File size: 10,235 Bytes
2c2a833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
SAM 3D Body Gradio App - ZeroGPU Compatible
This app handles all dependencies and provides a user-friendly interface for 3D body estimation.
Optimized for Hugging Face Spaces with ZeroGPU support.
"""

import os
import sys
import subprocess
import importlib.util

def check_and_install_package(package_name, import_name=None, pip_name=None):
    """Check if a package is installed, if not, install it."""
    if import_name is None:
        import_name = package_name
    if pip_name is None:
        pip_name = package_name
    
    spec = importlib.util.find_spec(import_name)
    if spec is None:
        print(f"Installing {package_name}...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", pip_name, "-q"])
        print(f"βœ“ {package_name} installed successfully")
    return True

# Install core dependencies
print("Checking and installing dependencies...")
check_and_install_package("gradio")
check_and_install_package("spaces")  # ZeroGPU support
check_and_install_package("torch", pip_name="torch torchvision torchaudio")
check_and_install_package("pytorch_lightning", "pytorch_lightning")
check_and_install_package("cv2", "cv2", "opencv-python")
check_and_install_package("numpy")
check_and_install_package("PIL", "PIL", "Pillow")
check_and_install_package("huggingface_hub")

# Install additional dependencies
additional_deps = [
    "pyrender", "yacs", "scikit-image", "einops", "timm", "dill", 
    "pandas", "rich", "hydra-core", "pyrootutils", "webdataset", 
    "networkx==3.2.1", "roma", "joblib", "seaborn", "loguru", 
    "pycocotools", "fvcore"
]

for dep in additional_deps:
    try:
        pkg_name = dep.split("==")[0].replace("-", "_")
        check_and_install_package(pkg_name, pip_name=dep)
    except:
        pass

print("Core dependencies installed!")

import gradio as gr
import cv2
import numpy as np
from PIL import Image
import torch
import spaces  # ZeroGPU decorator
from huggingface_hub import hf_hub_download, login
import warnings
warnings.filterwarnings('ignore')

class SAM3DBodyEstimator:
    """Wrapper class for SAM 3D Body estimation with ZeroGPU support."""
    
    def __init__(self, hf_repo_id="facebook/sam-3d-body-dinov3"):
        self.hf_repo_id = hf_repo_id
        self.model = None
        self.faces = None
        self.initialized = False
        
    def setup(self, hf_token=None):
        """Setup the SAM 3D Body model (CPU operations only)."""
        try:
            if hf_token:
                login(token=hf_token)
                print("βœ“ Logged in to Hugging Face")
            
            # Try to import the SAM 3D Body utilities
            try:
                from notebook.utils import setup_sam_3d_body
                # Initialize model on CPU first, will move to GPU during inference
                self.model = setup_sam_3d_body(hf_repo_id=self.hf_repo_id)
                self.faces = self.model.faces
                self.initialized = True
                return "βœ“ Model loaded successfully! Ready for GPU inference."
            except ImportError:
                return "⚠️ SAM 3D Body package not found. Please install manually or provide installation path."
            except Exception as e:
                return f"❌ Error loading model: {str(e)}\n\nPlease ensure you have access to the Hugging Face repo and are authenticated."
                
        except Exception as e:
            return f"❌ Setup error: {str(e)}"
    
    @spaces.GPU(duration=120)  # ZeroGPU decorator with 120s timeout
    def process_image(self, image):
        """Process an image and return 3D body estimation (GPU accelerated)."""
        if not self.initialized:
            return None, "❌ Model not initialized. Please setup first with your HF token."
        
        try:
            # Ensure model is on GPU
            if hasattr(self.model, 'to'):
                self.model.to('cuda')
            
            # Convert PIL to BGR
            img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
            
            # Process image (GPU operations happen here)
            img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
            outputs = self.model.process_one_image(img_rgb)
            
            # Visualize results
            try:
                from tools.vis_utils import visualize_sample_together
                rend_img = visualize_sample_together(img_bgr, outputs, self.faces)
                result_img = Image.fromarray(cv2.cvtColor(rend_img.astype(np.uint8), cv2.COLOR_BGR2RGB))
                
                # GPU is automatically released after this function completes
                return result_img, "βœ“ Processing completed successfully!"
            except ImportError:
                # Fallback visualization if vis_utils not available
                return image, "⚠️ Visualization utilities not found. Model processed but cannot render 3D output."
                
        except Exception as e:
            return None, f"❌ Processing error: {str(e)}"
        finally:
            # Clean up GPU memory
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

# Initialize estimator
estimator = SAM3DBodyEstimator()

def setup_model(hf_token, model_choice):
    """Setup the SAM 3D Body model with HF token."""
    repo_ids = {
        "DINOv3 (Recommended)": "facebook/sam-3d-body-dinov3",
        "ViT-H": "facebook/sam-3d-body-vith"
    }
    estimator.hf_repo_id = repo_ids[model_choice]
    return estimator.setup(hf_token)

def process_uploaded_image(image):
    """Process uploaded image through SAM 3D Body (GPU allocated dynamically)."""
    if image is None:
        return None, "❌ Please upload an image first."
    return estimator.process_image(image)

# Create Gradio interface
with gr.Blocks(title="SAM 3D Body Estimator", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎯 SAM 3D Body Estimator (ZeroGPU)
    
    Generate 3D body meshes from single images using Meta's SAM 3D Body model.
    **Powered by Hugging Face Spaces ZeroGPU** - Dynamic GPU allocation for efficient inference!
    
    ### πŸ“‹ Setup Instructions:
    1. Get access to the model on [Hugging Face](https://huggingface.co/facebook/sam-3d-body-dinov3)
    2. Create a [Hugging Face token](https://huggingface.co/settings/tokens) with read access
    3. Enter your token below and click "Initialize Model"
    4. Upload an image and click "Process Image"
    
    ⚠️ **Note**: You need approved access to the SAM 3D Body repos on Hugging Face.
    
    ### ⚑ ZeroGPU Features:
    - **Dynamic GPU Allocation**: H200 GPU allocated only during inference
    - **Free GPU Access**: Available to all users with daily quotas
    - **PRO Benefits**: PRO users get 7x more quota (25 min/day vs 3.5 min/day)
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### πŸ”§ Model Setup")
            hf_token_input = gr.Textbox(
                label="Hugging Face Token",
                placeholder="hf_...",
                type="password",
                info="Your HF token with read access"
            )
            model_choice = gr.Radio(
                choices=["DINOv3 (Recommended)", "ViT-H"],
                value="DINOv3 (Recommended)",
                label="Model Selection"
            )
            setup_btn = gr.Button("πŸš€ Initialize Model", variant="primary")
            setup_status = gr.Textbox(label="Setup Status", interactive=False)
            
            gr.Markdown("### πŸ“Έ Upload Image")
            input_image = gr.Image(
                label="Input Image",
                type="pil",
                sources=["upload", "webcam"]
            )
            process_btn = gr.Button("▢️ Process Image (GPU)", variant="primary")
            process_status = gr.Textbox(label="Processing Status", interactive=False)
        
        with gr.Column(scale=1):
            gr.Markdown("### 🎨 Results")
            output_image = gr.Image(label="3D Body Estimation", type="pil")
            
            gr.Markdown("""
            ### πŸ’‘ Tips:
            - Use clear, full-body images for best results
            - Ensure good lighting and minimal occlusion
            - Person should be facing the camera
            - High resolution images work better
            - Processing time: ~30-60 seconds per image
            
            ### πŸ“Š GPU Usage:
            - **Duration**: Up to 120 seconds per inference
            - **VRAM**: 70GB H200 GPU available
            - **Queue**: Priority based on account tier
            """)
    
    gr.Markdown("""
    ---
    ### πŸ“š Additional Information
    
    **Model Details:**
    - Paper: [SAM 3D Body](https://arxiv.org/abs/your-paper-link)
    - GitHub: [facebook/sam-3d-body](https://github.com/facebookresearch/sam-3d-body)
    
    **ZeroGPU Daily Quotas:**
    - Unauthenticated: 2 minutes
    - Free account: 3.5 minutes
    - PRO account: 25 minutes (7x more!)
    - Enterprise: 45 minutes
    
    **System Requirements:**
    - Python 3.10.13+
    - PyTorch 2.1.0+
    - Gradio 4+
    - ZeroGPU Space (H200 GPU)
    
    **Troubleshooting:**
    - If model fails to load, ensure you have access to the HF repo
    - GPU allocation is dynamic - wait for your turn in queue
    - Check your daily quota if processing fails
    - Clear browser cache if interface doesn't load properly
    
    **About ZeroGPU:**
    This Space uses ZeroGPU, which dynamically allocates NVIDIA H200 GPUs only during inference.
    This maximizes efficiency and allows free GPU access for AI demos!
    """)
    
    # Event handlers
    setup_btn.click(
        fn=setup_model,
        inputs=[hf_token_input, model_choice],
        outputs=setup_status
    )
    
    process_btn.click(
        fn=process_uploaded_image,
        inputs=input_image,
        outputs=[output_image, process_status]
    )

# Launch the app
if __name__ == "__main__":
    print("\n" + "="*60)
    print("πŸš€ Starting SAM 3D Body Gradio App (ZeroGPU)")
    print("="*60 + "\n")
    
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )