Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| # load speech translation checkpoint | |
| asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device) | |
| # load text-to-speech checkpoint and speaker embeddings | |
| model_id = "Sandiago21/speecht5_finetuned_google_fleurs_greek" # update with your model id | |
| # pipe = pipeline("automatic-speech-recognition", model=model_id) | |
| model = SpeechT5ForTextToSpeech.from_pretrained(model_id) | |
| vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
| embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) | |
| processor = SpeechT5Processor.from_pretrained(model_id) | |
| replacements = [ | |
| ("ου", "u"), | |
| ("αυ", "af"), | |
| ("ευ", "ef"), | |
| ("ει", "i"), | |
| ("οι", "i"), | |
| ("αι", "e"), | |
| ("ού", "u"), | |
| ("εί", "i"), | |
| ("οί", "i"), | |
| ("αί", "e"), | |
| ("Ά", "A"), | |
| ("Έ", "E"), | |
| ("Ή", "H"), | |
| ("Ί", "I"), | |
| ("Ό", "O"), | |
| ("Ύ", "Y"), | |
| ("Ώ", "O"), | |
| ("ΐ", "i"), | |
| ("Α", "A"), | |
| ("Β", "B"), | |
| ("Γ", "G"), | |
| ("Δ", "L"), | |
| ("Ε", "Ε"), | |
| ("Ζ", "Z"), | |
| ("Η", "I"), | |
| ("Θ", "Th"), | |
| ("Ι", "I"), | |
| ("Κ", "K"), | |
| ("Λ", "L"), | |
| ("Μ", "M"), | |
| ("Ν", "N"), | |
| ("Ξ", "Ks"), | |
| ("Ο", "O"), | |
| ("Π", "P"), | |
| ("Ρ", "R"), | |
| ("Σ", "S"), | |
| ("Τ", "T"), | |
| ("Υ", "Y"), | |
| ("Φ", "F"), | |
| ("Χ", "X"), | |
| ("Ω", "O"), | |
| ("ά", "a"), | |
| ("έ", "e"), | |
| ("ή", "i"), | |
| ("ί", "i"), | |
| ("α", "a"), | |
| ("β", "v"), | |
| ("γ", "g"), | |
| ("δ", "d"), | |
| ("ε", "e"), | |
| ("ζ", "z"), | |
| ("η", "i"), | |
| ("θ", "th"), | |
| ("ι", "i"), | |
| ("κ", "k"), | |
| ("λ", "l"), | |
| ("μ", "m"), | |
| ("ν", "n"), | |
| ("ξ", "ks"), | |
| ("ο", "o"), | |
| ("π", "p"), | |
| ("ρ", "r"), | |
| ("ς", "s"), | |
| ("σ", "s"), | |
| ("τ", "t"), | |
| ("υ", "i"), | |
| ("φ", "f"), | |
| ("χ", "h"), | |
| ("ψ", "ps"), | |
| ("ω", "o"), | |
| ("ϊ", "i"), | |
| ("ϋ", "i"), | |
| ("ό", "o"), | |
| ("ύ", "i"), | |
| ("ώ", "o"), | |
| ("í", "i"), | |
| ("õ", "o"), | |
| ("Ε", "E"), | |
| ("Ψ", "Ps"), | |
| ] | |
| def cleanup_text(text): | |
| for src, dst in replacements: | |
| text = text.replace(src, dst) | |
| return text | |
| def synthesize_speech(text): | |
| text = cleanup_text(text) | |
| inputs = processor(text=text, return_tensors="pt") | |
| speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
| return gr.Audio.update(value=(16000, speech.cpu().numpy())) | |
| def translate(audio): | |
| outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "greek"}) | |
| return outputs["text"] | |
| def synthesise(text): | |
| text = cleanup_text(text) | |
| inputs = processor(text=text, return_tensors="pt") | |
| speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
| return speech.cpu() | |
| def speech_to_speech_translation(audio): | |
| translated_text = translate(audio) | |
| synthesised_speech = synthesise(translated_text) | |
| synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
| return 16000, synthesised_speech | |
| title = "Cascaded STST" | |
| description = """ | |
| Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's | |
| [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset: | |
|  | |
| """ | |
| demo = gr.Blocks() | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="microphone", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| title=title, | |
| description=description, | |
| ) | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="upload", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| examples=[["./example.wav"]], | |
| title=title, | |
| description=description, | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
| demo.launch() | |