Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torchvision.transforms.functional import normalize
|
| 4 |
+
from models import BriaRMBG
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import git # pip install gitpython
|
| 7 |
+
|
| 8 |
+
net=BriaRMBG()
|
| 9 |
+
model_path = "./model.pth"
|
| 10 |
+
git.Git(".").clone("https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4")
|
| 11 |
+
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
net.load_state_dict(torch.load(model_path))
|
| 14 |
+
net=net.cuda()
|
| 15 |
+
else:
|
| 16 |
+
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
| 17 |
+
net.eval()
|
| 18 |
+
|
| 19 |
+
def image_size_by_min_resolution(
|
| 20 |
+
image: Image.Image,
|
| 21 |
+
resolution: Tuple,
|
| 22 |
+
resample=None,
|
| 23 |
+
):
|
| 24 |
+
w, h = image.size
|
| 25 |
+
|
| 26 |
+
image_min = min(w, h)
|
| 27 |
+
resolution_min = min(resolution)
|
| 28 |
+
|
| 29 |
+
scale_factor = image_min / resolution_min
|
| 30 |
+
|
| 31 |
+
resize_to: Tuple[int, int] = (
|
| 32 |
+
int(w // scale_factor),
|
| 33 |
+
int(h // scale_factor),
|
| 34 |
+
)
|
| 35 |
+
return resize_to
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def resize_image(image):
|
| 39 |
+
image = image.convert('RGB')
|
| 40 |
+
new_image_size = image_size_by_min_resolution(image=image,resolution=(1024, 1024))
|
| 41 |
+
image = image.resize(new_image_size, Image.BILINEAR)
|
| 42 |
+
return image
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def process(input_image):
|
| 46 |
+
|
| 47 |
+
# prepare input
|
| 48 |
+
orig_image = Image.open(im_path)
|
| 49 |
+
w,h = orig_im_size = orig_image.size
|
| 50 |
+
image = resize_image(orig_image)
|
| 51 |
+
im_np = np.array(image)
|
| 52 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
|
| 53 |
+
im_tensor = torch.unsqueeze(im_tensor,0)
|
| 54 |
+
im_tensor = torch.divide(im_tensor,255.0)
|
| 55 |
+
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 56 |
+
if torch.cuda.is_available():
|
| 57 |
+
im_tensor=im_tensor.cuda()
|
| 58 |
+
|
| 59 |
+
#inference
|
| 60 |
+
result=net(im_tensor)
|
| 61 |
+
|
| 62 |
+
# post process
|
| 63 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
|
| 64 |
+
ma = torch.max(result)
|
| 65 |
+
mi = torch.min(result)
|
| 66 |
+
result = (result-mi)/(ma-mi)
|
| 67 |
+
|
| 68 |
+
# save result
|
| 69 |
+
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
|
| 70 |
+
pil_im = Image.fromarray(np.squeeze(im_array))
|
| 71 |
+
# paste the mask on the original image
|
| 72 |
+
new_im = Image.new("RGBA", pil_im.size, (0,0,0))
|
| 73 |
+
new_im.paste(orig_image, mask=pil_im)
|
| 74 |
+
|
| 75 |
+
return new_im
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
block = gr.Blocks().queue()
|
| 79 |
+
|
| 80 |
+
with block:
|
| 81 |
+
gr.Markdown("## BRIA RMBG 1.4")
|
| 82 |
+
gr.HTML('''
|
| 83 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
| 84 |
+
This is a demo for BRIA RMBG 1.4 that using
|
| 85 |
+
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
| 86 |
+
</p>
|
| 87 |
+
''')
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
| 91 |
+
input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
|
| 92 |
+
run_button = gr.Button(value="Run")
|
| 93 |
+
|
| 94 |
+
with gr.Column():
|
| 95 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
|
| 96 |
+
ips = [input_image]
|
| 97 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
| 98 |
+
|
| 99 |
+
block.launch(debug = True)
|