Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from hazm import *
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
| 4 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 5 |
+
lda = LatentDirichletAllocation(n_components=4,random_state=101)
|
| 6 |
+
normalizer=Normalizer()
|
| 7 |
+
lemmatizer=Lemmatizer()
|
| 8 |
+
stemmer=Stemmer()
|
| 9 |
+
vectorzer=CountVectorizer(analyzer='word', ngram_range=(1,1))
|
| 10 |
+
def compute_seo_score(normalized_text,keywords):
|
| 11 |
+
tokens=sent_tokenize(normalized_text)
|
| 12 |
+
x=vectorzer.fit_transform([normalized_text])
|
| 13 |
+
features=lda.fit(x)
|
| 14 |
+
key_words=[vectorzer.get_feature_names_out()[index] for index in features.components_.argsort()[-10:]]
|
| 15 |
+
query_terms=keywords.split('-')
|
| 16 |
+
score=0
|
| 17 |
+
for i in range(len(key_words)):
|
| 18 |
+
for query in query_terms:
|
| 19 |
+
keyterms=key_words[i]
|
| 20 |
+
if query in [lemmatizer.lemmatize(word) for word in key_words[i]]:
|
| 21 |
+
score+=1
|
| 22 |
+
final_score=score/4
|
| 23 |
+
return {'Estimated_number':score/100,
|
| 24 |
+
'score':final_score/100}
|
| 25 |
+
def Normalize_text(text,keywords):
|
| 26 |
+
normalized_text=normalizer.normalize(text)
|
| 27 |
+
label=compute_seo_score(normalized_text,keywords)
|
| 28 |
+
return normalized_text,label
|
| 29 |
+
demo = gr.Interface(
|
| 30 |
+
fn=Normalize_text,
|
| 31 |
+
inputs=["text","text"],
|
| 32 |
+
outputs=["text","label"],
|
| 33 |
+
)
|
| 34 |
+
demo.launch()
|