File size: 1,558 Bytes
41d63c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
Example script to query webhook messages from the dataset.

This demonstrates how to load and analyze the batched parquet files.
"""
from datasets import load_dataset
import json
import pandas as pd

# Load the dataset
print("Loading webhook messages dataset...")
dataset = load_dataset("assafvayner/webhook-messages", split="train")

print(f"Total messages: {len(dataset)}")
print(f"\nFirst message:")
print("-" * 50)

# Convert to pandas for easier querying
df = dataset.to_pandas()

# Display first message
first_msg = df.iloc[0]
print(f"Timestamp: {first_msg['timestamp']}")
print(f"Event Type: {first_msg['event_type']}")
print(f"Scope: {first_msg['scope']}")
print(f"\nPayload:")
payload = json.loads(first_msg['payload'])
print(json.dumps(payload, indent=2))

print("\n" + "=" * 50)
print("Summary Statistics:")
print("=" * 50)

# Event type distribution
print("\nEvent Types:")
print(df['event_type'].value_counts())

print("\nScope Distribution:")
print(df['scope'].value_counts())

# Time range
print(f"\nTime Range:")
print(f"  First message: {df['timestamp'].min()}")
print(f"  Last message:  {df['timestamp'].max()}")

# Example: Filter for specific event type
print("\n" + "=" * 50)
print("Example Query: Find all 'repo' scope events")
print("=" * 50)
repo_events = df[df['scope'] == 'repo']
print(f"Found {len(repo_events)} events")

# Show sample payloads
if len(repo_events) > 0:
    print("\nSample payload:")
    sample_payload = json.loads(repo_events.iloc[0]['payload'])
    print(json.dumps(sample_payload, indent=2)[:500] + "...")