File size: 27,265 Bytes
88f3fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
"""

Hugging Face Models Tool for OpenManus AI Agent

Tool for calling any Hugging Face model via Inference API

"""

import asyncio
import base64
import io
from typing import Any, Dict, List, Optional, Union

from app.huggingface_models import HuggingFaceModelManager, ModelCategory
from app.tool.base import BaseTool


class HuggingFaceModelsTool(BaseTool):
    """Tool for accessing Hugging Face models via Inference API"""

    def __init__(self, api_token: str):
        super().__init__()
        self.name = "huggingface_models"
        self.description = """

        Access thousands of Hugging Face models for various AI tasks including:

        - Text generation (GPT-like models, instruction-tuned models)

        - Image generation (FLUX, Stable Diffusion, Qwen-Image)

        - Speech recognition (Whisper, Parakeet, Canary)

        - Text-to-speech (Kokoro, XTTS, VibeVoice)

        - Image classification (NSFW detection, emotion recognition)

        - Feature extraction (embeddings, sentence transformers)

        - Translation, summarization, question answering



        Use this tool to leverage state-of-the-art AI models for any task.

        """
        self.model_manager = HuggingFaceModelManager(api_token)

    async def text_generation(

        self,

        model_name: str,

        prompt: str,

        max_tokens: int = 100,

        temperature: float = 0.7,

        stream: bool = False,

    ) -> Dict[str, Any]:
        """

        Generate text using a text generation model



        Args:

            model_name: Name or ID of the model (e.g., "MiniMax-M2", "GPT-OSS 20B")

            prompt: Input text prompt

            max_tokens: Maximum tokens to generate

            temperature: Sampling temperature (0.0 to 2.0)

            stream: Whether to stream the response

        """
        try:
            # Find model by name or ID
            model = self._find_model(model_name, ModelCategory.TEXT_GENERATION)
            if not model:
                return {"error": f"Text generation model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.TEXT_GENERATION,
                prompt=prompt,
                max_tokens=max_tokens,
                temperature=temperature,
                stream=stream,
            )

            return {"model": model.name, "model_id": model.model_id, "result": result}

        except Exception as e:
            return {"error": f"Text generation failed: {str(e)}"}

    async def generate_image(

        self,

        model_name: str,

        prompt: str,

        negative_prompt: Optional[str] = None,

        width: int = 1024,

        height: int = 1024,

        num_inference_steps: int = 20,

    ) -> Dict[str, Any]:
        """

        Generate image from text prompt



        Args:

            model_name: Name or ID of the model (e.g., "FLUX.1 Dev", "Stable Diffusion XL")

            prompt: Text description of the image

            negative_prompt: What to avoid in the image

            width: Image width in pixels

            height: Image height in pixels

            num_inference_steps: Number of denoising steps

        """
        try:
            model = self._find_model(model_name, ModelCategory.TEXT_TO_IMAGE)
            if not model:
                return {"error": f"Text-to-image model '{model_name}' not found"}

            image_bytes = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.TEXT_TO_IMAGE,
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                num_inference_steps=num_inference_steps,
            )

            # Convert bytes to base64 for display
            image_b64 = base64.b64encode(image_bytes).decode()

            return {
                "model": model.name,
                "model_id": model.model_id,
                "image_base64": image_b64,
                "size": f"{width}x{height}",
                "prompt": prompt,
            }

        except Exception as e:
            return {"error": f"Image generation failed: {str(e)}"}

    async def transcribe_audio(

        self,

        model_name: str,

        audio_data: bytes,

        language: Optional[str] = None,

        task: str = "transcribe",

    ) -> Dict[str, Any]:
        """

        Transcribe audio to text



        Args:

            model_name: Name or ID of the model (e.g., "Whisper Large v3")

            audio_data: Audio file as bytes

            language: Source language code (e.g., "en", "es")

            task: "transcribe" or "translate"

        """
        try:
            model = self._find_model(
                model_name, ModelCategory.AUTOMATIC_SPEECH_RECOGNITION
            )
            if not model:
                return {"error": f"ASR model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.AUTOMATIC_SPEECH_RECOGNITION,
                audio_data=audio_data,
                language=language,
                task=task,
            )

            return {
                "model": model.name,
                "model_id": model.model_id,
                "transcription": result.get("text", ""),
                "language": language,
                "task": task,
            }

        except Exception as e:
            return {"error": f"Audio transcription failed: {str(e)}"}

    async def text_to_speech(

        self,

        model_name: str,

        text: str,

        voice_id: Optional[str] = None,

        speed: float = 1.0,

    ) -> Dict[str, Any]:
        """

        Convert text to speech



        Args:

            model_name: Name or ID of the model (e.g., "Kokoro 82M", "VibeVoice 1.5B")

            text: Text to convert to speech

            voice_id: Voice identifier (model-specific)

            speed: Speech speed multiplier

        """
        try:
            model = self._find_model(model_name, ModelCategory.TEXT_TO_SPEECH)
            if not model:
                return {"error": f"TTS model '{model_name}' not found"}

            audio_bytes = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.TEXT_TO_SPEECH,
                text=text,
                voice_id=voice_id,
                speed=speed,
            )

            # Convert to base64 for transport
            audio_b64 = base64.b64encode(audio_bytes).decode()

            return {
                "model": model.name,
                "model_id": model.model_id,
                "audio_base64": audio_b64,
                "text": text,
                "voice_id": voice_id,
            }

        except Exception as e:
            return {"error": f"Text-to-speech failed: {str(e)}"}

    async def classify_image(

        self, model_name: str, image_data: bytes, top_k: int = 5

    ) -> Dict[str, Any]:
        """

        Classify image content



        Args:

            model_name: Name or ID of the model (e.g., "NSFW Image Detection")

            image_data: Image file as bytes

            top_k: Number of top predictions to return

        """
        try:
            model = self._find_model(model_name, ModelCategory.IMAGE_CLASSIFICATION)
            if not model:
                return {"error": f"Image classification model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.IMAGE_CLASSIFICATION,
                image_data=image_data,
                top_k=top_k,
            )

            return {
                "model": model.name,
                "model_id": model.model_id,
                "predictions": result,
                "top_k": top_k,
            }

        except Exception as e:
            return {"error": f"Image classification failed: {str(e)}"}

    async def get_embeddings(

        self, model_name: str, texts: Union[str, List[str]]

    ) -> Dict[str, Any]:
        """

        Extract embeddings from text



        Args:

            model_name: Name or ID of the model (e.g., "Sentence Transformers All MiniLM")

            texts: Text or list of texts to embed

        """
        try:
            model = self._find_model(model_name, ModelCategory.FEATURE_EXTRACTION)
            if not model:
                return {"error": f"Feature extraction model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id, ModelCategory.FEATURE_EXTRACTION, texts=texts
            )

            return {
                "model": model.name,
                "model_id": model.model_id,
                "embeddings": result,
                "input_count": len(texts) if isinstance(texts, list) else 1,
            }

        except Exception as e:
            return {"error": f"Feature extraction failed: {str(e)}"}

    async def translate_text(

        self,

        model_name: str,

        text: str,

        source_language: Optional[str] = None,

        target_language: Optional[str] = None,

    ) -> Dict[str, Any]:
        """

        Translate text between languages



        Args:

            model_name: Name or ID of the model (e.g., "M2M100 1.2B")

            text: Text to translate

            source_language: Source language code

            target_language: Target language code

        """
        try:
            model = self._find_model(model_name, ModelCategory.TRANSLATION)
            if not model:
                return {"error": f"Translation model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.TRANSLATION,
                text=text,
                src_lang=source_language,
                tgt_lang=target_language,
            )

            return {
                "model": model.name,
                "model_id": model.model_id,
                "translation": result,
                "source_language": source_language,
                "target_language": target_language,
                "original_text": text,
            }

        except Exception as e:
            return {"error": f"Translation failed: {str(e)}"}

    async def summarize_text(

        self, model_name: str, text: str, max_length: int = 150, min_length: int = 30

    ) -> Dict[str, Any]:
        """

        Summarize long text



        Args:

            model_name: Name or ID of the model (e.g., "PEGASUS XSum")

            text: Text to summarize

            max_length: Maximum summary length

            min_length: Minimum summary length

        """
        try:
            model = self._find_model(model_name, ModelCategory.SUMMARIZATION)
            if not model:
                return {"error": f"Summarization model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.SUMMARIZATION,
                text=text,
                max_length=max_length,
                min_length=min_length,
            )

            return {
                "model": model.name,
                "model_id": model.model_id,
                "summary": result,
                "original_length": len(text),
                "summary_length": (
                    len(result.get("summary_text", ""))
                    if isinstance(result, dict)
                    else len(str(result))
                ),
            }

        except Exception as e:
            return {"error": f"Summarization failed: {str(e)}"}

    async def answer_question(

        self, model_name: str, question: str, context: str

    ) -> Dict[str, Any]:
        """

        Answer questions based on context



        Args:

            model_name: Name or ID of the model

            question: Question to answer

            context: Context containing the answer

        """
        try:
            # Use a text generation model for question answering
            model = self._find_model(model_name, ModelCategory.TEXT_GENERATION)
            if not model:
                return {"error": f"Question answering model '{model_name}' not found"}

            # Format as instruction
            prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.TEXT_GENERATION,
                prompt=prompt,
                max_tokens=200,
                temperature=0.3,
            )

            return {
                "model": model.name,
                "model_id": model.model_id,
                "answer": result,
                "question": question,
                "context_length": len(context),
            }

        except Exception as e:
            return {"error": f"Question answering failed: {str(e)}"}

    def list_available_models(self, category: Optional[str] = None) -> Dict[str, Any]:
        """

        List all available models by category



        Args:

            category: Specific category to filter (optional)

        """
        try:
            if category:
                cat_enum = ModelCategory(category.lower().replace("-", "_"))
                models = self.model_manager.get_models_by_category(cat_enum)
                return {
                    "category": category,
                    "models": [
                        {
                            "name": model.name,
                            "model_id": model.model_id,
                            "description": model.description,
                            "endpoint_compatible": model.endpoint_compatible,
                            "requires_auth": model.requires_auth,
                        }
                        for model in models
                    ],
                }
            else:
                all_models = self.model_manager.get_all_models()
                return {
                    "categories": {
                        cat.value: [
                            {
                                "name": model.name,
                                "model_id": model.model_id,
                                "description": model.description,
                                "endpoint_compatible": model.endpoint_compatible,
                                "requires_auth": model.requires_auth,
                            }
                            for model in models
                        ]
                        for cat, models in all_models.items()
                    }
                }
        except Exception as e:
            return {"error": f"Failed to list models: {str(e)}"}

    def _find_model(self, model_name: str, category: ModelCategory):
        """Find a model by name or ID within a category"""
        models = self.model_manager.get_models_by_category(category)

        # Try exact name match first
        for model in models:
            if model.name.lower() == model_name.lower():
                return model

        # Try model ID match
        for model in models:
            if model.model_id.lower() == model_name.lower():
                return model

        # Try partial name match
        for model in models:
            if model_name.lower() in model.name.lower():
                return model

        return None

    async def execute(self, **kwargs) -> Dict[str, Any]:
        """Execute the Hugging Face models tool"""
        action = kwargs.get("action", "list_models")

        if action == "text_generation":
            return await self.text_generation(
                kwargs.get("model_name"),
                kwargs.get("prompt"),
                kwargs.get("max_tokens", 100),
                kwargs.get("temperature", 0.7),
                kwargs.get("stream", False),
            )
        elif action == "generate_image":
            return await self.generate_image(
                kwargs.get("model_name"),
                kwargs.get("prompt"),
                kwargs.get("negative_prompt"),
                kwargs.get("width", 1024),
                kwargs.get("height", 1024),
                kwargs.get("num_inference_steps", 20),
            )
        elif action == "transcribe_audio":
            return await self.transcribe_audio(
                kwargs.get("model_name"),
                kwargs.get("audio_data"),
                kwargs.get("language"),
                kwargs.get("task", "transcribe"),
            )
        elif action == "text_to_speech":
            return await self.text_to_speech(
                kwargs.get("model_name"),
                kwargs.get("text"),
                kwargs.get("voice_id"),
                kwargs.get("speed", 1.0),
            )
        elif action == "classify_image":
            return await self.classify_image(
                kwargs.get("model_name"),
                kwargs.get("image_data"),
                kwargs.get("top_k", 5),
            )
        elif action == "get_embeddings":
            return await self.get_embeddings(
                kwargs.get("model_name"), kwargs.get("texts")
            )
        elif action == "translate_text":
            return await self.translate_text(
                kwargs.get("model_name"),
                kwargs.get("text"),
                kwargs.get("source_language"),
                kwargs.get("target_language"),
            )
        elif action == "summarize_text":
            return await self.summarize_text(
                kwargs.get("model_name"),
                kwargs.get("text"),
                kwargs.get("max_length", 150),
                kwargs.get("min_length", 30),
            )
        elif action == "answer_question":
            return await self.answer_question(
                kwargs.get("model_name"), kwargs.get("question"), kwargs.get("context")
            )
        elif action == "list_models":
            return self.list_available_models(kwargs.get("category"))

        # New expanded actions
        elif action == "text_to_video":
            return await self.text_to_video(
                kwargs.get("model_name"), kwargs.get("prompt"), **kwargs
            )
        elif action == "code_generation":
            return await self.code_generation(
                kwargs.get("model_name"), kwargs.get("prompt"), **kwargs
            )
        elif action == "text_to_3d":
            return await self.text_to_3d(
                kwargs.get("model_name"), kwargs.get("prompt"), **kwargs
            )
        elif action == "ocr":
            return await self.ocr(
                kwargs.get("model_name"), kwargs.get("image_data"), **kwargs
            )
        elif action == "document_analysis":
            return await self.document_analysis(
                kwargs.get("model_name"), kwargs.get("document_data"), **kwargs
            )
        elif action == "vision_language":
            return await self.vision_language(
                kwargs.get("model_name"),
                kwargs.get("image_data"),
                kwargs.get("text"),
                **kwargs,
            )
        elif action == "music_generation":
            return await self.music_generation(
                kwargs.get("model_name"), kwargs.get("prompt"), **kwargs
            )
        elif action == "creative_writing":
            return await self.creative_writing(
                kwargs.get("model_name"), kwargs.get("prompt"), **kwargs
            )
        elif action == "business_document":
            return await self.business_document(
                kwargs.get("model_name"),
                kwargs.get("document_type"),
                kwargs.get("context"),
                **kwargs,
            )
        else:
            return {"error": f"Unknown action: {action}"}

    # New methods for expanded model categories

    async def text_to_video(

        self, model_name: str, prompt: str, duration: int = 5, fps: int = 24, **kwargs

    ) -> Dict[str, Any]:
        """Generate video from text prompt"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.TEXT_TO_VIDEO,
                prompt=prompt,
                duration=duration,
                fps=fps,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def code_generation(

        self, model_name: str, prompt: str, language: str = "python", **kwargs

    ) -> Dict[str, Any]:
        """Generate code from natural language description"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.CODE_GENERATION,
                prompt=prompt,
                language=language,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def text_to_3d(

        self, model_name: str, prompt: str, resolution: int = 64, **kwargs

    ) -> Dict[str, Any]:
        """Generate 3D model from text description"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.TEXT_TO_3D,
                prompt=prompt,
                resolution=resolution,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def ocr(

        self, model_name: str, image_data: bytes, language: str = "en", **kwargs

    ) -> Dict[str, Any]:
        """Perform OCR on image"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.OCR,
                image_data=image_data,
                language=language,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def document_analysis(

        self, model_name: str, document_data: bytes, **kwargs

    ) -> Dict[str, Any]:
        """Analyze document structure and content"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.DOCUMENT_ANALYSIS,
                document_data=document_data,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def vision_language(

        self, model_name: str, image_data: bytes, text: str, **kwargs

    ) -> Dict[str, Any]:
        """Process image and text together using multimodal models"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.VISION_LANGUAGE,
                image_data=image_data,
                text=text,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def music_generation(

        self, model_name: str, prompt: str, duration: int = 30, **kwargs

    ) -> Dict[str, Any]:
        """Generate music from text description"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.MUSIC_GENERATION,
                prompt=prompt,
                duration=duration,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def creative_writing(

        self, model_name: str, prompt: str, content_type: str = "story", **kwargs

    ) -> Dict[str, Any]:
        """Generate creative content"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            enhanced_prompt = f"Write a {content_type}: {prompt}"
            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.CREATIVE_WRITING,
                prompt=enhanced_prompt,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}

    async def business_document(

        self, model_name: str, document_type: str, context: str, **kwargs

    ) -> Dict[str, Any]:
        """Generate business documents"""
        try:
            model = self._get_model_by_name(model_name)
            if not model:
                return {"error": f"Model '{model_name}' not found"}

            result = await self.model_manager.call_model(
                model.model_id,
                ModelCategory.EMAIL_GENERATION,  # Generic business category
                document_type=document_type,
                context=context,
                **kwargs,
            )
            return {"success": True, "result": result}
        except Exception as e:
            return {"error": str(e)}