Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| def load_model(): | |
| # Load the model once and cache it | |
| return pipeline("text-generation", model="deepseek-ai/deepseek-coder-1.3b-instruct") | |
| # App UI | |
| st.title("🤖 DeepSeek Coder Chat") | |
| st.write("Ask questions to the DeepSeek Coder AI model!") | |
| # User input | |
| user_input = st.text_input("Enter your question:", value="Who are you?") | |
| if st.button("Generate Response"): | |
| # Format messages in chat format | |
| messages = [{"role": "user", "content": user_input}] | |
| # Load cached model | |
| pipe = load_model() | |
| # Generate response with loading indicator | |
| with st.spinner("Generating response..."): | |
| try: | |
| response = pipe(messages) | |
| # Display formatted output | |
| st.subheader("Response:") | |
| st.write(response[0]['generated_text'][1]["content"]) | |
| except Exception as e: | |
| st.error(f"An error occurred: {str(e)}") | |
| # Sidebar with info | |
| with st.sidebar: | |
| st.markdown("### Model Information") | |
| st.write("This app uses the deepseek-ai/deepseek-coder-1.3b-instruct model") | |
| st.markdown("### System Requirements") | |
| st.write("⚠️ Note: This model requires significant computational resources:") | |
| st.write("- ~3GB RAM minimum") | |
| st.write("- ~5GB disk space for model weights") | |
| st.write("- May take 30-60 seconds to load initially") |