Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import requests | |
| import io | |
| import os | |
| import logging | |
| from PIL import Image | |
| from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white, resize_image, DITHER_METHODS, QUANTIZATION_METHODS | |
| import json | |
| import time | |
| # Configuração de log | |
| logging.basicConfig(level=logging.DEBUG) | |
| class SomeClass: | |
| def __init__(self): | |
| self.images = [] | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| def update_selection(selected_state: gr.SelectData): | |
| logging.debug(f"Inside update_selection, selected_state: {selected_state}") | |
| logging.debug(f"Content of selected_state: {vars(selected_state)}") # Log the content | |
| selected_lora_index = selected_state.index | |
| selected_lora = loras[selected_lora_index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| selected_state | |
| ) | |
| def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)): | |
| logging.debug(f"Inside run_lora, selected_state: {selected_state}") | |
| logging.debug(f"Content of selected_state in run_lora: {vars(selected_state)}") | |
| if not selected_state: | |
| logging.error("selected_state is None or empty. Make sure a LoRA is selected.") | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| token = os.getenv("API_TOKEN") | |
| if not token: | |
| logging.error("API_TOKEN is not set.") | |
| raise gr.Error("API_TOKEN is not set.") | |
| selected_lora_index = selected_state.index | |
| selected_lora = loras[selected_lora_index] | |
| api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}" | |
| trigger_word = selected_lora["trigger_word"] | |
| payload = { | |
| "inputs": f"{prompt} {trigger_word}", | |
| "parameters": {"negative_prompt": "bad art, ugly, watermark, deformed"}, | |
| } | |
| headers = {"Authorization": f"Bearer {token}"} | |
| logging.debug(f"API Request: {api_url}") | |
| logging.debug(f"API Payload: {payload}") | |
| error_count = 0 | |
| while True: | |
| response = requests.post(api_url, json=payload, headers=headers) | |
| if response.status_code == 200: | |
| return Image.open(io.BytesIO(response.content)) | |
| elif response.status_code == 503: | |
| time.sleep(1) | |
| elif response.status_code == 500 and error_count < 5: | |
| logging.error(response.content) | |
| time.sleep(1) | |
| error_count += 1 | |
| else: | |
| logging.error(f"Unexpected API Error: {response.status_code}") | |
| raise gr.Error(f"Unexpected API Error: {response.status_code}") | |
| def postprocess( | |
| image, | |
| enabled, | |
| downscale, | |
| need_rescale, | |
| enable_color_limit, | |
| number_of_colors, | |
| quantization_method, | |
| dither_method, | |
| use_k_means, | |
| is_grayscale, | |
| number_of_shades, | |
| quantization_method_grayscale, | |
| dither_method_grayscale, | |
| use_k_means_grayscale, | |
| is_black_and_white, | |
| is_inversed_black_and_white, | |
| black_and_white_threshold, | |
| use_color_palette, | |
| palette_image, | |
| palette_colors, | |
| dither_method_palette | |
| ): | |
| logging.debug(f"Available keys in QUANTIZATION_METHODS: {QUANTIZATION_METHODS.keys()}") | |
| logging.debug(f"Selected quantization_method: {quantization_method}") | |
| if not enabled: | |
| return image | |
| processed_image = image.copy() | |
| if downscale > 1: | |
| processed_image = downscale_image(processed_image, downscale) | |
| if enable_color_limit: | |
| processed_image = limit_colors( | |
| image=processed_image, | |
| limit=number_of_colors, | |
| quantize=QUANTIZATION_METHODS[quantization_method.capitalize()], | |
| dither=DITHER_METHODS[dither_method], | |
| use_k_means=use_k_means | |
| ) | |
| if is_grayscale: | |
| processed_image = convert_to_grayscale(processed_image) | |
| processed_image = limit_colors( | |
| image=processed_image, | |
| limit=number_of_shades, | |
| quantize=QUANTIZATION_METHODS[quantization_method_grayscale.capitalize()], | |
| dither=DITHER_METHODS[dither_method_grayscale], | |
| use_k_means=use_k_means_grayscale | |
| ) | |
| if is_black_and_white: | |
| processed_image = convert_to_black_and_white(processed_image, black_and_white_threshold, is_inversed_black_and_white) | |
| if use_color_palette: | |
| processed_image = limit_colors( | |
| image=processed_image, | |
| palette=palette_image, | |
| palette_colors=palette_colors, | |
| dither=DITHER_METHODS[dither_method_palette] | |
| ) | |
| if need_rescale: | |
| processed_image = resize_image(processed_image, image.size) | |
| return processed_image | |
| def run_and_postprocess(prompt, selected_state, enabled, downscale, need_rescale, enable_color_limit, palette_size_color, quantization_methods_color, dither_methods_color, k_means_color, enable_grayscale, palette_size_gray, quantization_methods_gray, dither_methods_gray, k_means_gray, enable_black_and_white, inverse_black_and_white, threshold_black_and_white, enable_custom_palette, palette_image, palette_size_custom, dither_methods_custom): | |
| # Debug: Starting the function | |
| logging.debug("Starting run_and_postprocess function.") | |
| # Run the original image generation | |
| original_image = run_lora(prompt, selected_state) | |
| # Debug: Confirming that the original image was generated | |
| logging.debug("Original image generated.") | |
| # Post-process the image based on user input | |
| processed_image = postprocess( | |
| original_image, | |
| enabled, | |
| downscale, | |
| need_rescale, | |
| enable_color_limit, | |
| palette_size_color, | |
| quantization_methods_color, | |
| dither_methods_color, | |
| k_means_color, | |
| enable_grayscale, | |
| palette_size_gray, | |
| quantization_methods_gray, | |
| dither_methods_gray, | |
| k_means_gray, | |
| enable_black_and_white, | |
| inverse_black_and_white, | |
| threshold_black_and_white, | |
| enable_custom_palette, | |
| palette_image, | |
| palette_size_custom, | |
| dither_methods_custom | |
| ) | |
| # Debug: Confirming that post-processing was applied | |
| if enabled: | |
| logging.debug("Post-processing applied.") | |
| else: | |
| logging.debug("Post-processing not applied.") | |
| return processed_image if enabled else original_image | |
| with gr.Blocks() as app: | |
| title = gr.Markdown("# PIXEL ART GENERATOR") | |
| description = gr.Markdown("### This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr). Generate Pixel Art using Lora from [@artificialguybr](https://twitter.com/artificialguybr) and [@nerijs](https://twitter.com/nerijs).") | |
| selected_state = gr.State() | |
| with gr.Row(): | |
| gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=1) | |
| with gr.Column(): | |
| prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it") | |
| selected_info = gr.Markdown("") | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA") | |
| button = gr.Button("Run") | |
| result = gr.Image(interactive=False, label="Generated Image") | |
| # Accordion moved here, inside the same gr.Blocks context | |
| with gr.Accordion(label="Pixel art", open=True): | |
| with gr.Row(): | |
| enabled = gr.Checkbox(label="Enable", value=False) | |
| downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8) | |
| need_rescale = gr.Checkbox(label="Rescale to original size", value=True) | |
| with gr.Tabs(): | |
| with gr.TabItem("Color"): | |
| enable_color_limit = gr.Checkbox(label="Enable", value=False) | |
| palette_size_color = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
| quantization_methods_color = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut") | |
| dither_methods_color = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None") | |
| k_means_color = gr.Checkbox(label="Enable k-means for color quantization", value=True) | |
| with gr.TabItem("Grayscale"): | |
| enable_grayscale = gr.Checkbox(label="Enable", value=False) | |
| palette_size_gray = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
| quantization_methods_gray = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut") | |
| dither_methods_gray = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None") | |
| k_means_gray = gr.Checkbox(label="Enable k-means for color quantization", value=True) | |
| with gr.TabItem("Black and white"): | |
| enable_black_and_white = gr.Checkbox(label="Enable", value=False) | |
| inverse_black_and_white = gr.Checkbox(label="Inverse", value=False) | |
| threshold_black_and_white = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128) | |
| with gr.TabItem("Custom color palette"): | |
| enable_custom_palette = gr.Checkbox(label="Enable", value=False) | |
| palette_image = gr.Image(label="Color palette image", type="pil") | |
| palette_size_custom = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) | |
| dither_methods_custom = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None") | |
| # The rest of your code for setting up the app | |
| gallery.select(update_selection, outputs=[prompt, selected_info, selected_state]) | |
| prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result]) | |
| button.click( | |
| fn=run_and_postprocess, | |
| inputs=[ | |
| prompt, | |
| selected_state, | |
| enabled, | |
| downscale, | |
| need_rescale, | |
| enable_color_limit, | |
| palette_size_color, | |
| quantization_methods_color, | |
| dither_methods_color, | |
| k_means_color, | |
| enable_grayscale, | |
| palette_size_gray, | |
| quantization_methods_gray, | |
| dither_methods_gray, | |
| k_means_gray, | |
| enable_black_and_white, | |
| inverse_black_and_white, | |
| threshold_black_and_white, | |
| enable_custom_palette, | |
| palette_image, | |
| palette_size_custom, | |
| dither_methods_custom | |
| ], | |
| outputs=[result] | |
| ) | |
| app.queue(max_size=20, concurrency_count=5) | |
| app.launch() | |