from PIL import ImageDraw, ImageFont, Image import cv2 import torch import numpy as np import uuid import spaces from transformers import RTDetrForObjectDetection, RTDetrImageProcessor # === Load model (chỉ load 1 lần khi khởi động Space) === image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd") model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda" if torch.cuda.is_available() else "cpu") SUBSAMPLE = 2 # giảm FPS để tiết kiệm tài nguyên class StreamObjectDetection: @staticmethod def draw_bounding_boxes(image, boxes, model, conf_threshold): draw = ImageDraw.Draw(image) font = ImageFont.load_default() for score, label, box in zip(boxes["scores"], boxes["labels"], boxes["boxes"]): if score < conf_threshold: continue x0, y0, x1, y1 = box label_text = f"{model.config.id2label[label.item()]}: {score:.2f}" draw.rectangle([x0, y0, x1, y1], outline="red", width=3) draw.text((x0 + 3, y0 + 3), label_text, fill="white", font=font) return image @staticmethod @spaces.GPU # Dùng GPU nếu có (ZeroGPU, GPU Cluster, v.v.) def stream_object_detection(video, conf_threshold=0.3): cap = cv2.VideoCapture(video) video_codec = cv2.VideoWriter_fourcc(*"mp4v") fps = int(cap.get(cv2.CAP_PROP_FPS)) or 24 desired_fps = max(1, fps // SUBSAMPLE) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2 height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2 iterating, frame = cap.read() n_frames = 0 output_video_name = f"output_{uuid.uuid4()}.mp4" output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) batch = [] while iterating: frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if n_frames % SUBSAMPLE == 0: batch.append(frame) # Mỗi 2 giây xử lý một lần if len(batch) == 2 * desired_fps: inputs = image_processor(images=batch, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model(**inputs) boxes = image_processor.post_process_object_detection( outputs, target_sizes=torch.tensor([(height, width)] * len(batch)).to(model.device), threshold=conf_threshold, ) for img, box in zip(batch, boxes): pil_image = StreamObjectDetection.draw_bounding_boxes(Image.fromarray(img), box, model, conf_threshold) frame_bgr = np.array(pil_image)[:, :, ::-1] output_video.write(frame_bgr) batch = [] output_video.release() yield output_video_name # Gửi video xử lý từng phần cho Gradio output_video_name = f"output_{uuid.uuid4()}.mp4" output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) iterating, frame = cap.read() n_frames += 1 cap.release() output_video.release()