Spaces:
Build error
Build error
| // GGML internal header | |
| // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example: | |
| // | |
| // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ | |
| // | |
| extern "C" { | |
| // required for mmap as gguf only guarantees 32-byte alignment | |
| // static_assert should be a #define, but if it's not, | |
| // fall back to the _Static_assert C11 keyword. | |
| // if C99 - static_assert is noop | |
| // ref: https://stackoverflow.com/a/53923785/4039976 | |
| static inline int ggml_up32(int n) { | |
| return (n + 31) & ~31; | |
| } | |
| //static inline int ggml_up64(int n) { | |
| // return (n + 63) & ~63; | |
| //} | |
| static inline int ggml_up(int n, int m) { | |
| // assert m is a power of 2 | |
| GGML_ASSERT((m & (m - 1)) == 0); | |
| return (n + m - 1) & ~(m - 1); | |
| } | |
| // | |
| // logging | |
| // | |
| GGML_ATTRIBUTE_FORMAT(2, 3) | |
| GGML_API void ggml_log_internal (enum ggml_log_level level, const char * format, ...); | |
| GGML_API void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data); | |
| // tensor params | |
| static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) { | |
| GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings | |
| assert(params_size <= GGML_MAX_OP_PARAMS); | |
| memcpy(tensor->op_params, params, params_size); | |
| } | |
| static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); | |
| return ((const int32_t *)(tensor->op_params))[i]; | |
| } | |
| static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); | |
| return ((const float *)(tensor->op_params))[i]; | |
| } | |
| static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); | |
| ((int32_t *)(tensor->op_params))[i] = value; | |
| } | |
| static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); | |
| ((float *)(tensor->op_params))[i] = value; | |
| } | |
| struct ggml_map_custom1_op_params { | |
| ggml_custom1_op_t fun; | |
| int n_tasks; | |
| void * userdata; | |
| }; | |
| struct ggml_map_custom2_op_params { | |
| ggml_custom2_op_t fun; | |
| int n_tasks; | |
| void * userdata; | |
| }; | |
| struct ggml_map_custom3_op_params { | |
| ggml_custom3_op_t fun; | |
| int n_tasks; | |
| void * userdata; | |
| }; | |
| // bitset | |
| typedef uint32_t ggml_bitset_t; | |
| static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated"); | |
| static size_t ggml_bitset_size(size_t n) { | |
| return (n + BITSET_MASK) >> BITSET_SHR; | |
| } | |
| static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) { | |
| return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK))); | |
| } | |
| static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) { | |
| bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK)); | |
| } | |
| static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) { | |
| bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK)); | |
| } | |
| // hash set | |
| struct ggml_hash_set { | |
| size_t size; | |
| ggml_bitset_t * used; // whether or not the keys are in use i.e. set | |
| struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i) | |
| }; | |
| struct ggml_hash_set ggml_hash_set_new(size_t size); | |
| void ggml_hash_set_free(struct ggml_hash_set * hash_set); | |
| // returns the minimum size for a hash set that can hold min_sz elements | |
| size_t ggml_hash_size(size_t min_sz); | |
| // remove all elements from the hash set | |
| void ggml_hash_set_reset(struct ggml_hash_set * hash_set); | |
| // returns true if key is in the hash set | |
| static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key); | |
| // returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted | |
| static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key); | |
| // returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full | |
| static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); | |
| // return index, asserts if table is full | |
| static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); | |
| // hash function for ggml_tensor | |
| static inline size_t ggml_hash(const struct ggml_tensor * p) { | |
| // the last 4 bits are always zero due to alignment | |
| return (size_t)(uintptr_t)p >> 4; | |
| } | |
| static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key) { | |
| size_t h = ggml_hash(key) % hash_set->size; | |
| // linear probing | |
| size_t i = h; | |
| while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) { | |
| i = (i + 1) % hash_set->size; | |
| if (i == h) { | |
| // visited all hash table entries -> not found | |
| return GGML_HASHSET_FULL; | |
| } | |
| } | |
| return i; | |
| } | |
| static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) { | |
| size_t i = ggml_hash_find(hash_set, key); | |
| return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i); | |
| } | |
| static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { | |
| size_t h = ggml_hash(key) % hash_set->size; | |
| // linear probing | |
| size_t i = h; | |
| do { | |
| if (!ggml_bitset_get(hash_set->used, i)) { | |
| ggml_bitset_set(hash_set->used, i); | |
| hash_set->keys[i] = key; | |
| return i; | |
| } | |
| if (hash_set->keys[i] == key) { | |
| return GGML_HASHSET_ALREADY_EXISTS; | |
| } | |
| i = (i + 1) % hash_set->size; | |
| } while (i != h); | |
| // visited all hash table entries -> not found | |
| GGML_ABORT("fatal error"); | |
| } | |
| static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { | |
| size_t h = ggml_hash(key) % hash_set->size; | |
| // linear probing | |
| size_t i = h; | |
| do { | |
| if (!ggml_bitset_get(hash_set->used, i)) { | |
| ggml_bitset_set(hash_set->used, i); | |
| hash_set->keys[i] = key; | |
| return i; | |
| } | |
| if (hash_set->keys[i] == key) { | |
| return i; | |
| } | |
| i = (i + 1) % hash_set->size; | |
| } while (i != h); | |
| // visited all hash table entries -> not found | |
| GGML_ABORT("fatal error"); | |
| } | |
| // computation graph | |
| enum ggml_cgraph_eval_order { | |
| GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, | |
| GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, | |
| GGML_CGRAPH_EVAL_ORDER_COUNT | |
| }; | |
| struct ggml_cgraph { | |
| int size; // maximum number of nodes/leafs/grads/grad_accs | |
| int n_nodes; // number of nodes currently in use | |
| int n_leafs; // number of leafs currently in use | |
| struct ggml_tensor ** nodes; // tensors with data that can change if the graph is evaluated | |
| struct ggml_tensor ** grads; // the outputs of these tensors are the gradients of the nodes | |
| struct ggml_tensor ** grad_accs; // accumulators for node gradients | |
| struct ggml_tensor ** leafs; // tensors with constant data | |
| struct ggml_hash_set visited_hash_set; | |
| enum ggml_cgraph_eval_order order; | |
| }; | |
| // returns a slice of cgraph with nodes [i0, i1) | |
| // the slice does not have leafs or gradients | |
| // if you need the gradients, get them from the original graph | |
| struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1); | |
| // Memory allocation | |
| GGML_API void * ggml_aligned_malloc(size_t size); | |
| GGML_API void ggml_aligned_free(void * ptr, size_t size); | |
| // FP16 to FP32 conversion | |
| typedef uint16_t ggml_fp16_internal_t; | |
| typedef __fp16 ggml_fp16_internal_t; | |
| static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { | |
| ggml_fp16_internal_t tmp; | |
| memcpy(&tmp, &h, sizeof(ggml_fp16_t)); | |
| return (float)tmp; | |
| } | |
| static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { | |
| ggml_fp16_t res; | |
| ggml_fp16_internal_t tmp = f; | |
| memcpy(&res, &tmp, sizeof(ggml_fp16_t)); | |
| return res; | |
| } | |
| /* the inline asm below is about 12% faster than the lookup method */ | |
| static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { | |
| register float f; | |
| register double d; | |
| __asm__( | |
| "mtfprd %0,%2\n" | |
| "xscvhpdp %0,%0\n" | |
| "frsp %1,%0\n" : | |
| /* temp */ "=d"(d), | |
| /* out */ "=f"(f): | |
| /* in */ "r"(h)); | |
| return f; | |
| } | |
| static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { | |
| register double d; | |
| register ggml_fp16_t r; | |
| __asm__( /* xscvdphp can work on double or single precision */ | |
| "xscvdphp %0,%2\n" | |
| "mffprd %1,%0\n" : | |
| /* temp */ "=d"(d), | |
| /* out */ "=r"(r): | |
| /* in */ "f"(f)); | |
| return r; | |
| } | |
| // FP16 <-> FP32 | |
| // ref: https://github.com/Maratyszcza/FP16 | |
| static inline float fp32_from_bits(uint32_t w) { | |
| union { | |
| uint32_t as_bits; | |
| float as_value; | |
| } fp32; | |
| fp32.as_bits = w; | |
| return fp32.as_value; | |
| } | |
| static inline uint32_t fp32_to_bits(float f) { | |
| union { | |
| float as_value; | |
| uint32_t as_bits; | |
| } fp32; | |
| fp32.as_value = f; | |
| return fp32.as_bits; | |
| } | |
| static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { | |
| const uint32_t w = (uint32_t) h << 16; | |
| const uint32_t sign = w & UINT32_C(0x80000000); | |
| const uint32_t two_w = w + w; | |
| const uint32_t exp_offset = UINT32_C(0xE0) << 23; | |
| const float exp_scale = 0x1.0p-112f; | |
| const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); | |
| const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; | |
| const uint32_t magic_mask = UINT32_C(126) << 23; | |
| const float magic_bias = 0.5f; | |
| const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; | |
| const uint32_t denormalized_cutoff = UINT32_C(1) << 27; | |
| const uint32_t result = sign | | |
| (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); | |
| return fp32_from_bits(result); | |
| } | |
| static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { | |
| const float scale_to_inf = 0x1.0p+112f; | |
| const float scale_to_zero = 0x1.0p-110f; | |
| const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); | |
| const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); | |
| float base = (fabsf(f) * scale_to_inf) * scale_to_zero; | |
| const uint32_t w = fp32_to_bits(f); | |
| const uint32_t shl1_w = w + w; | |
| const uint32_t sign = w & UINT32_C(0x80000000); | |
| uint32_t bias = shl1_w & UINT32_C(0xFF000000); | |
| if (bias < UINT32_C(0x71000000)) { | |
| bias = UINT32_C(0x71000000); | |
| } | |
| base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; | |
| const uint32_t bits = fp32_to_bits(base); | |
| const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); | |
| const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); | |
| const uint32_t nonsign = exp_bits + mantissa_bits; | |
| return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); | |
| } | |
| // precomputed f32 table for f16 (256 KB) | |
| // defined in ggml.c, initialized in ggml_init() | |
| GGML_API float ggml_table_f32_f16[1 << 16]; | |
| // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, | |
| // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON. | |
| // This is also true for POWER9. | |
| inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { | |
| uint16_t s; | |
| memcpy(&s, &f, sizeof(uint16_t)); | |
| return ggml_table_f32_f16[s]; | |
| } | |
| /** | |
| * Converts brain16 to float32. | |
| * | |
| * The bfloat16 floating point format has the following structure: | |
| * | |
| * βsign | |
| * β | |
| * β βexponent | |
| * β β | |
| * β β βmantissa | |
| * β β β | |
| * βββββ΄βββββββ΄ββββ | |
| * 0b0000000000000000 brain16 | |
| * | |
| * Since bf16 has the same number of exponent bits as a 32bit float, | |
| * encoding and decoding numbers becomes relatively straightforward. | |
| * | |
| * βsign | |
| * β | |
| * β βexponent | |
| * β β | |
| * β β βmantissa | |
| * β β β | |
| * βββββ΄βββββββ΄ββββββββββββββββββββ | |
| * 0b00000000000000000000000000000000 IEEE binary32 | |
| * | |
| * For comparison, the standard fp16 format has fewer exponent bits. | |
| * | |
| * βsign | |
| * β | |
| * β βexponent | |
| * β β | |
| * β β βmantissa | |
| * β β β | |
| * ββββ΄βββββ΄βββββββ | |
| * 0b0000000000000000 IEEE binary16 | |
| * | |
| * @see IEEE 754-2008 | |
| */ | |
| static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) { | |
| union { | |
| float f; | |
| uint32_t i; | |
| } u; | |
| u.i = (uint32_t)h.bits << 16; | |
| return u.f; | |
| } | |
| /** | |
| * Converts float32 to brain16. | |
| * | |
| * This is binary identical with Google Brain float conversion. | |
| * Floats shall round to nearest even, and NANs shall be quiet. | |
| * Subnormals aren't flushed to zero, except perhaps when used. | |
| * This code should vectorize nicely if using modern compilers. | |
| */ | |
| static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { | |
| ggml_bf16_t h; | |
| union { | |
| float f; | |
| uint32_t i; | |
| } u; | |
| u.f = s; | |
| if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */ | |
| h.bits = (u.i >> 16) | 64; /* force to quiet */ | |
| return h; | |
| } | |
| h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16; | |
| return h; | |
| } | |
| } | |
| // expose GGUF internals for test code | |
| GGML_API size_t gguf_type_size(enum gguf_type type); | |
| GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params); | |
| GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta); | |