Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from sentence_transformers import SentenceTransformer | |
| # Load the pre-trained model | |
| model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
| def get_embeddings(sentences): | |
| # Check if the input is a list | |
| if isinstance(sentences, list): | |
| sentence_list = sentences | |
| elif isinstance(sentences, str): | |
| # If it's a string, split by new lines to create a list of sentences | |
| sentence_list = sentences.split("\n") | |
| else: | |
| raise ValueError("Input should be either a string or a list of strings.") | |
| # Generate embeddings | |
| embeddings = model.encode(sentence_list, convert_to_tensor=True) | |
| return str(embeddings.tolist()) | |
| # Define the Gradio interface | |
| interface = gr.Interface( | |
| fn=get_embeddings, # Function to call | |
| inputs=gr.Textbox(lines=5, placeholder="Enter sentences here, one per line"), # Input component | |
| outputs=gr.Textbox(label="Embeddings"), # Output component | |
| title="Sentence Embeddings", # Interface title | |
| description="Enter sentences to get their embeddings." # Description | |
| ) | |
| # Launch the interface | |
| interface.launch() | |