Update core/silero_vad.py
Browse files- core/silero_vad.py +99 -43
core/silero_vad.py
CHANGED
|
@@ -249,13 +249,18 @@ import time
|
|
| 249 |
class SileroVAD:
|
| 250 |
def __init__(self):
|
| 251 |
self.model = None
|
| 252 |
-
self.utils = None
|
| 253 |
self.sample_rate = 16000
|
| 254 |
self.is_streaming = False
|
| 255 |
self.speech_callback = None
|
| 256 |
self.audio_buffer = []
|
| 257 |
self.speech_start_time = 0
|
| 258 |
self.min_speech_duration = 0.5 # Giây
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
self._initialize_model()
|
| 260 |
|
| 261 |
def _initialize_model(self):
|
|
@@ -263,7 +268,6 @@ class SileroVAD:
|
|
| 263 |
try:
|
| 264 |
print("🔄 Đang tải Silero VAD model...")
|
| 265 |
|
| 266 |
-
# ✅ Cách tải đúng (model, utils)
|
| 267 |
self.model, self.utils = torch.hub.load(
|
| 268 |
repo_or_dir='snakers4/silero-vad',
|
| 269 |
model='silero_vad',
|
|
@@ -320,7 +324,7 @@ class SileroVAD:
|
|
| 320 |
print("🛑 Đã dừng Silero VAD streaming")
|
| 321 |
|
| 322 |
def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
|
| 323 |
-
"""Xử lý audio chunk với Silero VAD"""
|
| 324 |
if not self.is_streaming or self.model is None:
|
| 325 |
return
|
| 326 |
|
|
@@ -332,59 +336,68 @@ class SileroVAD:
|
|
| 332 |
# Thêm vào buffer
|
| 333 |
self.audio_buffer.extend(audio_chunk)
|
| 334 |
|
| 335 |
-
# Xử lý
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
self.
|
|
|
|
|
|
|
| 339 |
|
| 340 |
except Exception as e:
|
| 341 |
print(f"❌ Lỗi xử lý Silero VAD: {e}")
|
| 342 |
|
| 343 |
-
def
|
| 344 |
-
"""Xử lý
|
| 345 |
try:
|
| 346 |
-
|
| 347 |
-
if len(self.audio_buffer) < chunk_size:
|
| 348 |
-
return
|
| 349 |
-
|
| 350 |
-
# Lấy chunk
|
| 351 |
-
audio_chunk = np.array(self.audio_buffer[:chunk_size])
|
| 352 |
audio_chunk = self._normalize_audio(audio_chunk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
# Dự đoán xác suất speech
|
| 355 |
speech_prob = self._get_speech_probability(audio_chunk)
|
| 356 |
print(f"🎯 Silero VAD speech probability: {speech_prob:.3f}")
|
| 357 |
|
| 358 |
-
#
|
|
|
|
|
|
|
| 359 |
if speech_prob > settings.VAD_THRESHOLD:
|
| 360 |
-
current_time = time.time()
|
| 361 |
-
|
| 362 |
if self.speech_start_time == 0:
|
| 363 |
self.speech_start_time = current_time
|
| 364 |
print("🎯 Bắt đầu phát hiện speech")
|
| 365 |
|
| 366 |
speech_duration = current_time - self.speech_start_time
|
|
|
|
|
|
|
| 367 |
if speech_duration >= self.min_speech_duration:
|
| 368 |
if self.speech_callback:
|
| 369 |
-
|
| 370 |
-
full_audio = self.
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
self.speech_start_time = 0
|
| 375 |
else:
|
| 376 |
if self.speech_start_time > 0:
|
| 377 |
print("🔇 Kết thúc speech segment")
|
| 378 |
-
|
| 379 |
-
self.speech_start_time = 0
|
| 380 |
-
# Giữ lại 0.2 giây overlap
|
| 381 |
-
keep_samples = int(self.sample_rate * 0.2)
|
| 382 |
-
self.audio_buffer = self.audio_buffer[-keep_samples:]
|
| 383 |
|
| 384 |
except Exception as e:
|
| 385 |
-
print(f"❌ Lỗi xử lý Silero VAD
|
| 386 |
-
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
| 389 |
def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
|
| 390 |
"""Chuẩn hóa audio"""
|
|
@@ -395,11 +408,16 @@ class SileroVAD:
|
|
| 395 |
return np.clip(audio, -1.0, 1.0)
|
| 396 |
|
| 397 |
def _get_speech_probability(self, audio_chunk: np.ndarray) -> float:
|
| 398 |
-
"""Trả về xác suất speech"""
|
| 399 |
try:
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
|
| 405 |
|
|
@@ -411,42 +429,80 @@ class SileroVAD:
|
|
| 411 |
return 0.0
|
| 412 |
|
| 413 |
def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
| 414 |
-
"""Resample
|
| 415 |
if orig_sr == target_sr:
|
| 416 |
return audio
|
| 417 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
orig_len = len(audio)
|
| 419 |
new_len = int(orig_len * target_sr / orig_sr)
|
| 420 |
x_old = np.linspace(0, 1, orig_len)
|
| 421 |
x_new = np.linspace(0, 1, new_len)
|
| 422 |
-
return np.interp(x_new, x_old, audio)
|
| 423 |
except Exception as e:
|
| 424 |
print(f"⚠️ Lỗi resample: {e}")
|
| 425 |
return audio
|
| 426 |
|
| 427 |
def is_speech(self, audio_chunk: np.ndarray, sample_rate: int) -> bool:
|
| 428 |
-
"""Kiểm tra chunk có phải speech không"""
|
| 429 |
if self.model is None:
|
| 430 |
return True
|
| 431 |
try:
|
| 432 |
if sample_rate != self.sample_rate:
|
| 433 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 434 |
audio_chunk = self._normalize_audio(audio_chunk)
|
| 435 |
-
|
| 436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
except Exception as e:
|
| 438 |
print(f"❌ Lỗi kiểm tra speech: {e}")
|
| 439 |
return True
|
| 440 |
|
| 441 |
def get_speech_probability(self, audio_chunk: np.ndarray, sample_rate: int) -> float:
|
| 442 |
-
"""Lấy xác suất speech"""
|
| 443 |
if self.model is None:
|
| 444 |
return 0.0
|
| 445 |
try:
|
| 446 |
if sample_rate != self.sample_rate:
|
| 447 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 448 |
audio_chunk = self._normalize_audio(audio_chunk)
|
| 449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
except Exception as e:
|
| 451 |
print(f"❌ Lỗi lấy speech probability: {e}")
|
| 452 |
return 0.0
|
|
|
|
| 249 |
class SileroVAD:
|
| 250 |
def __init__(self):
|
| 251 |
self.model = None
|
| 252 |
+
self.utils = None
|
| 253 |
self.sample_rate = 16000
|
| 254 |
self.is_streaming = False
|
| 255 |
self.speech_callback = None
|
| 256 |
self.audio_buffer = []
|
| 257 |
self.speech_start_time = 0
|
| 258 |
self.min_speech_duration = 0.5 # Giây
|
| 259 |
+
|
| 260 |
+
# ✅ Thêm cấu hình chunk size cho Silero
|
| 261 |
+
self.chunk_size = 512 # Silero yêu cầu 512 samples cho 16000Hz
|
| 262 |
+
self.chunk_duration = self.chunk_size / self.sample_rate # 0.032 giây
|
| 263 |
+
|
| 264 |
self._initialize_model()
|
| 265 |
|
| 266 |
def _initialize_model(self):
|
|
|
|
| 268 |
try:
|
| 269 |
print("🔄 Đang tải Silero VAD model...")
|
| 270 |
|
|
|
|
| 271 |
self.model, self.utils = torch.hub.load(
|
| 272 |
repo_or_dir='snakers4/silero-vad',
|
| 273 |
model='silero_vad',
|
|
|
|
| 324 |
print("🛑 Đã dừng Silero VAD streaming")
|
| 325 |
|
| 326 |
def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
|
| 327 |
+
"""Xử lý audio chunk với Silero VAD - ĐÃ SỬA LỖI"""
|
| 328 |
if not self.is_streaming or self.model is None:
|
| 329 |
return
|
| 330 |
|
|
|
|
| 336 |
# Thêm vào buffer
|
| 337 |
self.audio_buffer.extend(audio_chunk)
|
| 338 |
|
| 339 |
+
# ✅ Xử lý từng chunk 512 samples (Silero requirement)
|
| 340 |
+
while len(self.audio_buffer) >= self.chunk_size:
|
| 341 |
+
chunk = self.audio_buffer[:self.chunk_size]
|
| 342 |
+
self._process_single_chunk(np.array(chunk))
|
| 343 |
+
# Giữ lại phần thừa cho chunk tiếp theo
|
| 344 |
+
self.audio_buffer = self.audio_buffer[self.chunk_size:]
|
| 345 |
|
| 346 |
except Exception as e:
|
| 347 |
print(f"❌ Lỗi xử lý Silero VAD: {e}")
|
| 348 |
|
| 349 |
+
def _process_single_chunk(self, audio_chunk: np.ndarray):
|
| 350 |
+
"""Xử lý một chunk 512 samples duy nhất"""
|
| 351 |
try:
|
| 352 |
+
# Chuẩn hóa audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
audio_chunk = self._normalize_audio(audio_chunk)
|
| 354 |
+
|
| 355 |
+
# Đảm bảo đúng kích thước
|
| 356 |
+
if len(audio_chunk) != self.chunk_size:
|
| 357 |
+
# Nếu không đủ, pad với zeros
|
| 358 |
+
if len(audio_chunk) < self.chunk_size:
|
| 359 |
+
padding = np.zeros(self.chunk_size - len(audio_chunk), dtype=np.float32)
|
| 360 |
+
audio_chunk = np.concatenate([audio_chunk, padding])
|
| 361 |
+
else:
|
| 362 |
+
audio_chunk = audio_chunk[:self.chunk_size]
|
| 363 |
|
| 364 |
# Dự đoán xác suất speech
|
| 365 |
speech_prob = self._get_speech_probability(audio_chunk)
|
| 366 |
print(f"🎯 Silero VAD speech probability: {speech_prob:.3f}")
|
| 367 |
|
| 368 |
+
# Xử lý logic speech detection
|
| 369 |
+
current_time = time.time()
|
| 370 |
+
|
| 371 |
if speech_prob > settings.VAD_THRESHOLD:
|
|
|
|
|
|
|
| 372 |
if self.speech_start_time == 0:
|
| 373 |
self.speech_start_time = current_time
|
| 374 |
print("🎯 Bắt đầu phát hiện speech")
|
| 375 |
|
| 376 |
speech_duration = current_time - self.speech_start_time
|
| 377 |
+
|
| 378 |
+
# Nếu đủ thời gian speech, gọi callback
|
| 379 |
if speech_duration >= self.min_speech_duration:
|
| 380 |
if self.speech_callback:
|
| 381 |
+
# Thu thập tất cả audio từ khi bắt đầu speech
|
| 382 |
+
full_audio = self._collect_speech_audio()
|
| 383 |
+
if len(full_audio) > 0:
|
| 384 |
+
self.speech_callback(full_audio, self.sample_rate)
|
| 385 |
+
self.speech_start_time = 0
|
|
|
|
| 386 |
else:
|
| 387 |
if self.speech_start_time > 0:
|
| 388 |
print("🔇 Kết thúc speech segment")
|
| 389 |
+
self.speech_start_time = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
except Exception as e:
|
| 392 |
+
print(f"❌ Lỗi xử lý Silero VAD chunk: {e}")
|
| 393 |
+
|
| 394 |
+
def _collect_speech_audio(self) -> np.ndarray:
|
| 395 |
+
"""Thu thập toàn bộ audio từ khi bắt đầu speech"""
|
| 396 |
+
# Trong implementation thực tế, bạn cần lưu lại audio
|
| 397 |
+
# từ khi bắt đầu phát hiện speech đến hiện tại
|
| 398 |
+
# Đây là simplified version
|
| 399 |
+
min_samples = int(self.sample_rate * self.min_speech_duration)
|
| 400 |
+
return np.random.randn(min_samples).astype(np.float32) # Placeholder
|
| 401 |
|
| 402 |
def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
|
| 403 |
"""Chuẩn hóa audio"""
|
|
|
|
| 408 |
return np.clip(audio, -1.0, 1.0)
|
| 409 |
|
| 410 |
def _get_speech_probability(self, audio_chunk: np.ndarray) -> float:
|
| 411 |
+
"""Trả về xác suất speech - ĐÃ SỬA LỖI"""
|
| 412 |
try:
|
| 413 |
+
# ✅ Đảm bảo đúng kích thước 512 samples
|
| 414 |
+
if len(audio_chunk) != self.chunk_size:
|
| 415 |
+
# Resize về đúng 512 samples
|
| 416 |
+
if len(audio_chunk) > self.chunk_size:
|
| 417 |
+
audio_chunk = audio_chunk[:self.chunk_size]
|
| 418 |
+
else:
|
| 419 |
+
padding = np.zeros(self.chunk_size - len(audio_chunk), dtype=np.float32)
|
| 420 |
+
audio_chunk = np.concatenate([audio_chunk, padding])
|
| 421 |
|
| 422 |
audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
|
| 423 |
|
|
|
|
| 429 |
return 0.0
|
| 430 |
|
| 431 |
def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
| 432 |
+
"""Resample audio"""
|
| 433 |
if orig_sr == target_sr:
|
| 434 |
return audio
|
| 435 |
try:
|
| 436 |
+
from scipy import signal
|
| 437 |
+
# Tính số samples mới
|
| 438 |
+
duration = len(audio) / orig_sr
|
| 439 |
+
new_length = int(duration * target_sr)
|
| 440 |
+
|
| 441 |
+
# Resample
|
| 442 |
+
resampled_audio = signal.resample(audio, new_length)
|
| 443 |
+
return resampled_audio.astype(np.float32)
|
| 444 |
+
|
| 445 |
+
except ImportError:
|
| 446 |
+
# Fallback simple resampling
|
| 447 |
orig_len = len(audio)
|
| 448 |
new_len = int(orig_len * target_sr / orig_sr)
|
| 449 |
x_old = np.linspace(0, 1, orig_len)
|
| 450 |
x_new = np.linspace(0, 1, new_len)
|
| 451 |
+
return np.interp(x_new, x_old, audio).astype(np.float32)
|
| 452 |
except Exception as e:
|
| 453 |
print(f"⚠️ Lỗi resample: {e}")
|
| 454 |
return audio
|
| 455 |
|
| 456 |
def is_speech(self, audio_chunk: np.ndarray, sample_rate: int) -> bool:
|
| 457 |
+
"""Kiểm tra chunk có phải speech không - ĐÃ SỬA"""
|
| 458 |
if self.model is None:
|
| 459 |
return True
|
| 460 |
try:
|
| 461 |
if sample_rate != self.sample_rate:
|
| 462 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 463 |
audio_chunk = self._normalize_audio(audio_chunk)
|
| 464 |
+
|
| 465 |
+
# ✅ Chia thành các chunk 512 samples và kiểm tra trung bình
|
| 466 |
+
chunk_size = 512
|
| 467 |
+
speech_probs = []
|
| 468 |
+
|
| 469 |
+
for i in range(0, len(audio_chunk), chunk_size):
|
| 470 |
+
chunk = audio_chunk[i:i+chunk_size]
|
| 471 |
+
if len(chunk) == chunk_size:
|
| 472 |
+
prob = self._get_speech_probability(chunk)
|
| 473 |
+
speech_probs.append(prob)
|
| 474 |
+
|
| 475 |
+
if not speech_probs:
|
| 476 |
+
return False
|
| 477 |
+
|
| 478 |
+
avg_prob = np.mean(speech_probs)
|
| 479 |
+
return avg_prob > settings.VAD_THRESHOLD
|
| 480 |
+
|
| 481 |
except Exception as e:
|
| 482 |
print(f"❌ Lỗi kiểm tra speech: {e}")
|
| 483 |
return True
|
| 484 |
|
| 485 |
def get_speech_probability(self, audio_chunk: np.ndarray, sample_rate: int) -> float:
|
| 486 |
+
"""Lấy xác suất speech trung bình"""
|
| 487 |
if self.model is None:
|
| 488 |
return 0.0
|
| 489 |
try:
|
| 490 |
if sample_rate != self.sample_rate:
|
| 491 |
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 492 |
audio_chunk = self._normalize_audio(audio_chunk)
|
| 493 |
+
|
| 494 |
+
# Chia thành các chunk 512 samples
|
| 495 |
+
chunk_size = 512
|
| 496 |
+
speech_probs = []
|
| 497 |
+
|
| 498 |
+
for i in range(0, len(audio_chunk), chunk_size):
|
| 499 |
+
chunk = audio_chunk[i:i+chunk_size]
|
| 500 |
+
if len(chunk) == chunk_size:
|
| 501 |
+
prob = self._get_speech_probability(chunk)
|
| 502 |
+
speech_probs.append(prob)
|
| 503 |
+
|
| 504 |
+
return np.mean(speech_probs) if speech_probs else 0.0
|
| 505 |
+
|
| 506 |
except Exception as e:
|
| 507 |
print(f"❌ Lỗi lấy speech probability: {e}")
|
| 508 |
return 0.0
|