Spaces:
Runtime error
Runtime error
File size: 10,235 Bytes
2c2a833 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
"""
SAM 3D Body Gradio App - ZeroGPU Compatible
This app handles all dependencies and provides a user-friendly interface for 3D body estimation.
Optimized for Hugging Face Spaces with ZeroGPU support.
"""
import os
import sys
import subprocess
import importlib.util
def check_and_install_package(package_name, import_name=None, pip_name=None):
"""Check if a package is installed, if not, install it."""
if import_name is None:
import_name = package_name
if pip_name is None:
pip_name = package_name
spec = importlib.util.find_spec(import_name)
if spec is None:
print(f"Installing {package_name}...")
subprocess.check_call([sys.executable, "-m", "pip", "install", pip_name, "-q"])
print(f"β {package_name} installed successfully")
return True
# Install core dependencies
print("Checking and installing dependencies...")
check_and_install_package("gradio")
check_and_install_package("spaces") # ZeroGPU support
check_and_install_package("torch", pip_name="torch torchvision torchaudio")
check_and_install_package("pytorch_lightning", "pytorch_lightning")
check_and_install_package("cv2", "cv2", "opencv-python")
check_and_install_package("numpy")
check_and_install_package("PIL", "PIL", "Pillow")
check_and_install_package("huggingface_hub")
# Install additional dependencies
additional_deps = [
"pyrender", "yacs", "scikit-image", "einops", "timm", "dill",
"pandas", "rich", "hydra-core", "pyrootutils", "webdataset",
"networkx==3.2.1", "roma", "joblib", "seaborn", "loguru",
"pycocotools", "fvcore"
]
for dep in additional_deps:
try:
pkg_name = dep.split("==")[0].replace("-", "_")
check_and_install_package(pkg_name, pip_name=dep)
except:
pass
print("Core dependencies installed!")
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import torch
import spaces # ZeroGPU decorator
from huggingface_hub import hf_hub_download, login
import warnings
warnings.filterwarnings('ignore')
class SAM3DBodyEstimator:
"""Wrapper class for SAM 3D Body estimation with ZeroGPU support."""
def __init__(self, hf_repo_id="facebook/sam-3d-body-dinov3"):
self.hf_repo_id = hf_repo_id
self.model = None
self.faces = None
self.initialized = False
def setup(self, hf_token=None):
"""Setup the SAM 3D Body model (CPU operations only)."""
try:
if hf_token:
login(token=hf_token)
print("β Logged in to Hugging Face")
# Try to import the SAM 3D Body utilities
try:
from notebook.utils import setup_sam_3d_body
# Initialize model on CPU first, will move to GPU during inference
self.model = setup_sam_3d_body(hf_repo_id=self.hf_repo_id)
self.faces = self.model.faces
self.initialized = True
return "β Model loaded successfully! Ready for GPU inference."
except ImportError:
return "β οΈ SAM 3D Body package not found. Please install manually or provide installation path."
except Exception as e:
return f"β Error loading model: {str(e)}\n\nPlease ensure you have access to the Hugging Face repo and are authenticated."
except Exception as e:
return f"β Setup error: {str(e)}"
@spaces.GPU(duration=120) # ZeroGPU decorator with 120s timeout
def process_image(self, image):
"""Process an image and return 3D body estimation (GPU accelerated)."""
if not self.initialized:
return None, "β Model not initialized. Please setup first with your HF token."
try:
# Ensure model is on GPU
if hasattr(self.model, 'to'):
self.model.to('cuda')
# Convert PIL to BGR
img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Process image (GPU operations happen here)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
outputs = self.model.process_one_image(img_rgb)
# Visualize results
try:
from tools.vis_utils import visualize_sample_together
rend_img = visualize_sample_together(img_bgr, outputs, self.faces)
result_img = Image.fromarray(cv2.cvtColor(rend_img.astype(np.uint8), cv2.COLOR_BGR2RGB))
# GPU is automatically released after this function completes
return result_img, "β Processing completed successfully!"
except ImportError:
# Fallback visualization if vis_utils not available
return image, "β οΈ Visualization utilities not found. Model processed but cannot render 3D output."
except Exception as e:
return None, f"β Processing error: {str(e)}"
finally:
# Clean up GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Initialize estimator
estimator = SAM3DBodyEstimator()
def setup_model(hf_token, model_choice):
"""Setup the SAM 3D Body model with HF token."""
repo_ids = {
"DINOv3 (Recommended)": "facebook/sam-3d-body-dinov3",
"ViT-H": "facebook/sam-3d-body-vith"
}
estimator.hf_repo_id = repo_ids[model_choice]
return estimator.setup(hf_token)
def process_uploaded_image(image):
"""Process uploaded image through SAM 3D Body (GPU allocated dynamically)."""
if image is None:
return None, "β Please upload an image first."
return estimator.process_image(image)
# Create Gradio interface
with gr.Blocks(title="SAM 3D Body Estimator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π― SAM 3D Body Estimator (ZeroGPU)
Generate 3D body meshes from single images using Meta's SAM 3D Body model.
**Powered by Hugging Face Spaces ZeroGPU** - Dynamic GPU allocation for efficient inference!
### π Setup Instructions:
1. Get access to the model on [Hugging Face](https://huggingface.co/facebook/sam-3d-body-dinov3)
2. Create a [Hugging Face token](https://huggingface.co/settings/tokens) with read access
3. Enter your token below and click "Initialize Model"
4. Upload an image and click "Process Image"
β οΈ **Note**: You need approved access to the SAM 3D Body repos on Hugging Face.
### β‘ ZeroGPU Features:
- **Dynamic GPU Allocation**: H200 GPU allocated only during inference
- **Free GPU Access**: Available to all users with daily quotas
- **PRO Benefits**: PRO users get 7x more quota (25 min/day vs 3.5 min/day)
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π§ Model Setup")
hf_token_input = gr.Textbox(
label="Hugging Face Token",
placeholder="hf_...",
type="password",
info="Your HF token with read access"
)
model_choice = gr.Radio(
choices=["DINOv3 (Recommended)", "ViT-H"],
value="DINOv3 (Recommended)",
label="Model Selection"
)
setup_btn = gr.Button("π Initialize Model", variant="primary")
setup_status = gr.Textbox(label="Setup Status", interactive=False)
gr.Markdown("### πΈ Upload Image")
input_image = gr.Image(
label="Input Image",
type="pil",
sources=["upload", "webcam"]
)
process_btn = gr.Button("βΆοΈ Process Image (GPU)", variant="primary")
process_status = gr.Textbox(label="Processing Status", interactive=False)
with gr.Column(scale=1):
gr.Markdown("### π¨ Results")
output_image = gr.Image(label="3D Body Estimation", type="pil")
gr.Markdown("""
### π‘ Tips:
- Use clear, full-body images for best results
- Ensure good lighting and minimal occlusion
- Person should be facing the camera
- High resolution images work better
- Processing time: ~30-60 seconds per image
### π GPU Usage:
- **Duration**: Up to 120 seconds per inference
- **VRAM**: 70GB H200 GPU available
- **Queue**: Priority based on account tier
""")
gr.Markdown("""
---
### π Additional Information
**Model Details:**
- Paper: [SAM 3D Body](https://arxiv.org/abs/your-paper-link)
- GitHub: [facebook/sam-3d-body](https://github.com/facebookresearch/sam-3d-body)
**ZeroGPU Daily Quotas:**
- Unauthenticated: 2 minutes
- Free account: 3.5 minutes
- PRO account: 25 minutes (7x more!)
- Enterprise: 45 minutes
**System Requirements:**
- Python 3.10.13+
- PyTorch 2.1.0+
- Gradio 4+
- ZeroGPU Space (H200 GPU)
**Troubleshooting:**
- If model fails to load, ensure you have access to the HF repo
- GPU allocation is dynamic - wait for your turn in queue
- Check your daily quota if processing fails
- Clear browser cache if interface doesn't load properly
**About ZeroGPU:**
This Space uses ZeroGPU, which dynamically allocates NVIDIA H200 GPUs only during inference.
This maximizes efficiency and allows free GPU access for AI demos!
""")
# Event handlers
setup_btn.click(
fn=setup_model,
inputs=[hf_token_input, model_choice],
outputs=setup_status
)
process_btn.click(
fn=process_uploaded_image,
inputs=input_image,
outputs=[output_image, process_status]
)
# Launch the app
if __name__ == "__main__":
print("\n" + "="*60)
print("π Starting SAM 3D Body Gradio App (ZeroGPU)")
print("="*60 + "\n")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |