = self.BCEobj(pi[..., 4], tobj)
|
| 624 |
+
lobj += obji * self.balance[i] # obj loss
|
| 625 |
+
if self.autobalance:
|
| 626 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
| 627 |
+
|
| 628 |
+
if self.autobalance:
|
| 629 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
| 630 |
+
lbox *= self.hyp['box']
|
| 631 |
+
lobj *= self.hyp['obj']
|
| 632 |
+
lcls *= self.hyp['cls']
|
| 633 |
+
bs = tobj.shape[0] # batch size
|
| 634 |
+
|
| 635 |
+
loss = lbox + lobj + lcls
|
| 636 |
+
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
| 637 |
+
|
| 638 |
+
def build_targets(self, p, targets, imgs):
|
| 639 |
+
|
| 640 |
+
#indices, anch = self.find_positive(p, targets)
|
| 641 |
+
indices, anch = self.find_3_positive(p, targets)
|
| 642 |
+
#indices, anch = self.find_4_positive(p, targets)
|
| 643 |
+
#indices, anch = self.find_5_positive(p, targets)
|
| 644 |
+
#indices, anch = self.find_9_positive(p, targets)
|
| 645 |
+
|
| 646 |
+
matching_bs = [[] for pp in p]
|
| 647 |
+
matching_as = [[] for pp in p]
|
| 648 |
+
matching_gjs = [[] for pp in p]
|
| 649 |
+
matching_gis = [[] for pp in p]
|
| 650 |
+
matching_targets = [[] for pp in p]
|
| 651 |
+
matching_anchs = [[] for pp in p]
|
| 652 |
+
|
| 653 |
+
nl = len(p)
|
| 654 |
+
|
| 655 |
+
for batch_idx in range(p[0].shape[0]):
|
| 656 |
+
|
| 657 |
+
b_idx = targets[:, 0]==batch_idx
|
| 658 |
+
this_target = targets[b_idx]
|
| 659 |
+
if this_target.shape[0] == 0:
|
| 660 |
+
continue
|
| 661 |
+
|
| 662 |
+
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
|
| 663 |
+
txyxy = xywh2xyxy(txywh)
|
| 664 |
+
|
| 665 |
+
pxyxys = []
|
| 666 |
+
p_cls = []
|
| 667 |
+
p_obj = []
|
| 668 |
+
from_which_layer = []
|
| 669 |
+
all_b = []
|
| 670 |
+
all_a = []
|
| 671 |
+
all_gj = []
|
| 672 |
+
all_gi = []
|
| 673 |
+
all_anch = []
|
| 674 |
+
|
| 675 |
+
for i, pi in enumerate(p):
|
| 676 |
+
|
| 677 |
+
b, a, gj, gi = indices[i]
|
| 678 |
+
idx = (b == batch_idx)
|
| 679 |
+
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
|
| 680 |
+
all_b.append(b)
|
| 681 |
+
all_a.append(a)
|
| 682 |
+
all_gj.append(gj)
|
| 683 |
+
all_gi.append(gi)
|
| 684 |
+
all_anch.append(anch[i][idx])
|
| 685 |
+
from_which_layer.append(torch.ones(size=(len(b),)) * i)
|
| 686 |
+
|
| 687 |
+
fg_pred = pi[b, a, gj, gi]
|
| 688 |
+
p_obj.append(fg_pred[:, 4:5])
|
| 689 |
+
p_cls.append(fg_pred[:, 5:])
|
| 690 |
+
|
| 691 |
+
grid = torch.stack([gi, gj], dim=1)
|
| 692 |
+
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
|
| 693 |
+
#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
|
| 694 |
+
pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
|
| 695 |
+
pxywh = torch.cat([pxy, pwh], dim=-1)
|
| 696 |
+
pxyxy = xywh2xyxy(pxywh)
|
| 697 |
+
pxyxys.append(pxyxy)
|
| 698 |
+
|
| 699 |
+
pxyxys = torch.cat(pxyxys, dim=0)
|
| 700 |
+
if pxyxys.shape[0] == 0:
|
| 701 |
+
continue
|
| 702 |
+
p_obj = torch.cat(p_obj, dim=0)
|
| 703 |
+
p_cls = torch.cat(p_cls, dim=0)
|
| 704 |
+
from_which_layer = torch.cat(from_which_layer, dim=0)
|
| 705 |
+
all_b = torch.cat(all_b, dim=0)
|
| 706 |
+
all_a = torch.cat(all_a, dim=0)
|
| 707 |
+
all_gj = torch.cat(all_gj, dim=0)
|
| 708 |
+
all_gi = torch.cat(all_gi, dim=0)
|
| 709 |
+
all_anch = torch.cat(all_anch, dim=0)
|
| 710 |
+
|
| 711 |
+
pair_wise_iou = box_iou(txyxy, pxyxys)
|
| 712 |
+
|
| 713 |
+
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
|
| 714 |
+
|
| 715 |
+
top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
|
| 716 |
+
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
|
| 717 |
+
|
| 718 |
+
gt_cls_per_image = (
|
| 719 |
+
F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
|
| 720 |
+
.float()
|
| 721 |
+
.unsqueeze(1)
|
| 722 |
+
.repeat(1, pxyxys.shape[0], 1)
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
num_gt = this_target.shape[0]
|
| 726 |
+
cls_preds_ = (
|
| 727 |
+
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 728 |
+
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
y = cls_preds_.sqrt_()
|
| 732 |
+
pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
| 733 |
+
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
|
| 734 |
+
).sum(-1)
|
| 735 |
+
del cls_preds_
|
| 736 |
+
|
| 737 |
+
cost = (
|
| 738 |
+
pair_wise_cls_loss
|
| 739 |
+
+ 3.0 * pair_wise_iou_loss
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
matching_matrix = torch.zeros_like(cost)
|
| 743 |
+
|
| 744 |
+
for gt_idx in range(num_gt):
|
| 745 |
+
_, pos_idx = torch.topk(
|
| 746 |
+
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
|
| 747 |
+
)
|
| 748 |
+
matching_matrix[gt_idx][pos_idx] = 1.0
|
| 749 |
+
|
| 750 |
+
del top_k, dynamic_ks
|
| 751 |
+
anchor_matching_gt = matching_matrix.sum(0)
|
| 752 |
+
if (anchor_matching_gt > 1).sum() > 0:
|
| 753 |
+
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
| 754 |
+
matching_matrix[:, anchor_matching_gt > 1] *= 0.0
|
| 755 |
+
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
|
| 756 |
+
fg_mask_inboxes = matching_matrix.sum(0) > 0.0
|
| 757 |
+
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
| 758 |
+
|
| 759 |
+
from_which_layer = from_which_layer[fg_mask_inboxes]
|
| 760 |
+
all_b = all_b[fg_mask_inboxes]
|
| 761 |
+
all_a = all_a[fg_mask_inboxes]
|
| 762 |
+
all_gj = all_gj[fg_mask_inboxes]
|
| 763 |
+
all_gi = all_gi[fg_mask_inboxes]
|
| 764 |
+
all_anch = all_anch[fg_mask_inboxes]
|
| 765 |
+
|
| 766 |
+
this_target = this_target[matched_gt_inds]
|
| 767 |
+
|
| 768 |
+
for i in range(nl):
|
| 769 |
+
layer_idx = from_which_layer == i
|
| 770 |
+
matching_bs[i].append(all_b[layer_idx])
|
| 771 |
+
matching_as[i].append(all_a[layer_idx])
|
| 772 |
+
matching_gjs[i].append(all_gj[layer_idx])
|
| 773 |
+
matching_gis[i].append(all_gi[layer_idx])
|
| 774 |
+
matching_targets[i].append(this_target[layer_idx])
|
| 775 |
+
matching_anchs[i].append(all_anch[layer_idx])
|
| 776 |
+
|
| 777 |
+
for i in range(nl):
|
| 778 |
+
if matching_targets[i] != []:
|
| 779 |
+
matching_bs[i] = torch.cat(matching_bs[i], dim=0)
|
| 780 |
+
matching_as[i] = torch.cat(matching_as[i], dim=0)
|
| 781 |
+
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
|
| 782 |
+
matching_gis[i] = torch.cat(matching_gis[i], dim=0)
|
| 783 |
+
matching_targets[i] = torch.cat(matching_targets[i], dim=0)
|
| 784 |
+
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
|
| 785 |
+
else:
|
| 786 |
+
matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 787 |
+
matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 788 |
+
matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 789 |
+
matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 790 |
+
matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 791 |
+
matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 792 |
+
|
| 793 |
+
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
|
| 794 |
+
|
| 795 |
+
def find_3_positive(self, p, targets):
|
| 796 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
| 797 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
| 798 |
+
indices, anch = [], []
|
| 799 |
+
gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
|
| 800 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
| 801 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
| 802 |
+
|
| 803 |
+
g = 0.5 # bias
|
| 804 |
+
off = torch.tensor([[0, 0],
|
| 805 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
| 806 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
| 807 |
+
], device=targets.device).float() * g # offsets
|
| 808 |
+
|
| 809 |
+
for i in range(self.nl):
|
| 810 |
+
anchors = self.anchors[i]
|
| 811 |
+
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
| 812 |
+
|
| 813 |
+
# Match targets to anchors
|
| 814 |
+
t = targets * gain
|
| 815 |
+
if nt:
|
| 816 |
+
# Matches
|
| 817 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
| 818 |
+
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
| 819 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
| 820 |
+
t = t[j] # filter
|
| 821 |
+
|
| 822 |
+
# Offsets
|
| 823 |
+
gxy = t[:, 2:4] # grid xy
|
| 824 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
| 825 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
| 826 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
| 827 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
| 828 |
+
t = t.repeat((5, 1, 1))[j]
|
| 829 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
| 830 |
+
else:
|
| 831 |
+
t = targets[0]
|
| 832 |
+
offsets = 0
|
| 833 |
+
|
| 834 |
+
# Define
|
| 835 |
+
b, c = t[:, :2].long().T # image, class
|
| 836 |
+
gxy = t[:, 2:4] # grid xy
|
| 837 |
+
gwh = t[:, 4:6] # grid wh
|
| 838 |
+
gij = (gxy - offsets).long()
|
| 839 |
+
gi, gj = gij.T # grid xy indices
|
| 840 |
+
|
| 841 |
+
# Append
|
| 842 |
+
a = t[:, 6].long() # anchor indices
|
| 843 |
+
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
| 844 |
+
anch.append(anchors[a]) # anchors
|
| 845 |
+
|
| 846 |
+
return indices, anch
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
class ComputeLossBinOTA:
|
| 850 |
+
# Compute losses
|
| 851 |
+
def __init__(self, model, autobalance=False):
|
| 852 |
+
super(ComputeLossBinOTA, self).__init__()
|
| 853 |
+
device = next(model.parameters()).device # get model device
|
| 854 |
+
h = model.hyp # hyperparameters
|
| 855 |
+
|
| 856 |
+
# Define criteria
|
| 857 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
| 858 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
| 859 |
+
#MSEangle = nn.MSELoss().to(device)
|
| 860 |
+
|
| 861 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
| 862 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
| 863 |
+
|
| 864 |
+
# Focal loss
|
| 865 |
+
g = h['fl_gamma'] # focal loss gamma
|
| 866 |
+
if g > 0:
|
| 867 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
| 868 |
+
|
| 869 |
+
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
| 870 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
| 871 |
+
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
| 872 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
| 873 |
+
for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count':
|
| 874 |
+
setattr(self, k, getattr(det, k))
|
| 875 |
+
|
| 876 |
+
#xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device)
|
| 877 |
+
wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device)
|
| 878 |
+
#angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device)
|
| 879 |
+
self.wh_bin_sigmoid = wh_bin_sigmoid
|
| 880 |
+
|
| 881 |
+
def __call__(self, p, targets, imgs): # predictions, targets, model
|
| 882 |
+
device = targets.device
|
| 883 |
+
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
| 884 |
+
bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
|
| 885 |
+
pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
# Losses
|
| 889 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
| 890 |
+
b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
|
| 891 |
+
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
| 892 |
+
|
| 893 |
+
obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2
|
| 894 |
+
|
| 895 |
+
n = b.shape[0] # number of targets
|
| 896 |
+
if n:
|
| 897 |
+
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
| 898 |
+
|
| 899 |
+
# Regression
|
| 900 |
+
grid = torch.stack([gi, gj], dim=1)
|
| 901 |
+
selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
|
| 902 |
+
selected_tbox[:, :2] -= grid
|
| 903 |
+
|
| 904 |
+
#pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
| 905 |
+
##pxy = ps[:, :2].sigmoid() * 3. - 1.
|
| 906 |
+
#pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
| 907 |
+
#pbox = torch.cat((pxy, pwh), 1) # predicted box
|
| 908 |
+
|
| 909 |
+
#x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0])
|
| 910 |
+
#y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1])
|
| 911 |
+
w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0])
|
| 912 |
+
h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1])
|
| 913 |
+
|
| 914 |
+
pw *= anchors[i][..., 0]
|
| 915 |
+
ph *= anchors[i][..., 1]
|
| 916 |
+
|
| 917 |
+
px = ps[:, 0].sigmoid() * 2. - 0.5
|
| 918 |
+
py = ps[:, 1].sigmoid() * 2. - 0.5
|
| 919 |
+
|
| 920 |
+
lbox += w_loss + h_loss # + x_loss + y_loss
|
| 921 |
+
|
| 922 |
+
#print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n")
|
| 923 |
+
|
| 924 |
+
pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
| 930 |
+
lbox += (1.0 - iou).mean() # iou loss
|
| 931 |
+
|
| 932 |
+
# Objectness
|
| 933 |
+
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
| 934 |
+
|
| 935 |
+
# Classification
|
| 936 |
+
selected_tcls = targets[i][:, 1].long()
|
| 937 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
| 938 |
+
t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets
|
| 939 |
+
t[range(n), selected_tcls] = self.cp
|
| 940 |
+
lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE
|
| 941 |
+
|
| 942 |
+
# Append targets to text file
|
| 943 |
+
# with open('targets.txt', 'a') as file:
|
| 944 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
| 945 |
+
|
| 946 |
+
obji = self.BCEobj(pi[..., obj_idx], tobj)
|
| 947 |
+
lobj += obji * self.balance[i] # obj loss
|
| 948 |
+
if self.autobalance:
|
| 949 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
| 950 |
+
|
| 951 |
+
if self.autobalance:
|
| 952 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
| 953 |
+
lbox *= self.hyp['box']
|
| 954 |
+
lobj *= self.hyp['obj']
|
| 955 |
+
lcls *= self.hyp['cls']
|
| 956 |
+
bs = tobj.shape[0] # batch size
|
| 957 |
+
|
| 958 |
+
loss = lbox + lobj + lcls
|
| 959 |
+
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
| 960 |
+
|
| 961 |
+
def build_targets(self, p, targets, imgs):
|
| 962 |
+
|
| 963 |
+
#indices, anch = self.find_positive(p, targets)
|
| 964 |
+
indices, anch = self.find_3_positive(p, targets)
|
| 965 |
+
#indices, anch = self.find_4_positive(p, targets)
|
| 966 |
+
#indices, anch = self.find_5_positive(p, targets)
|
| 967 |
+
#indices, anch = self.find_9_positive(p, targets)
|
| 968 |
+
|
| 969 |
+
matching_bs = [[] for pp in p]
|
| 970 |
+
matching_as = [[] for pp in p]
|
| 971 |
+
matching_gjs = [[] for pp in p]
|
| 972 |
+
matching_gis = [[] for pp in p]
|
| 973 |
+
matching_targets = [[] for pp in p]
|
| 974 |
+
matching_anchs = [[] for pp in p]
|
| 975 |
+
|
| 976 |
+
nl = len(p)
|
| 977 |
+
|
| 978 |
+
for batch_idx in range(p[0].shape[0]):
|
| 979 |
+
|
| 980 |
+
b_idx = targets[:, 0]==batch_idx
|
| 981 |
+
this_target = targets[b_idx]
|
| 982 |
+
if this_target.shape[0] == 0:
|
| 983 |
+
continue
|
| 984 |
+
|
| 985 |
+
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
|
| 986 |
+
txyxy = xywh2xyxy(txywh)
|
| 987 |
+
|
| 988 |
+
pxyxys = []
|
| 989 |
+
p_cls = []
|
| 990 |
+
p_obj = []
|
| 991 |
+
from_which_layer = []
|
| 992 |
+
all_b = []
|
| 993 |
+
all_a = []
|
| 994 |
+
all_gj = []
|
| 995 |
+
all_gi = []
|
| 996 |
+
all_anch = []
|
| 997 |
+
|
| 998 |
+
for i, pi in enumerate(p):
|
| 999 |
+
|
| 1000 |
+
obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2
|
| 1001 |
+
|
| 1002 |
+
b, a, gj, gi = indices[i]
|
| 1003 |
+
idx = (b == batch_idx)
|
| 1004 |
+
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
|
| 1005 |
+
all_b.append(b)
|
| 1006 |
+
all_a.append(a)
|
| 1007 |
+
all_gj.append(gj)
|
| 1008 |
+
all_gi.append(gi)
|
| 1009 |
+
all_anch.append(anch[i][idx])
|
| 1010 |
+
from_which_layer.append(torch.ones(size=(len(b),)) * i)
|
| 1011 |
+
|
| 1012 |
+
fg_pred = pi[b, a, gj, gi]
|
| 1013 |
+
p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)])
|
| 1014 |
+
p_cls.append(fg_pred[:, (obj_idx+1):])
|
| 1015 |
+
|
| 1016 |
+
grid = torch.stack([gi, gj], dim=1)
|
| 1017 |
+
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
|
| 1018 |
+
#pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
|
| 1019 |
+
pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i]
|
| 1020 |
+
ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i]
|
| 1021 |
+
|
| 1022 |
+
pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1)
|
| 1023 |
+
pxyxy = xywh2xyxy(pxywh)
|
| 1024 |
+
pxyxys.append(pxyxy)
|
| 1025 |
+
|
| 1026 |
+
pxyxys = torch.cat(pxyxys, dim=0)
|
| 1027 |
+
if pxyxys.shape[0] == 0:
|
| 1028 |
+
continue
|
| 1029 |
+
p_obj = torch.cat(p_obj, dim=0)
|
| 1030 |
+
p_cls = torch.cat(p_cls, dim=0)
|
| 1031 |
+
from_which_layer = torch.cat(from_which_layer, dim=0)
|
| 1032 |
+
all_b = torch.cat(all_b, dim=0)
|
| 1033 |
+
all_a = torch.cat(all_a, dim=0)
|
| 1034 |
+
all_gj = torch.cat(all_gj, dim=0)
|
| 1035 |
+
all_gi = torch.cat(all_gi, dim=0)
|
| 1036 |
+
all_anch = torch.cat(all_anch, dim=0)
|
| 1037 |
+
|
| 1038 |
+
pair_wise_iou = box_iou(txyxy, pxyxys)
|
| 1039 |
+
|
| 1040 |
+
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
|
| 1041 |
+
|
| 1042 |
+
top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
|
| 1043 |
+
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
|
| 1044 |
+
|
| 1045 |
+
gt_cls_per_image = (
|
| 1046 |
+
F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
|
| 1047 |
+
.float()
|
| 1048 |
+
.unsqueeze(1)
|
| 1049 |
+
.repeat(1, pxyxys.shape[0], 1)
|
| 1050 |
+
)
|
| 1051 |
+
|
| 1052 |
+
num_gt = this_target.shape[0]
|
| 1053 |
+
cls_preds_ = (
|
| 1054 |
+
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 1055 |
+
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 1056 |
+
)
|
| 1057 |
+
|
| 1058 |
+
y = cls_preds_.sqrt_()
|
| 1059 |
+
pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
| 1060 |
+
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
|
| 1061 |
+
).sum(-1)
|
| 1062 |
+
del cls_preds_
|
| 1063 |
+
|
| 1064 |
+
cost = (
|
| 1065 |
+
pair_wise_cls_loss
|
| 1066 |
+
+ 3.0 * pair_wise_iou_loss
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
matching_matrix = torch.zeros_like(cost)
|
| 1070 |
+
|
| 1071 |
+
for gt_idx in range(num_gt):
|
| 1072 |
+
_, pos_idx = torch.topk(
|
| 1073 |
+
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
|
| 1074 |
+
)
|
| 1075 |
+
matching_matrix[gt_idx][pos_idx] = 1.0
|
| 1076 |
+
|
| 1077 |
+
del top_k, dynamic_ks
|
| 1078 |
+
anchor_matching_gt = matching_matrix.sum(0)
|
| 1079 |
+
if (anchor_matching_gt > 1).sum() > 0:
|
| 1080 |
+
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
| 1081 |
+
matching_matrix[:, anchor_matching_gt > 1] *= 0.0
|
| 1082 |
+
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
|
| 1083 |
+
fg_mask_inboxes = matching_matrix.sum(0) > 0.0
|
| 1084 |
+
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
| 1085 |
+
|
| 1086 |
+
from_which_layer = from_which_layer[fg_mask_inboxes]
|
| 1087 |
+
all_b = all_b[fg_mask_inboxes]
|
| 1088 |
+
all_a = all_a[fg_mask_inboxes]
|
| 1089 |
+
all_gj = all_gj[fg_mask_inboxes]
|
| 1090 |
+
all_gi = all_gi[fg_mask_inboxes]
|
| 1091 |
+
all_anch = all_anch[fg_mask_inboxes]
|
| 1092 |
+
|
| 1093 |
+
this_target = this_target[matched_gt_inds]
|
| 1094 |
+
|
| 1095 |
+
for i in range(nl):
|
| 1096 |
+
layer_idx = from_which_layer == i
|
| 1097 |
+
matching_bs[i].append(all_b[layer_idx])
|
| 1098 |
+
matching_as[i].append(all_a[layer_idx])
|
| 1099 |
+
matching_gjs[i].append(all_gj[layer_idx])
|
| 1100 |
+
matching_gis[i].append(all_gi[layer_idx])
|
| 1101 |
+
matching_targets[i].append(this_target[layer_idx])
|
| 1102 |
+
matching_anchs[i].append(all_anch[layer_idx])
|
| 1103 |
+
|
| 1104 |
+
for i in range(nl):
|
| 1105 |
+
if matching_targets[i] != []:
|
| 1106 |
+
matching_bs[i] = torch.cat(matching_bs[i], dim=0)
|
| 1107 |
+
matching_as[i] = torch.cat(matching_as[i], dim=0)
|
| 1108 |
+
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
|
| 1109 |
+
matching_gis[i] = torch.cat(matching_gis[i], dim=0)
|
| 1110 |
+
matching_targets[i] = torch.cat(matching_targets[i], dim=0)
|
| 1111 |
+
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
|
| 1112 |
+
else:
|
| 1113 |
+
matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1114 |
+
matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1115 |
+
matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1116 |
+
matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1117 |
+
matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1118 |
+
matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1119 |
+
|
| 1120 |
+
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
|
| 1121 |
+
|
| 1122 |
+
def find_3_positive(self, p, targets):
|
| 1123 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
| 1124 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
| 1125 |
+
indices, anch = [], []
|
| 1126 |
+
gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
|
| 1127 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
| 1128 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
| 1129 |
+
|
| 1130 |
+
g = 0.5 # bias
|
| 1131 |
+
off = torch.tensor([[0, 0],
|
| 1132 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
| 1133 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
| 1134 |
+
], device=targets.device).float() * g # offsets
|
| 1135 |
+
|
| 1136 |
+
for i in range(self.nl):
|
| 1137 |
+
anchors = self.anchors[i]
|
| 1138 |
+
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
| 1139 |
+
|
| 1140 |
+
# Match targets to anchors
|
| 1141 |
+
t = targets * gain
|
| 1142 |
+
if nt:
|
| 1143 |
+
# Matches
|
| 1144 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
| 1145 |
+
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
| 1146 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
| 1147 |
+
t = t[j] # filter
|
| 1148 |
+
|
| 1149 |
+
# Offsets
|
| 1150 |
+
gxy = t[:, 2:4] # grid xy
|
| 1151 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
| 1152 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
| 1153 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
| 1154 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
| 1155 |
+
t = t.repeat((5, 1, 1))[j]
|
| 1156 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
| 1157 |
+
else:
|
| 1158 |
+
t = targets[0]
|
| 1159 |
+
offsets = 0
|
| 1160 |
+
|
| 1161 |
+
# Define
|
| 1162 |
+
b, c = t[:, :2].long().T # image, class
|
| 1163 |
+
gxy = t[:, 2:4] # grid xy
|
| 1164 |
+
gwh = t[:, 4:6] # grid wh
|
| 1165 |
+
gij = (gxy - offsets).long()
|
| 1166 |
+
gi, gj = gij.T # grid xy indices
|
| 1167 |
+
|
| 1168 |
+
# Append
|
| 1169 |
+
a = t[:, 6].long() # anchor indices
|
| 1170 |
+
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
| 1171 |
+
anch.append(anchors[a]) # anchors
|
| 1172 |
+
|
| 1173 |
+
return indices, anch
|
| 1174 |
+
|
| 1175 |
+
|
| 1176 |
+
class ComputeLossAuxOTA:
|
| 1177 |
+
# Compute losses
|
| 1178 |
+
def __init__(self, model, autobalance=False):
|
| 1179 |
+
super(ComputeLossAuxOTA, self).__init__()
|
| 1180 |
+
device = next(model.parameters()).device # get model device
|
| 1181 |
+
h = model.hyp # hyperparameters
|
| 1182 |
+
|
| 1183 |
+
# Define criteria
|
| 1184 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
| 1185 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
| 1186 |
+
|
| 1187 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
| 1188 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
| 1189 |
+
|
| 1190 |
+
# Focal loss
|
| 1191 |
+
g = h['fl_gamma'] # focal loss gamma
|
| 1192 |
+
if g > 0:
|
| 1193 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
| 1194 |
+
|
| 1195 |
+
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
| 1196 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
| 1197 |
+
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
| 1198 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
| 1199 |
+
for k in 'na', 'nc', 'nl', 'anchors', 'stride':
|
| 1200 |
+
setattr(self, k, getattr(det, k))
|
| 1201 |
+
|
| 1202 |
+
def __call__(self, p, targets, imgs): # predictions, targets, model
|
| 1203 |
+
device = targets.device
|
| 1204 |
+
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
| 1205 |
+
bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs)
|
| 1206 |
+
bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs)
|
| 1207 |
+
pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
|
| 1208 |
+
pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
|
| 1209 |
+
|
| 1210 |
+
|
| 1211 |
+
# Losses
|
| 1212 |
+
for i in range(self.nl): # layer index, layer predictions
|
| 1213 |
+
pi = p[i]
|
| 1214 |
+
pi_aux = p[i+self.nl]
|
| 1215 |
+
b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
|
| 1216 |
+
b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx
|
| 1217 |
+
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
| 1218 |
+
tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj
|
| 1219 |
+
|
| 1220 |
+
n = b.shape[0] # number of targets
|
| 1221 |
+
if n:
|
| 1222 |
+
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
| 1223 |
+
|
| 1224 |
+
# Regression
|
| 1225 |
+
grid = torch.stack([gi, gj], dim=1)
|
| 1226 |
+
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
| 1227 |
+
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
| 1228 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
| 1229 |
+
selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
|
| 1230 |
+
selected_tbox[:, :2] -= grid
|
| 1231 |
+
iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
| 1232 |
+
lbox += (1.0 - iou).mean() # iou loss
|
| 1233 |
+
|
| 1234 |
+
# Objectness
|
| 1235 |
+
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
| 1236 |
+
|
| 1237 |
+
# Classification
|
| 1238 |
+
selected_tcls = targets[i][:, 1].long()
|
| 1239 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
| 1240 |
+
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
|
| 1241 |
+
t[range(n), selected_tcls] = self.cp
|
| 1242 |
+
lcls += self.BCEcls(ps[:, 5:], t) # BCE
|
| 1243 |
+
|
| 1244 |
+
# Append targets to text file
|
| 1245 |
+
# with open('targets.txt', 'a') as file:
|
| 1246 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
| 1247 |
+
|
| 1248 |
+
n_aux = b_aux.shape[0] # number of targets
|
| 1249 |
+
if n_aux:
|
| 1250 |
+
ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets
|
| 1251 |
+
grid_aux = torch.stack([gi_aux, gj_aux], dim=1)
|
| 1252 |
+
pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5
|
| 1253 |
+
#pxy_aux = ps_aux[:, :2].sigmoid() * 3. - 1.
|
| 1254 |
+
pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i]
|
| 1255 |
+
pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box
|
| 1256 |
+
selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i]
|
| 1257 |
+
selected_tbox_aux[:, :2] -= grid_aux
|
| 1258 |
+
iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
| 1259 |
+
lbox += 0.25 * (1.0 - iou_aux).mean() # iou loss
|
| 1260 |
+
|
| 1261 |
+
# Objectness
|
| 1262 |
+
tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio
|
| 1263 |
+
|
| 1264 |
+
# Classification
|
| 1265 |
+
selected_tcls_aux = targets_aux[i][:, 1].long()
|
| 1266 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
| 1267 |
+
t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets
|
| 1268 |
+
t_aux[range(n_aux), selected_tcls_aux] = self.cp
|
| 1269 |
+
lcls += 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE
|
| 1270 |
+
|
| 1271 |
+
obji = self.BCEobj(pi[..., 4], tobj)
|
| 1272 |
+
obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux)
|
| 1273 |
+
lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss
|
| 1274 |
+
if self.autobalance:
|
| 1275 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
| 1276 |
+
|
| 1277 |
+
if self.autobalance:
|
| 1278 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
| 1279 |
+
lbox *= self.hyp['box']
|
| 1280 |
+
lobj *= self.hyp['obj']
|
| 1281 |
+
lcls *= self.hyp['cls']
|
| 1282 |
+
bs = tobj.shape[0] # batch size
|
| 1283 |
+
|
| 1284 |
+
loss = lbox + lobj + lcls
|
| 1285 |
+
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
| 1286 |
+
|
| 1287 |
+
def build_targets(self, p, targets, imgs):
|
| 1288 |
+
|
| 1289 |
+
indices, anch = self.find_3_positive(p, targets)
|
| 1290 |
+
|
| 1291 |
+
matching_bs = [[] for pp in p]
|
| 1292 |
+
matching_as = [[] for pp in p]
|
| 1293 |
+
matching_gjs = [[] for pp in p]
|
| 1294 |
+
matching_gis = [[] for pp in p]
|
| 1295 |
+
matching_targets = [[] for pp in p]
|
| 1296 |
+
matching_anchs = [[] for pp in p]
|
| 1297 |
+
|
| 1298 |
+
nl = len(p)
|
| 1299 |
+
|
| 1300 |
+
for batch_idx in range(p[0].shape[0]):
|
| 1301 |
+
|
| 1302 |
+
b_idx = targets[:, 0]==batch_idx
|
| 1303 |
+
this_target = targets[b_idx]
|
| 1304 |
+
if this_target.shape[0] == 0:
|
| 1305 |
+
continue
|
| 1306 |
+
|
| 1307 |
+
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
|
| 1308 |
+
txyxy = xywh2xyxy(txywh)
|
| 1309 |
+
|
| 1310 |
+
pxyxys = []
|
| 1311 |
+
p_cls = []
|
| 1312 |
+
p_obj = []
|
| 1313 |
+
from_which_layer = []
|
| 1314 |
+
all_b = []
|
| 1315 |
+
all_a = []
|
| 1316 |
+
all_gj = []
|
| 1317 |
+
all_gi = []
|
| 1318 |
+
all_anch = []
|
| 1319 |
+
|
| 1320 |
+
for i, pi in enumerate(p):
|
| 1321 |
+
|
| 1322 |
+
b, a, gj, gi = indices[i]
|
| 1323 |
+
idx = (b == batch_idx)
|
| 1324 |
+
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
|
| 1325 |
+
all_b.append(b)
|
| 1326 |
+
all_a.append(a)
|
| 1327 |
+
all_gj.append(gj)
|
| 1328 |
+
all_gi.append(gi)
|
| 1329 |
+
all_anch.append(anch[i][idx])
|
| 1330 |
+
from_which_layer.append(torch.ones(size=(len(b),)) * i)
|
| 1331 |
+
|
| 1332 |
+
fg_pred = pi[b, a, gj, gi]
|
| 1333 |
+
p_obj.append(fg_pred[:, 4:5])
|
| 1334 |
+
p_cls.append(fg_pred[:, 5:])
|
| 1335 |
+
|
| 1336 |
+
grid = torch.stack([gi, gj], dim=1)
|
| 1337 |
+
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
|
| 1338 |
+
#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
|
| 1339 |
+
pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
|
| 1340 |
+
pxywh = torch.cat([pxy, pwh], dim=-1)
|
| 1341 |
+
pxyxy = xywh2xyxy(pxywh)
|
| 1342 |
+
pxyxys.append(pxyxy)
|
| 1343 |
+
|
| 1344 |
+
pxyxys = torch.cat(pxyxys, dim=0)
|
| 1345 |
+
if pxyxys.shape[0] == 0:
|
| 1346 |
+
continue
|
| 1347 |
+
p_obj = torch.cat(p_obj, dim=0)
|
| 1348 |
+
p_cls = torch.cat(p_cls, dim=0)
|
| 1349 |
+
from_which_layer = torch.cat(from_which_layer, dim=0)
|
| 1350 |
+
all_b = torch.cat(all_b, dim=0)
|
| 1351 |
+
all_a = torch.cat(all_a, dim=0)
|
| 1352 |
+
all_gj = torch.cat(all_gj, dim=0)
|
| 1353 |
+
all_gi = torch.cat(all_gi, dim=0)
|
| 1354 |
+
all_anch = torch.cat(all_anch, dim=0)
|
| 1355 |
+
|
| 1356 |
+
pair_wise_iou = box_iou(txyxy, pxyxys)
|
| 1357 |
+
|
| 1358 |
+
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
|
| 1359 |
+
|
| 1360 |
+
top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
|
| 1361 |
+
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
|
| 1362 |
+
|
| 1363 |
+
gt_cls_per_image = (
|
| 1364 |
+
F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
|
| 1365 |
+
.float()
|
| 1366 |
+
.unsqueeze(1)
|
| 1367 |
+
.repeat(1, pxyxys.shape[0], 1)
|
| 1368 |
+
)
|
| 1369 |
+
|
| 1370 |
+
num_gt = this_target.shape[0]
|
| 1371 |
+
cls_preds_ = (
|
| 1372 |
+
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 1373 |
+
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 1374 |
+
)
|
| 1375 |
+
|
| 1376 |
+
y = cls_preds_.sqrt_()
|
| 1377 |
+
pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
| 1378 |
+
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
|
| 1379 |
+
).sum(-1)
|
| 1380 |
+
del cls_preds_
|
| 1381 |
+
|
| 1382 |
+
cost = (
|
| 1383 |
+
pair_wise_cls_loss
|
| 1384 |
+
+ 3.0 * pair_wise_iou_loss
|
| 1385 |
+
)
|
| 1386 |
+
|
| 1387 |
+
matching_matrix = torch.zeros_like(cost)
|
| 1388 |
+
|
| 1389 |
+
for gt_idx in range(num_gt):
|
| 1390 |
+
_, pos_idx = torch.topk(
|
| 1391 |
+
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
|
| 1392 |
+
)
|
| 1393 |
+
matching_matrix[gt_idx][pos_idx] = 1.0
|
| 1394 |
+
|
| 1395 |
+
del top_k, dynamic_ks
|
| 1396 |
+
anchor_matching_gt = matching_matrix.sum(0)
|
| 1397 |
+
if (anchor_matching_gt > 1).sum() > 0:
|
| 1398 |
+
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
| 1399 |
+
matching_matrix[:, anchor_matching_gt > 1] *= 0.0
|
| 1400 |
+
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
|
| 1401 |
+
fg_mask_inboxes = matching_matrix.sum(0) > 0.0
|
| 1402 |
+
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
| 1403 |
+
|
| 1404 |
+
from_which_layer = from_which_layer[fg_mask_inboxes]
|
| 1405 |
+
all_b = all_b[fg_mask_inboxes]
|
| 1406 |
+
all_a = all_a[fg_mask_inboxes]
|
| 1407 |
+
all_gj = all_gj[fg_mask_inboxes]
|
| 1408 |
+
all_gi = all_gi[fg_mask_inboxes]
|
| 1409 |
+
all_anch = all_anch[fg_mask_inboxes]
|
| 1410 |
+
|
| 1411 |
+
this_target = this_target[matched_gt_inds]
|
| 1412 |
+
|
| 1413 |
+
for i in range(nl):
|
| 1414 |
+
layer_idx = from_which_layer == i
|
| 1415 |
+
matching_bs[i].append(all_b[layer_idx])
|
| 1416 |
+
matching_as[i].append(all_a[layer_idx])
|
| 1417 |
+
matching_gjs[i].append(all_gj[layer_idx])
|
| 1418 |
+
matching_gis[i].append(all_gi[layer_idx])
|
| 1419 |
+
matching_targets[i].append(this_target[layer_idx])
|
| 1420 |
+
matching_anchs[i].append(all_anch[layer_idx])
|
| 1421 |
+
|
| 1422 |
+
for i in range(nl):
|
| 1423 |
+
if matching_targets[i] != []:
|
| 1424 |
+
matching_bs[i] = torch.cat(matching_bs[i], dim=0)
|
| 1425 |
+
matching_as[i] = torch.cat(matching_as[i], dim=0)
|
| 1426 |
+
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
|
| 1427 |
+
matching_gis[i] = torch.cat(matching_gis[i], dim=0)
|
| 1428 |
+
matching_targets[i] = torch.cat(matching_targets[i], dim=0)
|
| 1429 |
+
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
|
| 1430 |
+
else:
|
| 1431 |
+
matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1432 |
+
matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1433 |
+
matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1434 |
+
matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1435 |
+
matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1436 |
+
matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1437 |
+
|
| 1438 |
+
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
|
| 1439 |
+
|
| 1440 |
+
def build_targets2(self, p, targets, imgs):
|
| 1441 |
+
|
| 1442 |
+
indices, anch = self.find_5_positive(p, targets)
|
| 1443 |
+
|
| 1444 |
+
matching_bs = [[] for pp in p]
|
| 1445 |
+
matching_as = [[] for pp in p]
|
| 1446 |
+
matching_gjs = [[] for pp in p]
|
| 1447 |
+
matching_gis = [[] for pp in p]
|
| 1448 |
+
matching_targets = [[] for pp in p]
|
| 1449 |
+
matching_anchs = [[] for pp in p]
|
| 1450 |
+
|
| 1451 |
+
nl = len(p)
|
| 1452 |
+
|
| 1453 |
+
for batch_idx in range(p[0].shape[0]):
|
| 1454 |
+
|
| 1455 |
+
b_idx = targets[:, 0]==batch_idx
|
| 1456 |
+
this_target = targets[b_idx]
|
| 1457 |
+
if this_target.shape[0] == 0:
|
| 1458 |
+
continue
|
| 1459 |
+
|
| 1460 |
+
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
|
| 1461 |
+
txyxy = xywh2xyxy(txywh)
|
| 1462 |
+
|
| 1463 |
+
pxyxys = []
|
| 1464 |
+
p_cls = []
|
| 1465 |
+
p_obj = []
|
| 1466 |
+
from_which_layer = []
|
| 1467 |
+
all_b = []
|
| 1468 |
+
all_a = []
|
| 1469 |
+
all_gj = []
|
| 1470 |
+
all_gi = []
|
| 1471 |
+
all_anch = []
|
| 1472 |
+
|
| 1473 |
+
for i, pi in enumerate(p):
|
| 1474 |
+
|
| 1475 |
+
b, a, gj, gi = indices[i]
|
| 1476 |
+
idx = (b == batch_idx)
|
| 1477 |
+
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
|
| 1478 |
+
all_b.append(b)
|
| 1479 |
+
all_a.append(a)
|
| 1480 |
+
all_gj.append(gj)
|
| 1481 |
+
all_gi.append(gi)
|
| 1482 |
+
all_anch.append(anch[i][idx])
|
| 1483 |
+
from_which_layer.append(torch.ones(size=(len(b),)) * i)
|
| 1484 |
+
|
| 1485 |
+
fg_pred = pi[b, a, gj, gi]
|
| 1486 |
+
p_obj.append(fg_pred[:, 4:5])
|
| 1487 |
+
p_cls.append(fg_pred[:, 5:])
|
| 1488 |
+
|
| 1489 |
+
grid = torch.stack([gi, gj], dim=1)
|
| 1490 |
+
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
|
| 1491 |
+
#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
|
| 1492 |
+
pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
|
| 1493 |
+
pxywh = torch.cat([pxy, pwh], dim=-1)
|
| 1494 |
+
pxyxy = xywh2xyxy(pxywh)
|
| 1495 |
+
pxyxys.append(pxyxy)
|
| 1496 |
+
|
| 1497 |
+
pxyxys = torch.cat(pxyxys, dim=0)
|
| 1498 |
+
if pxyxys.shape[0] == 0:
|
| 1499 |
+
continue
|
| 1500 |
+
p_obj = torch.cat(p_obj, dim=0)
|
| 1501 |
+
p_cls = torch.cat(p_cls, dim=0)
|
| 1502 |
+
from_which_layer = torch.cat(from_which_layer, dim=0)
|
| 1503 |
+
all_b = torch.cat(all_b, dim=0)
|
| 1504 |
+
all_a = torch.cat(all_a, dim=0)
|
| 1505 |
+
all_gj = torch.cat(all_gj, dim=0)
|
| 1506 |
+
all_gi = torch.cat(all_gi, dim=0)
|
| 1507 |
+
all_anch = torch.cat(all_anch, dim=0)
|
| 1508 |
+
|
| 1509 |
+
pair_wise_iou = box_iou(txyxy, pxyxys)
|
| 1510 |
+
|
| 1511 |
+
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
|
| 1512 |
+
|
| 1513 |
+
top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
|
| 1514 |
+
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
|
| 1515 |
+
|
| 1516 |
+
gt_cls_per_image = (
|
| 1517 |
+
F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
|
| 1518 |
+
.float()
|
| 1519 |
+
.unsqueeze(1)
|
| 1520 |
+
.repeat(1, pxyxys.shape[0], 1)
|
| 1521 |
+
)
|
| 1522 |
+
|
| 1523 |
+
num_gt = this_target.shape[0]
|
| 1524 |
+
cls_preds_ = (
|
| 1525 |
+
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 1526 |
+
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
|
| 1527 |
+
)
|
| 1528 |
+
|
| 1529 |
+
y = cls_preds_.sqrt_()
|
| 1530 |
+
pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
| 1531 |
+
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
|
| 1532 |
+
).sum(-1)
|
| 1533 |
+
del cls_preds_
|
| 1534 |
+
|
| 1535 |
+
cost = (
|
| 1536 |
+
pair_wise_cls_loss
|
| 1537 |
+
+ 3.0 * pair_wise_iou_loss
|
| 1538 |
+
)
|
| 1539 |
+
|
| 1540 |
+
matching_matrix = torch.zeros_like(cost)
|
| 1541 |
+
|
| 1542 |
+
for gt_idx in range(num_gt):
|
| 1543 |
+
_, pos_idx = torch.topk(
|
| 1544 |
+
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
|
| 1545 |
+
)
|
| 1546 |
+
matching_matrix[gt_idx][pos_idx] = 1.0
|
| 1547 |
+
|
| 1548 |
+
del top_k, dynamic_ks
|
| 1549 |
+
anchor_matching_gt = matching_matrix.sum(0)
|
| 1550 |
+
if (anchor_matching_gt > 1).sum() > 0:
|
| 1551 |
+
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
| 1552 |
+
matching_matrix[:, anchor_matching_gt > 1] *= 0.0
|
| 1553 |
+
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
|
| 1554 |
+
fg_mask_inboxes = matching_matrix.sum(0) > 0.0
|
| 1555 |
+
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
| 1556 |
+
|
| 1557 |
+
from_which_layer = from_which_layer[fg_mask_inboxes]
|
| 1558 |
+
all_b = all_b[fg_mask_inboxes]
|
| 1559 |
+
all_a = all_a[fg_mask_inboxes]
|
| 1560 |
+
all_gj = all_gj[fg_mask_inboxes]
|
| 1561 |
+
all_gi = all_gi[fg_mask_inboxes]
|
| 1562 |
+
all_anch = all_anch[fg_mask_inboxes]
|
| 1563 |
+
|
| 1564 |
+
this_target = this_target[matched_gt_inds]
|
| 1565 |
+
|
| 1566 |
+
for i in range(nl):
|
| 1567 |
+
layer_idx = from_which_layer == i
|
| 1568 |
+
matching_bs[i].append(all_b[layer_idx])
|
| 1569 |
+
matching_as[i].append(all_a[layer_idx])
|
| 1570 |
+
matching_gjs[i].append(all_gj[layer_idx])
|
| 1571 |
+
matching_gis[i].append(all_gi[layer_idx])
|
| 1572 |
+
matching_targets[i].append(this_target[layer_idx])
|
| 1573 |
+
matching_anchs[i].append(all_anch[layer_idx])
|
| 1574 |
+
|
| 1575 |
+
for i in range(nl):
|
| 1576 |
+
if matching_targets[i] != []:
|
| 1577 |
+
matching_bs[i] = torch.cat(matching_bs[i], dim=0)
|
| 1578 |
+
matching_as[i] = torch.cat(matching_as[i], dim=0)
|
| 1579 |
+
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
|
| 1580 |
+
matching_gis[i] = torch.cat(matching_gis[i], dim=0)
|
| 1581 |
+
matching_targets[i] = torch.cat(matching_targets[i], dim=0)
|
| 1582 |
+
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
|
| 1583 |
+
else:
|
| 1584 |
+
matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1585 |
+
matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1586 |
+
matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1587 |
+
matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1588 |
+
matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1589 |
+
matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
|
| 1590 |
+
|
| 1591 |
+
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
|
| 1592 |
+
|
| 1593 |
+
def find_5_positive(self, p, targets):
|
| 1594 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
| 1595 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
| 1596 |
+
indices, anch = [], []
|
| 1597 |
+
gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
|
| 1598 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
| 1599 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
| 1600 |
+
|
| 1601 |
+
g = 1.0 # bias
|
| 1602 |
+
off = torch.tensor([[0, 0],
|
| 1603 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
| 1604 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
| 1605 |
+
], device=targets.device).float() * g # offsets
|
| 1606 |
+
|
| 1607 |
+
for i in range(self.nl):
|
| 1608 |
+
anchors = self.anchors[i]
|
| 1609 |
+
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
| 1610 |
+
|
| 1611 |
+
# Match targets to anchors
|
| 1612 |
+
t = targets * gain
|
| 1613 |
+
if nt:
|
| 1614 |
+
# Matches
|
| 1615 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
| 1616 |
+
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
| 1617 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
| 1618 |
+
t = t[j] # filter
|
| 1619 |
+
|
| 1620 |
+
# Offsets
|
| 1621 |
+
gxy = t[:, 2:4] # grid xy
|
| 1622 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
| 1623 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
| 1624 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
| 1625 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
| 1626 |
+
t = t.repeat((5, 1, 1))[j]
|
| 1627 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
| 1628 |
+
else:
|
| 1629 |
+
t = targets[0]
|
| 1630 |
+
offsets = 0
|
| 1631 |
+
|
| 1632 |
+
# Define
|
| 1633 |
+
b, c = t[:, :2].long().T # image, class
|
| 1634 |
+
gxy = t[:, 2:4] # grid xy
|
| 1635 |
+
gwh = t[:, 4:6] # grid wh
|
| 1636 |
+
gij = (gxy - offsets).long()
|
| 1637 |
+
gi, gj = gij.T # grid xy indices
|
| 1638 |
+
|
| 1639 |
+
# Append
|
| 1640 |
+
a = t[:, 6].long() # anchor indices
|
| 1641 |
+
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
| 1642 |
+
anch.append(anchors[a]) # anchors
|
| 1643 |
+
|
| 1644 |
+
return indices, anch
|
| 1645 |
+
|
| 1646 |
+
def find_3_positive(self, p, targets):
|
| 1647 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
| 1648 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
| 1649 |
+
indices, anch = [], []
|
| 1650 |
+
gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
|
| 1651 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
| 1652 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
| 1653 |
+
|
| 1654 |
+
g = 0.5 # bias
|
| 1655 |
+
off = torch.tensor([[0, 0],
|
| 1656 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
| 1657 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
| 1658 |
+
], device=targets.device).float() * g # offsets
|
| 1659 |
+
|
| 1660 |
+
for i in range(self.nl):
|
| 1661 |
+
anchors = self.anchors[i]
|
| 1662 |
+
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
| 1663 |
+
|
| 1664 |
+
# Match targets to anchors
|
| 1665 |
+
t = targets * gain
|
| 1666 |
+
if nt:
|
| 1667 |
+
# Matches
|
| 1668 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
| 1669 |
+
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
| 1670 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
| 1671 |
+
t = t[j] # filter
|
| 1672 |
+
|
| 1673 |
+
# Offsets
|
| 1674 |
+
gxy = t[:, 2:4] # grid xy
|
| 1675 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
| 1676 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
| 1677 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
| 1678 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
| 1679 |
+
t = t.repeat((5, 1, 1))[j]
|
| 1680 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
| 1681 |
+
else:
|
| 1682 |
+
t = targets[0]
|
| 1683 |
+
offsets = 0
|
| 1684 |
+
|
| 1685 |
+
# Define
|
| 1686 |
+
b, c = t[:, :2].long().T # image, class
|
| 1687 |
+
gxy = t[:, 2:4] # grid xy
|
| 1688 |
+
gwh = t[:, 4:6] # grid wh
|
| 1689 |
+
gij = (gxy - offsets).long()
|
| 1690 |
+
gi, gj = gij.T # grid xy indices
|
| 1691 |
+
|
| 1692 |
+
# Append
|
| 1693 |
+
a = t[:, 6].long() # anchor indices
|
| 1694 |
+
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
| 1695 |
+
anch.append(anchors[a]) # anchors
|
| 1696 |
+
|
| 1697 |
+
return indices, anch
|