Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
9e17522
1
Parent(s):
93c51a9
Update app.py
Browse files
app.py
CHANGED
|
@@ -117,7 +117,55 @@ if option == '13M_OLD':
|
|
| 117 |
weights = "predict3"
|
| 118 |
datafile = "data2.txt"
|
| 119 |
dict = "dict_predict3.bin.npz"
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
st.write("Predicted Text: ")
|
| 122 |
st.write(out2)
|
| 123 |
|
|
@@ -137,7 +185,63 @@ elif option=="26M_OLD":
|
|
| 137 |
weights = "predict1"
|
| 138 |
datafile = "data2.txt"
|
| 139 |
dict = "dict_predict1.bin.npz"
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
st.write("Predicted Text: ")
|
| 142 |
st.write(out2)
|
| 143 |
else:
|
|
|
|
| 117 |
weights = "predict3"
|
| 118 |
datafile = "data2.txt"
|
| 119 |
dict = "dict_predict3.bin.npz"
|
| 120 |
+
with open(datafile,"r") as f:
|
| 121 |
+
text = f.read()
|
| 122 |
+
text = text.lower()
|
| 123 |
+
words = text.split()
|
| 124 |
+
loaded_dict = np.load(dict, allow_pickle=True)
|
| 125 |
+
word_to_num = loaded_dict["word_to_num"].item()
|
| 126 |
+
num_to_word = loaded_dict["num_to_word"].item()
|
| 127 |
+
X = []
|
| 128 |
+
Y = []
|
| 129 |
+
for i in range(len(words)-1):
|
| 130 |
+
word = words[i]
|
| 131 |
+
next_word = words[i+1]
|
| 132 |
+
X.append(word_to_num[word])
|
| 133 |
+
Y.append(word_to_num[next_word])
|
| 134 |
+
Y.append(0)
|
| 135 |
+
|
| 136 |
+
X.append(word_to_num[words[-1]])
|
| 137 |
+
X_train = pad_sequences([X])
|
| 138 |
+
y_train = pad_sequences([Y])
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
| 143 |
+
chatbot.load_weights(weights)
|
| 144 |
+
chatbot.build(input_shape=(None, max_len)) # Build the model
|
| 145 |
+
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
| 146 |
+
|
| 147 |
+
for i in range(1):
|
| 148 |
+
other_text2 = text2
|
| 149 |
+
other_text2 = other_text2.lower()
|
| 150 |
+
other_words2 = other_text2.split()
|
| 151 |
+
other_num2 = [word_to_num[word] for word in other_words2]
|
| 152 |
+
given_X2 = other_num2
|
| 153 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
| 154 |
+
output_sentence = other_text2 + ""
|
| 155 |
+
for _ in range(len2):
|
| 156 |
+
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
|
| 157 |
+
predicted_token = predicted_token.item()
|
| 158 |
+
out = num_to_word[predicted_token]
|
| 159 |
+
# if out == ".":
|
| 160 |
+
# break
|
| 161 |
+
|
| 162 |
+
output_sentence += " " + out
|
| 163 |
+
given_X2 = given_X2[1:]
|
| 164 |
+
given_X2.append(predicted_token)
|
| 165 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
| 166 |
+
|
| 167 |
+
out2 = output_sentence
|
| 168 |
+
|
| 169 |
st.write("Predicted Text: ")
|
| 170 |
st.write(out2)
|
| 171 |
|
|
|
|
| 185 |
weights = "predict1"
|
| 186 |
datafile = "data2.txt"
|
| 187 |
dict = "dict_predict1.bin.npz"
|
| 188 |
+
vocab_size = 100000
|
| 189 |
+
max_len = 1
|
| 190 |
+
d_model = 64 # 64 , 1024
|
| 191 |
+
n_head = 4 # 8 , 16
|
| 192 |
+
ff_dim = 256 # 256 , 2048
|
| 193 |
+
dropout_rate = 0.1 # 0.5 , 0.2
|
| 194 |
+
weights = "predict3"
|
| 195 |
+
datafile = "data2.txt"
|
| 196 |
+
dict = "dict_predict3.bin.npz"
|
| 197 |
+
with open(datafile,"r") as f:
|
| 198 |
+
text = f.read()
|
| 199 |
+
text = text.lower()
|
| 200 |
+
words = text.split()
|
| 201 |
+
loaded_dict = np.load(dict, allow_pickle=True)
|
| 202 |
+
word_to_num = loaded_dict["word_to_num"].item()
|
| 203 |
+
num_to_word = loaded_dict["num_to_word"].item()
|
| 204 |
+
X = []
|
| 205 |
+
Y = []
|
| 206 |
+
for i in range(len(words)-1):
|
| 207 |
+
word = words[i]
|
| 208 |
+
next_word = words[i+1]
|
| 209 |
+
X.append(word_to_num[word])
|
| 210 |
+
Y.append(word_to_num[next_word])
|
| 211 |
+
Y.append(0)
|
| 212 |
+
|
| 213 |
+
X.append(word_to_num[words[-1]])
|
| 214 |
+
X_train = pad_sequences([X])
|
| 215 |
+
y_train = pad_sequences([Y])
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
| 220 |
+
chatbot.load_weights(weights)
|
| 221 |
+
chatbot.build(input_shape=(None, max_len)) # Build the model
|
| 222 |
+
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
| 223 |
+
|
| 224 |
+
for i in range(1):
|
| 225 |
+
other_text2 = text2
|
| 226 |
+
other_text2 = other_text2.lower()
|
| 227 |
+
other_words2 = other_text2.split()
|
| 228 |
+
other_num2 = [word_to_num[word] for word in other_words2]
|
| 229 |
+
given_X2 = other_num2
|
| 230 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
| 231 |
+
output_sentence = other_text2 + ""
|
| 232 |
+
for _ in range(len2):
|
| 233 |
+
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
|
| 234 |
+
predicted_token = predicted_token.item()
|
| 235 |
+
out = num_to_word[predicted_token]
|
| 236 |
+
# if out == ".":
|
| 237 |
+
# break
|
| 238 |
+
|
| 239 |
+
output_sentence += " " + out
|
| 240 |
+
given_X2 = given_X2[1:]
|
| 241 |
+
given_X2.append(predicted_token)
|
| 242 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
| 243 |
+
|
| 244 |
+
out2 = output_sentence
|
| 245 |
st.write("Predicted Text: ")
|
| 246 |
st.write(out2)
|
| 247 |
else:
|