File size: 50,794 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
{
  "title": "Eclat Algorithm Mastery: 100 MCQs",
  "description": "A comprehensive collection of 100 multiple-choice questions covering every aspect of the Eclat algorithm—from the basic ideas of vertical data representation to advanced transaction-intersection logic, optimizations, and practical comparisons with Apriori and FP-Growth.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the primary goal of the Eclat algorithm?",
      "options": [
        "To compress datasets using PCA.",
        "To classify data into clusters.",
        "To predict continuous numerical outcomes.",
        "To find frequent itemsets using a vertical data format."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat (Equivalence Class Clustering and bottom-up Lattice Traversal) aims to discover frequent itemsets by representing data vertically and intersecting transaction ID sets."
    },
    {
      "id": 2,
      "questionText": "Which data representation does the Eclat algorithm primarily use?",
      "options": [
        "Matrix factorization",
        "Horizontal transaction list",
        "Vertical transaction ID list",
        "Tree-based structure"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Unlike Apriori, which uses a horizontal layout, Eclat uses a vertical data format where each item is linked to the list of transaction IDs (tidsets) containing it."
    },
    {
      "id": 3,
      "questionText": "What does each itemset in Eclat associate with?",
      "options": [
        "A list of transaction IDs containing that itemset.",
        "The number of customers who ignored it.",
        "Its price in the market.",
        "The frequency histogram of its items."
      ],
      "correctAnswerIndex": 0,
      "explanation": "In Eclat, every itemset maintains a tidset — the set of transaction IDs in which the itemset occurs."
    },
    {
      "id": 4,
      "questionText": "How does Eclat compute the support of an itemset?",
      "options": [
        "By comparing items lexicographically.",
        "By counting transactions directly in horizontal form.",
        "By summing item weights.",
        "By taking the intersection of tidsets."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat calculates support by intersecting tidsets of items in the itemset; the length of the resulting set equals the support count."
    },
    {
      "id": 5,
      "questionText": "Eclat is an abbreviation for:",
      "options": [
        "Evaluation of Clustered Association Trees",
        "Efficient Clustering Algorithm for Transactions",
        "Enhanced Classification Algorithm Technique",
        "Equivalence Class Clustering and bottom-up Lattice Traversal"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat stands for 'Equivalence Class Clustering and bottom-up Lattice Traversal', describing its structural and traversal approach."
    },
    {
      "id": 6,
      "questionText": "Which operation lies at the core of Eclat’s efficiency?",
      "options": [
        "Hashing of item pairs",
        "Random sampling",
        "Tidset intersection",
        "Matrix multiplication"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Tidset intersection allows Eclat to quickly compute supports without repeatedly scanning the database."
    },
    {
      "id": 7,
      "questionText": "Compared with Apriori, Eclat requires:",
      "options": [
        "Fewer database scans",
        "Continuous database updates",
        "No data preprocessing",
        "More database scans"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Eclat typically needs only one full scan to create the vertical representation; afterward, intersections occur in memory."
    },
    {
      "id": 8,
      "questionText": "What type of search strategy does Eclat use?",
      "options": [
        "Depth-first search",
        "Randomized search",
        "Heuristic-based search",
        "Breadth-first search"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Eclat employs a depth-first search strategy through the itemset lattice, combining and extending frequent sets recursively."
    },
    {
      "id": 9,
      "questionText": "In Eclat, what is an 'equivalence class'?",
      "options": [
        "A class of transactions with identical sizes.",
        "A group of itemsets sharing the same prefix.",
        "A set of unrelated transactions.",
        "A type of confidence metric."
      ],
      "correctAnswerIndex": 1,
      "explanation": "An equivalence class groups itemsets with a common prefix so that Eclat can explore and extend them systematically."
    },
    {
      "id": 10,
      "questionText": "Why is Eclat considered more memory-intensive than Apriori?",
      "options": [
        "It uses dynamic hashing tables.",
        "It keeps transaction IDs in memory for all items.",
        "It repeatedly scans the disk.",
        "It compresses transactions into trees."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Eclat must store tidsets for every itemset, which can consume significant memory, especially in large datasets."
    },
    {
      "id": 11,
      "questionText": "Which of the following best describes the main advantage of the Eclat algorithm?",
      "options": [
        "It supports continuous attributes natively.",
        "It generates association rules directly.",
        "It avoids all pruning steps.",
        "It works well on sparse datasets due to vertical representation."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat’s vertical format and intersection-based support counting are particularly efficient for sparse transactional data."
    },
    {
      "id": 12,
      "questionText": "What does a 'tidset' contain?",
      "options": [
        "Transaction IDs where an itemset appears.",
        "Confidence values for all rules.",
        "Indices of frequent patterns.",
        "Item prices and quantities."
      ],
      "correctAnswerIndex": 0,
      "explanation": "A tidset stores transaction IDs corresponding to all transactions containing the given itemset."
    },
    {
      "id": 13,
      "questionText": "How does Eclat extend smaller frequent itemsets to larger ones?",
      "options": [
        "By scanning the database repeatedly.",
        "By intersecting tidsets of itemsets with a shared prefix.",
        "By randomly selecting transactions.",
        "By merging infrequent sets first."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Eclat generates larger frequent itemsets by combining smaller ones that share a prefix and intersecting their tidsets."
    },
    {
      "id": 14,
      "questionText": "Eclat’s support counting is faster because:",
      "options": [
        "It relies on data compression.",
        "It clusters transactions into blocks.",
        "It uses tidset intersections instead of database scans.",
        "It precomputes rule confidences."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Support counting becomes a quick set-intersection operation rather than a costly database traversal."
    },
    {
      "id": 15,
      "questionText": "What happens if two items have disjoint tidsets in Eclat?",
      "options": [
        "Their intersection is empty, giving zero support for their combination.",
        "Their confidence becomes one.",
        "Their support values are added together.",
        "Their union becomes frequent automatically."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Disjoint tidsets mean no transaction contains both items; their combined itemset has support = 0."
    },
    {
      "id": 16,
      "questionText": "Which of these structures stores Eclat’s intermediate results?",
      "options": [
        "Adjacency matrix",
        "Tidset dictionary",
        "Prefix tree (Trie)",
        "Hash-tree"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Tidsets are often stored in dictionaries or maps keyed by itemsets to facilitate efficient intersections."
    },
    {
      "id": 17,
      "questionText": "How is pruning achieved in Eclat?",
      "options": [
        "By using random sampling.",
        "By removing longest itemsets first.",
        "By discarding itemsets with tidset length below the minimum support threshold.",
        "By sorting items alphabetically."
      ],
      "correctAnswerIndex": 2,
      "explanation": "If a tidset’s length (support count) falls below the minimum threshold, its supersets are pruned immediately."
    },
    {
      "id": 18,
      "questionText": "Which statement about Eclat’s traversal is true?",
      "options": [
        "It expands each prefix recursively before moving to the next.",
        "It requires two database scans per level.",
        "It explores itemsets breadth-wise like Apriori.",
        "It never uses recursion."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Eclat uses depth-first recursion to explore extensions of each prefix before backtracking."
    },
    {
      "id": 19,
      "questionText": "What is the output of the Eclat algorithm?",
      "options": [
        "A set of decision trees.",
        "A regression line.",
        "A list of frequent itemsets with their support counts.",
        "A set of clusters."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Like Apriori, Eclat outputs all frequent itemsets meeting the support threshold, ready for rule generation."
    },
    {
      "id": 20,
      "questionText": "Eclat typically performs best when:",
      "options": [
        "The dataset is sparse and fits in memory.",
        "The transaction count changes frequently.",
        "There are continuous variables only.",
        "The dataset is dense with many co-occurring items."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Eclat is ideal for sparse, moderate-sized datasets that can hold vertical tidsets in memory."
    },
    {
      "id": 21,
      "questionText": "The vertical data format of Eclat avoids:",
      "options": [
        "Sorting transactions.",
        "Rule generation.",
        "Repeated database scans for support counting.",
        "Calculating lift values."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Once tidsets are built, Eclat computes supports via intersections without revisiting the database."
    },
    {
      "id": 22,
      "questionText": "In the context of Eclat, what does 'depth-first lattice traversal' mean?",
      "options": [
        "Exploring all children of a node before moving deeper.",
        "Recursively exploring itemset extensions down each path.",
        "Randomly selecting items at each level.",
        "Building a balanced tree of transactions."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Depth-first traversal means extending one prefix path completely before exploring siblings, reducing memory overhead."
    },
    {
      "id": 23,
      "questionText": "If item A has tidset {1,2,3} and item B has tidset {2,3,4}, what is the support count of {A,B}?",
      "options": [
        "3",
        "1",
        "2",
        "4"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The intersection {2,3} gives a support count of 2 for the itemset {A,B}."
    },
    {
      "id": 24,
      "questionText": "Eclat’s vertical representation is especially suitable for:",
      "options": [
        "Real-time rule generation on disk.",
        "Text data without tokenization.",
        "Handling continuous variables directly.",
        "In-memory computation of support values."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Since intersections are memory-based operations, Eclat excels when data can be fully loaded in memory."
    },
    {
      "id": 25,
      "questionText": "When constructing the vertical format, how many times must the dataset be scanned?",
      "options": [
        "Once per itemset size.",
        "Twice for each iteration.",
        "Once to build all initial tidsets.",
        "Continuously throughout execution."
      ],
      "correctAnswerIndex": 2,
      "explanation": "A single initial scan builds the tidsets for all 1-itemsets; further intersections happen in memory."
    },
    {
      "id": 26,
      "questionText": "Which situation would make Eclat less efficient?",
      "options": [
        "Binary attributes.",
        "Extremely large number of transactions causing huge tidsets.",
        "Small sparse datasets.",
        "Uniform transaction sizes."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Large tidsets increase intersection costs and memory use, reducing Eclat’s advantage."
    },
    {
      "id": 27,
      "questionText": "Which phase directly follows tidset creation in Eclat?",
      "options": [
        "Database compression.",
        "Rule evaluation.",
        "Support threshold tuning.",
        "Candidate generation and intersection phase."
      ],
      "correctAnswerIndex": 3,
      "explanation": "After tidsets are built, Eclat generates larger itemsets by intersecting tidsets of smaller frequent ones."
    },
    {
      "id": 28,
      "questionText": "In practice, how are transaction IDs represented within tidsets?",
      "options": [
        "As hashed key-value pairs.",
        "As floating-point weights.",
        "As random strings.",
        "As sorted integer lists or bit vectors."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Tidsets are usually stored as sorted lists or bit vectors to make intersections faster."
    },
    {
      "id": 29,
      "questionText": "If the intersection of two tidsets results in a set smaller than the minimum support count, what does Eclat do?",
      "options": [
        "Prunes that combined itemset from further exploration.",
        "Retains it for later rule generation.",
        "Stores it in a separate list for validation.",
        "Expands it with other items."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Itemsets that fail the minimum support condition are pruned, preventing wasteful extensions."
    },
    {
      "id": 30,
      "questionText": "Which of the following is NOT a characteristic of Eclat?",
      "options": [
        "Uses vertical database format.",
        "Performs depth-first traversal.",
        "Computes support via tidset intersections.",
        "Requires multiple full database scans."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat avoids multiple database scans; after building the vertical format, all further operations are in-memory."
    },
    {
      "id": 31,
      "questionText": "In Eclat, how is a new k-itemset generated from (k-1)-itemsets?",
      "options": [
        "By sampling transactions.",
        "By performing a union of tidsets.",
        "By concatenating any two frequent itemsets at random.",
        "By combining two (k-1)-itemsets with the same prefix and intersecting their tidsets."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat combines two (k-1)-itemsets that share a prefix, then intersects their tidsets to form the new k-itemset and compute its support."
    },
    {
      "id": 32,
      "questionText": "What role does recursion play in the Eclat algorithm?",
      "options": [
        "It reduces tidsets using hashing.",
        "It explores itemset extensions in depth-first order.",
        "It helps repeatedly rescan the database.",
        "It reorders tidsets randomly."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Recursion allows Eclat to expand each itemset fully before backtracking, enabling efficient depth-first traversal."
    },
    {
      "id": 33,
      "questionText": "Which structure helps avoid redundant intersections in Eclat?",
      "options": [
        "Matrix multiplication cache",
        "Prefix-based partitioning (equivalence classes)",
        "Transaction trees",
        "Hash tables for each transaction"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Eclat groups itemsets by shared prefixes in equivalence classes, avoiding redundant recomputation of common intersections."
    },
    {
      "id": 34,
      "questionText": "When Eclat uses a vertical database format, what is the main computational bottleneck?",
      "options": [
        "Sorting transactions",
        "Database loading time",
        "Tidset intersection cost",
        "Hash computation"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The intersection of large tidsets can be computationally expensive, especially for dense data."
    },
    {
      "id": 35,
      "questionText": "Which of the following methods is sometimes used to optimize Eclat’s performance?",
      "options": [
        "Running breadth-first search",
        "Using K-means for item grouping",
        "Adding random sampling steps",
        "Using bitset representations for tidsets"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Representing tidsets as bit vectors speeds up intersections using bitwise AND operations."
    },
    {
      "id": 36,
      "questionText": "What determines whether two itemsets can be combined in Eclat?",
      "options": [
        "They must have equal support.",
        "Their tidsets must be disjoint.",
        "They must contain at least one identical transaction ID.",
        "They must share the same (k-1)-prefix."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Only itemsets sharing the same prefix (except the last item) are combined to generate larger candidate itemsets."
    },
    {
      "id": 37,
      "questionText": "Which measure directly affects the pruning strength in Eclat?",
      "options": [
        "Number of unique items",
        "Minimum support threshold",
        "Maximum transaction count",
        "Number of recursive calls"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A higher minimum support threshold leads to stronger pruning and fewer intersections."
    },
    {
      "id": 38,
      "questionText": "Eclat’s efficiency decreases when:",
      "options": [
        "Data becomes denser and tidsets grow longer.",
        "The support threshold is high.",
        "Few frequent items exist.",
        "Transactions are short and sparse."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Dense datasets cause long tidsets and heavy intersection overhead, reducing Eclat’s speed advantage."
    },
    {
      "id": 39,
      "questionText": "What happens when two itemsets have identical tidsets in Eclat?",
      "options": [
        "They are pruned immediately.",
        "They are grouped under the same equivalence class.",
        "They form a cycle in recursion.",
        "They are expanded separately."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Identical tidsets imply the same occurrence pattern, so such itemsets can belong to the same equivalence class."
    },
    {
      "id": 40,
      "questionText": "What is the time complexity of intersecting two tidsets of sizes m and n?",
      "options": [
        "O(m + n)",
        "O(1)",
        "O(m × n)",
        "O(log(m + n))"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Tidset intersection is linear in the sum of their sizes since both lists are traversed once."
    },
    {
      "id": 41,
      "questionText": "Which scenario allows Eclat to outperform Apriori the most?",
      "options": [
        "When there are thousands of dense transactions.",
        "When the dataset is small enough to fit in memory and sparse.",
        "When items have negative values.",
        "When data changes every second."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Eclat’s vertical intersections excel for sparse in-memory datasets, where Apriori’s repeated scans are costly."
    },
    {
      "id": 42,
      "questionText": "Why does Eclat use a depth-first approach instead of breadth-first?",
      "options": [
        "To reduce memory footprint during exploration.",
        "To scan the database faster.",
        "To process all itemsets simultaneously.",
        "To handle continuous features."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Depth-first traversal processes fewer itemsets in memory at a time, conserving space compared to breadth-first methods like Apriori."
    },
    {
      "id": 43,
      "questionText": "Which function in Eclat’s pseudo-code triggers recursive calls?",
      "options": [
        "UpdateDatabase()",
        "Eclat(prefix, items)",
        "GenerateRules()",
        "ComputeSupport()"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The recursive function Eclat(prefix, items) drives the exploration of the search tree by extending prefixes."
    },
    {
      "id": 44,
      "questionText": "In Eclat, how is the intersection operation implemented for speed?",
      "options": [
        "By converting to trees first.",
        "Using sorted list merging or bitwise operations.",
        "Using matrix multiplication.",
        "By recursive hashing."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Tidsets are stored as sorted lists or bit vectors so intersections can be computed efficiently using merging or bitwise AND."
    },
    {
      "id": 45,
      "questionText": "Which of the following is TRUE about Eclat’s memory consumption?",
      "options": [
        "It decreases as the dataset becomes denser.",
        "It is independent of minimum support.",
        "It increases with the number and length of tidsets.",
        "It is constant for all dataset sizes."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Memory grows as more frequent itemsets and longer tidsets are stored in memory for intersections."
    },
    {
      "id": 46,
      "questionText": "How does Eclat avoid generating duplicate itemsets?",
      "options": [
        "By random sampling.",
        "By hashing tidsets.",
        "By rescanning the database to check duplicates.",
        "By maintaining lexicographic ordering and prefix-based combination rules."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat uses ordered prefix rules ensuring each combination is produced once without duplication."
    },
    {
      "id": 47,
      "questionText": "Which pruning technique does Eclat rely on?",
      "options": [
        "Random pruning",
        "Post-pruning based on confidence",
        "Anti-monotonic property of support",
        "Entropy-based pruning"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Eclat, like Apriori, uses the anti-monotonic property—if an itemset is infrequent, its supersets are also infrequent."
    },
    {
      "id": 48,
      "questionText": "What happens after intersecting tidsets in Eclat?",
      "options": [
        "The rule confidence is computed immediately.",
        "The resulting support is compared to min_support for pruning.",
        "The database is rescanned.",
        "The transaction IDs are randomized."
      ],
      "correctAnswerIndex": 1,
      "explanation": "After intersection, Eclat checks whether the new itemset’s support meets the threshold to decide if it should be extended further."
    },
    {
      "id": 49,
      "questionText": "In Eclat, frequent itemsets are generated:",
      "options": [
        "Recursively from smaller itemsets by intersection.",
        "Using probabilistic estimates.",
        "By repeated full database scans.",
        "Directly from rules."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Eclat recursively generates larger frequent itemsets by intersecting smaller ones."
    },
    {
      "id": 50,
      "questionText": "When Eclat is implemented with bitsets, which operation becomes highly efficient?",
      "options": [
        "Tidset compression",
        "Itemset sorting",
        "Rule generation",
        "Support counting via bitwise AND"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Bitwise AND allows extremely fast intersections for support counting."
    },
    {
      "id": 51,
      "questionText": "Which of the following best describes the output of an Eclat function call?",
      "options": [
        "A cluster of transactions.",
        "All frequent itemsets generated from the given prefix.",
        "A compressed representation of data.",
        "A set of association rules."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Each recursive call returns all frequent itemsets that extend the provided prefix."
    },
    {
      "id": 52,
      "questionText": "What is the advantage of dividing items into equivalence classes in Eclat?",
      "options": [
        "Removes need for minimum support.",
        "Improves rule confidence calculation.",
        "Reduces redundant comparisons and simplifies recursion.",
        "Adds randomization for exploration."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Grouping items by prefix into equivalence classes avoids recomputing common intersections and streamlines recursion."
    },
    {
      "id": 53,
      "questionText": "How does Eclat differ from FP-Growth in structure?",
      "options": [
        "FP-Growth relies on vertical format like Eclat.",
        "Both use identical tree-based compression.",
        "Eclat builds frequent pattern trees.",
        "Eclat uses tidsets, while FP-Growth uses tree compression."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat uses a vertical representation with tidsets, whereas FP-Growth compresses transactions into an FP-tree."
    },
    {
      "id": 54,
      "questionText": "Which scenario can cause exponential growth in Eclat’s intermediate itemsets?",
      "options": [
        "High minimum support threshold.",
        "Small number of transactions.",
        "Very low support threshold with many co-occurring items.",
        "Sparse data with few frequent items."
      ],
      "correctAnswerIndex": 2,
      "explanation": "When min_support is low and many items co-occur, combinations explode exponentially."
    },
    {
      "id": 55,
      "questionText": "Why might Eclat be unsuitable for streaming or dynamic data?",
      "options": [
        "It continuously rescans updated transactions.",
        "It relies on random updates.",
        "It uses time-dependent hashing.",
        "It assumes a static dataset loaded in memory."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat’s vertical format assumes static data; incremental updates would require rebuilding tidsets."
    },
    {
      "id": 56,
      "questionText": "Which of these determines how deep the recursion tree can grow in Eclat?",
      "options": [
        "Lift ratio",
        "Minimum confidence value",
        "Transaction length",
        "Number of unique frequent items"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Recursion depth depends on how many unique frequent items can be combined while staying above support threshold."
    },
    {
      "id": 57,
      "questionText": "In which step does Eclat check for minimum support satisfaction?",
      "options": [
        "After each tidset intersection",
        "During data loading",
        "After all itemsets are generated",
        "Before recursion starts"
      ],
      "correctAnswerIndex": 0,
      "explanation": "After every intersection, Eclat immediately checks if the new itemset meets the minimum support threshold."
    },
    {
      "id": 58,
      "questionText": "What effect does increasing the minimum support threshold have on Eclat’s runtime?",
      "options": [
        "It doubles the recursion depth.",
        "It generally decreases runtime due to fewer frequent itemsets.",
        "It has no effect on runtime.",
        "It increases runtime significantly."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Higher min_support reduces the search space and the number of intersections, making Eclat faster."
    },
    {
      "id": 59,
      "questionText": "What is the function of the prefix parameter in Eclat’s recursive procedure?",
      "options": [
        "To count the total support values.",
        "To track random seeds for recursion.",
        "To store all transaction IDs.",
        "To maintain the current itemset being extended."
      ],
      "correctAnswerIndex": 3,
      "explanation": "The prefix holds the current partial itemset, and recursion extends it by adding new items."
    },
    {
      "id": 60,
      "questionText": "Which operation is repeatedly used to grow the search tree in Eclat?",
      "options": [
        "Transaction duplication",
        "Support averaging",
        "Tidset intersection and prefix extension",
        "Database normalization"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Eclat repeatedly extends prefixes by intersecting tidsets to form new itemsets."
    },
    {
      "id": 61,
      "questionText": "Why is Eclat considered deterministic?",
      "options": [
        "It prunes based on probability.",
        "It chooses prefixes randomly.",
        "It always produces the same frequent itemsets for the same input and parameters.",
        "It uses random sampling internally."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Given identical input and min_support, Eclat always produces the same frequent itemsets."
    },
    {
      "id": 62,
      "questionText": "Which data type is most efficient for tidsets during large intersections?",
      "options": [
        "Bit vectors",
        "Tuples",
        "JSON objects",
        "Strings"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Bit vectors enable extremely fast intersections via bitwise AND operations, ideal for large datasets."
    },
    {
      "id": 63,
      "questionText": "What is one drawback of Eclat’s recursive nature?",
      "options": [
        "It requires database rescan.",
        "It produces inaccurate supports.",
        "It cannot prune infrequent itemsets.",
        "It can cause stack overflow for deep lattices."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Excessive recursion depth on large datasets can cause stack overflow or high memory consumption."
    },
    {
      "id": 64,
      "questionText": "Which type of datasets pose the greatest challenge for Eclat?",
      "options": [
        "Datasets with missing values.",
        "Sparse datasets with few items per transaction.",
        "Dense datasets with many co-occurring items.",
        "Datasets with sorted transactions."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Dense datasets create long tidsets, making intersections slower and memory-heavy."
    },
    {
      "id": 65,
      "questionText": "How can the intersection cost be reduced in Eclat?",
      "options": [
        "By intersecting smaller tidsets first.",
        "By sorting tidsets alphabetically.",
        "By skipping prefix pruning.",
        "By random sampling."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Intersecting smaller tidsets first minimizes computation since intersections quickly become empty."
    },
    {
      "id": 66,
      "questionText": "Which optimization can be used when item IDs are represented as integers?",
      "options": [
        "Applying matrix decomposition.",
        "Using bitmask operations for tidset intersections.",
        "Sorting transactions lexicographically.",
        "Using entropy-based grouping."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Integer-based bitmasks allow direct use of bitwise AND for fast intersections."
    },
    {
      "id": 67,
      "questionText": "How does Eclat differ from Apriori in support counting?",
      "options": [
        "Both use identical scanning techniques.",
        "Apriori uses intersection but Eclat uses addition.",
        "Eclat computes support from rule confidence.",
        "Eclat uses tidset intersection, Apriori scans the database repeatedly."
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat calculates support through tidset intersection; Apriori counts by rescanning transactions."
    },
    {
      "id": 68,
      "questionText": "What is the effect of increasing the number of frequent items in Eclat?",
      "options": [
        "It prunes more itemsets.",
        "It reduces memory consumption.",
        "It simplifies equivalence classes.",
        "It increases recursion depth and intersection overhead."
      ],
      "correctAnswerIndex": 3,
      "explanation": "More frequent items increase potential combinations, deepening recursion and raising intersection costs."
    },
    {
      "id": 69,
      "questionText": "Why does Eclat perform better with sparse datasets?",
      "options": [
        "It avoids recursion entirely.",
        "It converts sparse data to dense form.",
        "Tidsets are short, making intersections faster.",
        "It skips prefix formation."
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse datasets have shorter tidsets, reducing intersection and memory cost."
    },
    {
      "id": 70,
      "questionText": "Which factor most directly controls Eclat’s memory usage?",
      "options": [
        "Number and size of tidsets stored at each recursion level.",
        "Support confidence ratio.",
        "Rule lift values.",
        "Transaction ordering."
      ],
      "correctAnswerIndex": 0,
      "explanation": "Memory usage grows with how many tidsets and intersections are maintained at once during recursion."
    },
    {
      "id": 71,
      "questionText": "In a dataset with extremely long transactions, which strategy can reduce Eclat’s memory overhead?",
      "options": [
        "Increase recursion depth",
        "Use tidset compression or bit vectors",
        "Scan the database repeatedly",
        "Use a random sampling of transactions"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Tidset compression (e.g., using bit vectors or run-length encoding) reduces memory usage for long transactions while enabling fast intersections."
    },
    {
      "id": 72,
      "questionText": "You notice Eclat is slow on a dense dataset with many frequent items. Which modification could improve performance?",
      "options": [
        "Use unordered itemset combinations",
        "Apply a higher minimum support threshold",
        "Switch to breadth-first traversal",
        "Scan the database multiple times"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Raising the minimum support prunes many infrequent combinations early, reducing intersection computations and speeding up Eclat."
    },
    {
      "id": 73,
      "questionText": "In a scenario where items are added dynamically to the transaction database, what is a limitation of standard Eclat?",
      "options": [
        "It performs online rule generation.",
        "It assumes a static dataset and may need complete tidset reconstruction.",
        "It automatically adjusts tidsets incrementally.",
        "It reduces minimum support for new items."
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standard Eclat does not handle dynamic data efficiently; adding items typically requires rebuilding the vertical tidset structure."
    },
    {
      "id": 74,
      "questionText": "When representing tidsets as bit vectors, which operation allows O(1) support counting?",
      "options": [
        "Bitwise AND followed by counting set bits",
        "Sorting the bit vector",
        "Union of two bit vectors",
        "Recursive traversal of each bit"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Bitwise AND quickly computes intersections; counting the set bits gives support efficiently."
    },
    {
      "id": 75,
      "questionText": "During Eclat execution, you notice some tidset intersections are empty early. What optimization does this allow?",
      "options": [
        "Resort transactions alphabetically",
        "Continue intersection for completeness",
        "Early pruning of all supersets",
        "Ignore the minimum support threshold"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Empty intersections indicate infrequent combinations, allowing immediate pruning of all supersets."
    },
    {
      "id": 76,
      "questionText": "Which real-world dataset is likely to favor Eclat over Apriori?",
      "options": [
        "Dense sensor readings updated every second",
        "Continuous time-series stock data",
        "Sparse supermarket transactions with thousands of items",
        "Text documents requiring TF-IDF computation"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse transactional datasets allow Eclat to efficiently compute intersections without repeated scans, outperforming Apriori."
    },
    {
      "id": 77,
      "questionText": "You want to parallelize Eclat on a multi-core machine. Which step is most suitable for parallel execution?",
      "options": [
        "Support threshold tuning",
        "Initial transaction sorting",
        "Tidset construction from the database",
        "Recursive exploration of different equivalence classes"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Different equivalence classes are independent and can be explored in parallel safely without shared state conflicts."
    },
    {
      "id": 78,
      "questionText": "When using bitset representation for tidsets, what is the space complexity for n transactions?",
      "options": [
        "O(n) bits per itemset",
        "O(log n) bits per itemset",
        "O(n^2) bits per itemset",
        "O(1) bits per itemset"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Each tidset uses one bit per transaction, so the space complexity is O(n) bits per itemset."
    },
    {
      "id": 79,
      "questionText": "Which scenario can lead to stack overflow in Eclat?",
      "options": [
        "Deep recursion from many frequent items with low minimum support",
        "Datasets with short transactions",
        "High support threshold pruning most combinations",
        "Sparse datasets with few items"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Excessive recursion depth due to low min_support and numerous frequent items can exhaust the call stack."
    },
    {
      "id": 80,
      "questionText": "You observe that Eclat’s runtime increases drastically with a small decrease in min_support. Why?",
      "options": [
        "Database scanning is skipped",
        "Tidset intersections become faster",
        "Transactions get shorter",
        "More itemsets become frequent, increasing intersections exponentially"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Lowering min_support drastically increases the number of candidate itemsets, leading to more intersections and deeper recursion."
    },
    {
      "id": 81,
      "questionText": "Which optimization can reduce the number of intersections in Eclat?",
      "options": [
        "Randomly shuffling items",
        "Ordering items by ascending tidset size before combining",
        "Expanding larger tidsets first",
        "Ignoring the prefix structure"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Intersecting smaller tidsets first reduces computation since intersections often become empty quickly."
    },
    {
      "id": 82,
      "questionText": "You are comparing Eclat with FP-Growth. Which of the following is true?",
      "options": [
        "Eclat uses vertical tidsets; FP-Growth uses compressed FP-trees",
        "Both use depth-first vertical tidsets",
        "Eclat builds a prefix tree like FP-Growth",
        "FP-Growth uses horizontal scanning only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "FP-Growth compresses data into a tree structure, whereas Eclat keeps vertical tidsets for intersections."
    },
    {
      "id": 83,
      "questionText": "How does Eclat handle items with extremely high support?",
      "options": [
        "It reduces their support artificially",
        "It combines them with others first to generate large frequent itemsets",
        "It ignores them",
        "It prunes them from equivalence classes"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High-support items are prioritized in combinations since they are more likely to generate larger frequent itemsets."
    },
    {
      "id": 84,
      "questionText": "In practical implementations, what is a common way to represent tidsets for memory efficiency?",
      "options": [
        "String lists",
        "Bit arrays or compressed sparse structures",
        "Nested JSON objects",
        "Linked lists with pointers"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Bit arrays or sparse structures allow fast intersection and efficient memory usage."
    },
    {
      "id": 85,
      "questionText": "You are using Eclat on a dataset with 1 million transactions. Which design choice is critical?",
      "options": [
        "Sorting items lexicographically",
        "Using breadth-first traversal",
        "Efficient tidset representation and pruning",
        "Increasing recursion stack depth"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Memory-efficient tidset storage and aggressive pruning are essential to handle very large datasets."
    },
    {
      "id": 86,
      "questionText": "When combining two tidsets A and B, what is the worst-case size of the intersection?",
      "options": [
        "Maximum of |A| and |B|",
        "Minimum of |A| and |B|",
        "Sum of |A| and |B|",
        "Always 1"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Intersection cannot exceed the size of the smaller set."
    },
    {
      "id": 87,
      "questionText": "Scenario: Dataset has 10,000 items with many co-occurring sets. Which problem is most likely for standard Eclat?",
      "options": [
        "Support calculation becomes approximate",
        "Memory explosion due to massive number of tidsets",
        "Database scanning becomes slow",
        "Prefix ordering fails"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A large number of frequent items leads to exponential growth in tidsets, consuming huge memory."
    },
    {
      "id": 88,
      "questionText": "Eclat’s depth-first approach benefits which type of datasets the most?",
      "options": [
        "Non-transactional datasets",
        "High-dimensional dense datasets",
        "Streaming datasets",
        "Sparse datasets that fit in memory"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Depth-first minimizes memory usage for in-memory processing of sparse datasets."
    },
    {
      "id": 89,
      "questionText": "Which of the following Eclat variants improves performance for very large datasets?",
      "options": [
        "Randomized support counting",
        "Sequential depth-first Eclat",
        "Breadth-first non-pruned Eclat",
        "Parallel or distributed Eclat"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Parallel or distributed Eclat partitions equivalence classes among nodes, enabling scalable computation."
    },
    {
      "id": 90,
      "questionText": "You need to compute frequent itemsets with extremely low support in a dataset with millions of transactions. What is a practical limitation?",
      "options": [
        "Support counting is approximate",
        "Prefix ordering fails",
        "Exponential number of candidate itemsets leads to infeasible memory and runtime",
        "Tidsets will become empty"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Low support leads to combinatorial explosion in frequent itemsets, making Eclat computationally expensive."
    },
    {
      "id": 91,
      "questionText": "Scenario: Some items occur in almost every transaction. How does this affect Eclat?",
      "options": [
        "They shorten recursion depth",
        "These high-support items produce many intersections, increasing computation",
        "They reduce memory usage",
        "They are pruned automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High-support items combine with many other items, creating large intersections and increasing computational cost."
    },
    {
      "id": 92,
      "questionText": "When implementing Eclat, which data structure supports fast intersection and minimal memory usage?",
      "options": [
        "Linked lists",
        "String arrays",
        "Compressed bitsets or Roaring bitmaps",
        "JSON objects"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Compressed bitsets allow efficient intersection while keeping memory usage low."
    },
    {
      "id": 93,
      "questionText": "Scenario: You are processing transactions with very few items per transaction. Eclat’s performance is:",
      "options": [
        "Ineffective due to missing pruning",
        "Very slow due to many combinations",
        "Very fast due to small tidsets and fewer intersections",
        "Memory intensive"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse transactions result in short tidsets and fast intersections, improving performance."
    },
    {
      "id": 94,
      "questionText": "Which real-world application could benefit most from Eclat?",
      "options": [
        "Image classification using CNNs",
        "Text summarization using TF-IDF",
        "Real-time stock price prediction",
        "Market basket analysis with sparse transactions"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat excels at mining frequent itemsets in sparse transaction datasets, such as shopping baskets."
    },
    {
      "id": 95,
      "questionText": "Scenario: Implementing Eclat with extremely high recursion depth leads to stack overflow. How can this be addressed?",
      "options": [
        "Sort items lexicographically",
        "Increase transaction length",
        "Convert recursion to iterative stack-based traversal",
        "Decrease minimum support to zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Using an explicit stack avoids recursion limits and prevents stack overflow."
    },
    {
      "id": 96,
      "questionText": "Eclat uses the anti-monotone property of support. Which statement correctly describes this property?",
      "options": [
        "Confidence is independent of support",
        "If an itemset is infrequent, all supersets are also infrequent",
        "Intersection size is always constant",
        "Support increases with larger itemsets"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The anti-monotone property allows pruning: if an itemset fails min_support, its supersets are not explored."
    },
    {
      "id": 97,
      "questionText": "In distributed Eclat, which challenge is critical?",
      "options": [
        "Sorting local transactions",
        "Compressing bitsets",
        "Calculating rule confidence locally",
        "Synchronizing tidset intersections across nodes"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Distributed execution requires careful coordination to correctly compute intersections spanning multiple partitions."
    },
    {
      "id": 98,
      "questionText": "Scenario: Dataset contains many high-cardinality items. Which effect on Eclat is expected?",
      "options": [
        "Large number of candidate itemsets and high memory usage",
        "Fewer intersections are needed",
        "Recursion depth decreases",
        "Tidsets become smaller"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-cardinality items increase potential combinations, generating many candidate itemsets and consuming memory."
    },
    {
      "id": 99,
      "questionText": "Scenario: You want to mine only maximal frequent itemsets using Eclat. What adjustment is required?",
      "options": [
        "Decrease minimum support to zero",
        "Use breadth-first traversal",
        "Store all tidsets regardless of support",
        "Track only itemsets whose supersets are infrequent"
      ],
      "correctAnswerIndex": 3,
      "explanation": "To get maximal frequent itemsets, Eclat must check that no superset is frequent before reporting an itemset."
    },
    {
      "id": 100,
      "questionText": "Which scenario demonstrates the biggest performance difference between Eclat and Apriori?",
      "options": [
        "Continuous time-series data",
        "Dense dataset with few transactions",
        "Small dataset with fewer than 10 items",
        "Sparse dataset with thousands of items where Eclat avoids multiple database scans"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Eclat avoids repeated database scans in sparse, high-dimensional datasets, outperforming Apriori significantly."
    }
  ]
}