File size: 9,555 Bytes
88f3fce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import asyncio
import json
import os
from typing import Any, Hashable
import pandas as pd
from pydantic import Field, model_validator
from app.config import config
from app.llm import LLM
from app.logger import logger
from app.tool.base import BaseTool
class DataVisualization(BaseTool):
name: str = "data_visualization"
description: str = """Visualize statistical chart or Add insights in chart with JSON info from visualization_preparation tool. You can do steps as follows:
1. Visualize statistical chart
2. Choose insights into chart based on step 1 (Optional)
Outputs:
1. Charts (png/html)
2. Charts Insights (.md)(Optional)"""
parameters: dict = {
"type": "object",
"properties": {
"json_path": {
"type": "string",
"description": """file path of json info with ".json" in the end""",
},
"output_type": {
"description": "Rendering format (html=interactive)",
"type": "string",
"default": "html",
"enum": ["png", "html"],
},
"tool_type": {
"description": "visualize chart or add insights",
"type": "string",
"default": "visualization",
"enum": ["visualization", "insight"],
},
"language": {
"description": "english(en) / chinese(zh)",
"type": "string",
"default": "en",
"enum": ["zh", "en"],
},
},
"required": ["code"],
}
llm: LLM = Field(default_factory=LLM, description="Language model instance")
@model_validator(mode="after")
def initialize_llm(self):
"""Initialize llm with default settings if not provided."""
if self.llm is None or not isinstance(self.llm, LLM):
self.llm = LLM(config_name=self.name.lower())
return self
def get_file_path(
self,
json_info: list[dict[str, str]],
path_str: str,
directory: str = None,
) -> list[str]:
res = []
for item in json_info:
if os.path.exists(item[path_str]):
res.append(item[path_str])
elif os.path.exists(
os.path.join(f"{directory or config.workspace_root}", item[path_str])
):
res.append(
os.path.join(
f"{directory or config.workspace_root}", item[path_str]
)
)
else:
raise Exception(f"No such file or directory: {item[path_str]}")
return res
def success_output_template(self, result: list[dict[str, str]]) -> str:
content = ""
if len(result) == 0:
return "Is EMPTY!"
for item in result:
content += f"""## {item['title']}\nChart saved in: {item['chart_path']}"""
if "insight_path" in item and item["insight_path"] and "insight_md" in item:
content += "\n" + item["insight_md"]
else:
content += "\n"
return f"Chart Generated Successful!\n{content}"
async def data_visualization(
self, json_info: list[dict[str, str]], output_type: str, language: str
) -> str:
data_list = []
csv_file_path = self.get_file_path(json_info, "csvFilePath")
for index, item in enumerate(json_info):
df = pd.read_csv(csv_file_path[index], encoding="utf-8")
df = df.astype(object)
df = df.where(pd.notnull(df), None)
data_dict_list = df.to_json(orient="records", force_ascii=False)
data_list.append(
{
"file_name": os.path.basename(csv_file_path[index]).replace(
".csv", ""
),
"dict_data": data_dict_list,
"chartTitle": item["chartTitle"],
}
)
tasks = [
self.invoke_vmind(
dict_data=item["dict_data"],
chart_description=item["chartTitle"],
file_name=item["file_name"],
output_type=output_type,
task_type="visualization",
language=language,
)
for item in data_list
]
results = await asyncio.gather(*tasks)
error_list = []
success_list = []
for index, result in enumerate(results):
csv_path = csv_file_path[index]
if "error" in result and "chart_path" not in result:
error_list.append(f"Error in {csv_path}: {result['error']}")
else:
success_list.append(
{
**result,
"title": json_info[index]["chartTitle"],
}
)
if len(error_list) > 0:
return {
"observation": f"# Error chart generated{'\n'.join(error_list)}\n{self.success_output_template(success_list)}",
"success": False,
}
else:
return {"observation": f"{self.success_output_template(success_list)}"}
async def add_insighs(
self, json_info: list[dict[str, str]], output_type: str
) -> str:
data_list = []
chart_file_path = self.get_file_path(
json_info, "chartPath", os.path.join(config.workspace_root, "visualization")
)
for index, item in enumerate(json_info):
if "insights_id" in item:
data_list.append(
{
"file_name": os.path.basename(chart_file_path[index]).replace(
f".{output_type}", ""
),
"insights_id": item["insights_id"],
}
)
tasks = [
self.invoke_vmind(
insights_id=item["insights_id"],
file_name=item["file_name"],
output_type=output_type,
task_type="insight",
)
for item in data_list
]
results = await asyncio.gather(*tasks)
error_list = []
success_list = []
for index, result in enumerate(results):
chart_path = chart_file_path[index]
if "error" in result and "chart_path" not in result:
error_list.append(f"Error in {chart_path}: {result['error']}")
else:
success_list.append(chart_path)
success_template = (
f"# Charts Update with Insights\n{','.join(success_list)}"
if len(success_list) > 0
else ""
)
if len(error_list) > 0:
return {
"observation": f"# Error in chart insights:{'\n'.join(error_list)}\n{success_template}",
"success": False,
}
else:
return {"observation": f"{success_template}"}
async def execute(
self,
json_path: str,
output_type: str | None = "html",
tool_type: str | None = "visualization",
language: str | None = "en",
) -> str:
try:
logger.info(f"📈 data_visualization with {json_path} in: {tool_type} ")
with open(json_path, "r", encoding="utf-8") as file:
json_info = json.load(file)
if tool_type == "visualization":
return await self.data_visualization(json_info, output_type, language)
else:
return await self.add_insighs(json_info, output_type)
except Exception as e:
return {
"observation": f"Error: {e}",
"success": False,
}
async def invoke_vmind(
self,
file_name: str,
output_type: str,
task_type: str,
insights_id: list[str] = None,
dict_data: list[dict[Hashable, Any]] = None,
chart_description: str = None,
language: str = "en",
):
llm_config = {
"base_url": self.llm.base_url,
"model": self.llm.model,
"api_key": self.llm.api_key,
}
vmind_params = {
"llm_config": llm_config,
"user_prompt": chart_description,
"dataset": dict_data,
"file_name": file_name,
"output_type": output_type,
"insights_id": insights_id,
"task_type": task_type,
"directory": str(config.workspace_root),
"language": language,
}
# build async sub process
process = await asyncio.create_subprocess_exec(
"npx",
"ts-node",
"src/chartVisualize.ts",
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
cwd=os.path.dirname(__file__),
)
input_json = json.dumps(vmind_params, ensure_ascii=False).encode("utf-8")
try:
stdout, stderr = await process.communicate(input_json)
stdout_str = stdout.decode("utf-8")
stderr_str = stderr.decode("utf-8")
if process.returncode == 0:
return json.loads(stdout_str)
else:
return {"error": f"Node.js Error: {stderr_str}"}
except Exception as e:
return {"error": f"Subprocess Error: {str(e)}"}
|