Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
8541da5
1
Parent(s):
f1215a7
Update app.py
Browse files
app.py
CHANGED
|
@@ -41,7 +41,6 @@ class TransformerChatbot(Model):
|
|
| 41 |
def create_padding_mask(self, seq):
|
| 42 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
| 43 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
| 44 |
-
|
| 45 |
st.title("UniGLM TEXT completion Model")
|
| 46 |
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
| 47 |
#Picking what NLP task you want to do
|
|
@@ -126,66 +125,7 @@ elif option=="26M_OLD":
|
|
| 126 |
len2 = 1
|
| 127 |
else:
|
| 128 |
len2 = 13
|
| 129 |
-
vocab_size = 100000
|
| 130 |
-
max_len = 1
|
| 131 |
-
d_model = 128 # 64 , 1024
|
| 132 |
-
n_head = 4 # 8 , 16
|
| 133 |
-
ff_dim = 256 # 256 , 2048
|
| 134 |
-
dropout_rate = 0.1 # 0.5 , 0.2
|
| 135 |
-
weights = "predict1"
|
| 136 |
-
datafile = "data2.txt"
|
| 137 |
-
dict = "dict_predict1.bin.npz"
|
| 138 |
-
|
| 139 |
-
with open(datafile,"r") as f:
|
| 140 |
-
text = f.read()
|
| 141 |
-
text = text.lower()
|
| 142 |
-
words = text.split()
|
| 143 |
-
loaded_dict = np.load(dict, allow_pickle=True)
|
| 144 |
-
word_to_num = loaded_dict["word_to_num"].item()
|
| 145 |
-
num_to_word = loaded_dict["num_to_word"].item()
|
| 146 |
-
X = []
|
| 147 |
-
Y = []
|
| 148 |
-
for i in range(len(words)-1):
|
| 149 |
-
word = words[i]
|
| 150 |
-
next_word = words[i+1]
|
| 151 |
-
X.append(word_to_num[word])
|
| 152 |
-
Y.append(word_to_num[next_word])
|
| 153 |
-
Y.append(0)
|
| 154 |
-
|
| 155 |
-
X.append(word_to_num[words[-1]])
|
| 156 |
-
X_train = pad_sequences([X])
|
| 157 |
-
y_train = pad_sequences([Y])
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
| 162 |
-
chatbot.load_weights(weights)
|
| 163 |
-
chatbot.build(input_shape=(None, max_len)) # Build the model
|
| 164 |
-
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
| 165 |
-
chatbot.fit(X_train, y_train, epochs=1, batch_size=64)
|
| 166 |
-
for i in range(1):
|
| 167 |
-
other_text2 = text2
|
| 168 |
-
other_text2 = other_text2.lower()
|
| 169 |
-
other_words2 = other_text2.split()
|
| 170 |
-
other_num2 = [word_to_num[word] for word in other_words2]
|
| 171 |
-
given_X2 = other_num2
|
| 172 |
-
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
| 173 |
-
output_sentence = other_text2 + ""
|
| 174 |
-
for _ in range(len2):
|
| 175 |
-
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
|
| 176 |
-
predicted_token = predicted_token.item()
|
| 177 |
-
out = num_to_word[predicted_token]
|
| 178 |
-
# if out == ".":
|
| 179 |
-
# break
|
| 180 |
-
|
| 181 |
-
output_sentence += " " + out
|
| 182 |
-
given_X2 = given_X2[1:]
|
| 183 |
-
given_X2.append(predicted_token)
|
| 184 |
-
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
| 185 |
-
|
| 186 |
-
out2 = output_sentence
|
| 187 |
-
st.write("Predicted Text: ")
|
| 188 |
-
st.write(out2)
|
| 189 |
else:
|
| 190 |
out2 = "Error: Wrong Model Selected"
|
| 191 |
|
|
|
|
| 41 |
def create_padding_mask(self, seq):
|
| 42 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
| 43 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
|
|
|
| 44 |
st.title("UniGLM TEXT completion Model")
|
| 45 |
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
| 46 |
#Picking what NLP task you want to do
|
|
|
|
| 125 |
len2 = 1
|
| 126 |
else:
|
| 127 |
len2 = 13
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
else:
|
| 130 |
out2 = "Error: Wrong Model Selected"
|
| 131 |
|