Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| from sklearn.preprocessing import LabelEncoder | |
| from sklearn.model_selection import train_test_split | |
| from numpy import argmax | |
| import tensorflow as tf | |
| from tensorflow.keras import Sequential | |
| from tensorflow.keras.layers import Dense | |
| from tensorflow.keras.optimizers import Adam | |
| from tensorflow.keras.preprocessing import sequence | |
| import pickle | |
| dataset = pd.read_csv(r"C:\Users\Ajitha V\OneDrive\Desktop\Neural_network\IMDB Dataset.csv") | |
| dataset['sentiment'] = dataset['sentiment'].map( {'negative': 1, 'positive': 0} ) | |
| X = dataset['review'].values | |
| y = dataset['sentiment'].values | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,random_state=42) | |
| tokeniser = tf.keras.preprocessing.text.Tokenizer() | |
| tokeniser.fit_on_texts(X_train) | |
| X_train = tokeniser.texts_to_sequences(X_train) | |
| X_test = tokeniser.texts_to_sequences(X_test) | |
| vocab_size = len(tokeniser.word_index)+1 | |
| max_review_length = 500 | |
| X_train = sequence.pad_sequences(X_train, maxlen=max_review_length, padding = 'post') | |
| X_test = sequence.pad_sequences(X_test, maxlen=max_review_length, padding = 'post') | |
| n_features = X_train.shape[1] | |
| #Modelling a sample DNN | |
| model = Sequential() | |
| model.add(Dense(64, activation='relu',input_shape=(500,))) | |
| model.add(Dense(32, activation='relu')) | |
| model.add(Dense(16, activation='relu')) | |
| model.add(Dense(1,activation='sigmoid')) | |
| opt=Adam(learning_rate=0.01) | |
| model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) | |
| history=model.fit(X_train, y_train, epochs=50, batch_size=16) | |
| loss, acc = model.evaluate(X_test, y_test) | |
| model.save("dnn_model.h5") | |
| with open("dnn_tokeniser.pkl",'wb') as file: | |
| pickle.dump(tokeniser, file) | |