File size: 49,472 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
  {
    "title": "K-Means Clustering Mastery: 100 MCQs",
    "description": "A comprehensive set of 100 multiple-choice questions designed to test and deepen your understanding of K-Means Clustering, covering basic concepts, algorithm steps, practical scenarios, and challenges in high-dimensional or real-world datasets.",
    "questions": [
      {
        "id": 1,
        "questionText": "What is the primary goal of K-Means Clustering?",
        "options": [
          "Partition data into K clusters minimizing within-cluster variance",
          "Reduce the dimensionality of the dataset",
          "Detect outliers in the dataset",
          "Classify data into predefined categories"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means aims to divide data into K clusters such that the sum of squared distances between points and their cluster centroid is minimized."
      },
      {
        "id": 2,
        "questionText": "In K-Means, what does a 'centroid' represent?",
        "options": [
          "A random point from the dataset",
          "The farthest point from the cluster",
          "The maximum value in the cluster",
          "The mean position of all points in the cluster"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Centroid is the mean of all points in a cluster and represents the cluster's center."
      },
      {
        "id": 3,
        "questionText": "Which step is repeated in K-Means until convergence?",
        "options": [
          "Compute correlation matrix",
          "Assign points to nearest centroid and update centroids",
          "Remove outliers",
          "Randomly shuffle data points"
        ],
        "correctAnswerIndex": 1,
        "explanation": "K-Means iteratively assigns points to the nearest centroid and recalculates centroids until assignments stabilize."
      },
      {
        "id": 4,
        "questionText": "Scenario: K-Means converges but clusters are uneven in size. Likely reason?",
        "options": [
          "Centroids are incorrect",
          "Distance metric used is Euclidean",
          "Data distribution is skewed",
          "Algorithm failed"
        ],
        "correctAnswerIndex": 2,
        "explanation": "K-Means partitions based on distances; skewed or non-spherical distributions can lead to uneven cluster sizes."
      },
      {
        "id": 5,
        "questionText": "What is the main limitation of K-Means clustering?",
        "options": [
          "Sensitive to outliers",
          "Requires predefined number of clusters (K)",
          "Only works for numerical data",
          "All of the above"
        ],
        "correctAnswerIndex": 3,
        "explanation": "K-Means works only with numerical data, needs K as input, and is sensitive to outliers."
      },
      {
        "id": 6,
        "questionText": "Scenario: K-Means applied to customer locations. Distance metric to use?",
        "options": [
          "Euclidean distance",
          "Hamming distance",
          "Cosine similarity",
          "Jaccard index"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Euclidean distance is standard for K-Means and spatial numerical data."
      },
      {
        "id": 7,
        "questionText": "Scenario: K-Means on 2D points results vary with different initial centroids. Solution?",
        "options": [
          "Use hierarchical clustering instead",
          "Ignore initial centroids",
          "Reduce K",
          "Use K-Means++ initialization"
        ],
        "correctAnswerIndex": 3,
        "explanation": "K-Means++ selects better initial centroids to improve convergence and consistency."
      },
      {
        "id": 8,
        "questionText": "Scenario: K-Means on concentric circles fails. Reason?",
        "options": [
          "K-Means assumes spherical clusters",
          "Data contains outliers",
          "Distance metric wrong",
          "Algorithm converged too quickly"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means works best for convex, spherical clusters; it cannot separate concentric circular clusters."
      },
      {
        "id": 9,
        "questionText": "Scenario: After K-Means clustering, silhouette score is low. Interpretation?",
        "options": [
          "Noise ignored automatically",
          "Clusters overlap or poorly defined",
          "Clusters are perfect",
          "Algorithm converged correctly"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Low silhouette score indicates points are close to neighboring cluster centroids; clusters are not well separated."
      },
      {
        "id": 10,
        "questionText": "Scenario: Large dataset with millions of points. K-Means limitation?",
        "options": [
          "Algorithm fails completely",
          "Distance metric is irrelevant",
          "Cannot calculate centroids",
          "Convergence can be slow; consider Mini-Batch K-Means"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Mini-Batch K-Means is a faster variant suitable for large datasets."
      },
      {
        "id": 11,
        "questionText": "Scenario: K-Means on a dataset with outliers. Effect?",
        "options": [
          "Algorithm removes outliers",
          "Centroids can shift towards outliers, distorting clusters",
          "Clusters become more compact",
          "Clusters ignore outliers automatically"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Outliers can disproportionately affect centroids, leading to poorly defined clusters."
      },
      {
        "id": 12,
        "questionText": "Scenario: K-Means on categorical data. Limitation?",
        "options": [
          "K-Means requires numerical data; cannot handle categorical directly",
          "Clusters merge randomly",
          "Categorical data improves clustering",
          "Algorithm automatically encodes categories"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means relies on distance metrics, which are not directly defined for categorical data."
      },
      {
        "id": 13,
        "questionText": "Scenario: Selecting K for K-Means. Which method helps?",
        "options": [
          "Merge dendrograms",
          "Random selection",
          "Elbow method",
          "Silhouette ignored"
        ],
        "correctAnswerIndex": 2,
        "explanation": "The Elbow method plots sum of squared errors vs K and identifies an 'elbow' point as optimal K."
      },
      {
        "id": 14,
        "questionText": "Scenario: K-Means fails to separate overlapping clusters. Likely reason?",
        "options": [
          "K too small",
          "Centroids are optimal",
          "Algorithm converged correctly",
          "Clusters are not well-separated or non-convex"
        ],
        "correctAnswerIndex": 3,
        "explanation": "K-Means works best for well-separated convex clusters; overlapping clusters are challenging."
      },
      {
        "id": 15,
        "questionText": "Scenario: K-Means with high-dimensional data. Challenge?",
        "options": [
          "Algorithm fails automatically",
          "Noise ignored",
          "Distance metrics lose meaning; consider PCA or feature scaling",
          "Clusters are always compact"
        ],
        "correctAnswerIndex": 2,
        "explanation": "High-dimensional spaces dilute distances; dimensionality reduction improves clustering."
      },
      {
        "id": 16,
        "questionText": "Scenario: K-Means with K too large. Effect?",
        "options": [
          "Algorithm automatically reduces K",
          "Clusters always improve",
          "Clusters may become small and meaningless",
          "Noise ignored"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Choosing K too large can lead to many tiny clusters with no meaningful pattern."
      },
      {
        "id": 17,
        "questionText": "Scenario: Mini-Batch K-Means. Advantage?",
        "options": [
          "Faster for large datasets with approximate centroids",
          "Removes noise automatically",
          "More accurate than standard K-Means",
          "Works only on small datasets"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Mini-Batch K-Means updates centroids using small random batches for efficiency on large datasets."
      },
      {
        "id": 18,
        "questionText": "Scenario: K-Means initialization affects results. Solution?",
        "options": [
          "Use single random centroid only",
          "Run algorithm multiple times or use K-Means++",
          "Ignore initialization",
          "Reduce K randomly"
        ],
        "correctAnswerIndex": 1,
        "explanation": "K-Means++ and multiple runs improve stability and reduce sensitivity to initial centroids."
      },
      {
        "id": 19,
        "questionText": "Scenario: K-Means distance metric. Standard choice?",
        "options": [
          "Euclidean distance",
          "Jaccard index",
          "Hamming distance",
          "Cosine similarity"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means typically uses Euclidean distance to assign points to nearest centroids."
      },
      {
        "id": 20,
        "questionText": "Scenario: K-Means clustering produces empty clusters. Cause?",
        "options": [
          "Algorithm failed",
          "Clusters are compact",
          "No points assigned to some centroids",
          "Centroids are optimal"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Some centroids may not attract any points, leading to empty clusters."
      },
      {
        "id": 21,
        "questionText": "Scenario: K-Means on text embeddings. Preprocessing required?",
        "options": [
          "Use categorical K-Means directly",
          "No preprocessing needed",
          "Randomly assign clusters",
          "Normalize or scale vectors before clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Text embeddings often need normalization to prevent certain dimensions from dominating distance computations."
      },
      {
        "id": 22,
        "questionText": "Scenario: K-Means with very high K. Effect on SSE (sum of squared errors)?",
        "options": [
          "SSE increases",
          "SSE is ignored",
          "SSE decreases as K increases",
          "SSE remains constant"
        ],
        "correctAnswerIndex": 2,
        "explanation": "As K increases, each cluster contains fewer points, reducing the sum of squared distances."
      },
      {
        "id": 23,
        "questionText": "Scenario: K-Means on scaled vs unscaled features. Effect?",
        "options": [
          "Clusters merge randomly",
          "Scaling is important; features with large range dominate clustering",
          "Algorithm fails if not scaled",
          "Scaling is unnecessary"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Features with larger numerical ranges can dominate Euclidean distance; scaling ensures fair contribution."
      },
      {
        "id": 24,
        "questionText": "Scenario: K-Means convergence criteria. Standard check?",
        "options": [
          "Centroid positions or cluster assignments stop changing",
          "Distance metric ignored",
          "Random stopping",
          "Maximum iterations only"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Algorithm stops when centroids or cluster assignments stabilize, or after a max number of iterations."
      },
      {
        "id": 25,
        "questionText": "Scenario: K-Means for image compression. How?",
        "options": [
          "Cluster pixel colors and replace each pixel by its centroid",
          "Use hierarchical clustering",
          "Remove noise automatically",
          "Reduce image resolution"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means clusters similar colors, allowing image compression by using cluster centroids as representative colors."
      },
      {
        "id": 26,
        "questionText": "Scenario: K-Means for customer segmentation. Benefit?",
        "options": [
          "Identify customer groups for targeted marketing",
          "Automatically predicts sales",
          "Detects trends over time",
          "Removes outliers"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means helps segment customers based on behavior, allowing targeted campaigns."
      },
      {
        "id": 27,
        "questionText": "Scenario: K-Means clustering results differ on repeated runs. Cause?",
        "options": [
          "Distance metric varies",
          "Random initialization of centroids",
          "Algorithm deterministic",
          "Clusters merge randomly"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Random initial centroids can lead to different final clusters; K-Means++ mitigates this."
      },
      {
        "id": 28,
        "questionText": "Scenario: K-Means for anomaly detection. Approach?",
        "options": [
          "Clusters merge randomly",
          "Points far from nearest centroid may be anomalies",
          "All points treated equally",
          "Noise automatically ignored"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Outliers are detected as points distant from cluster centroids."
      },
      {
        "id": 29,
        "questionText": "Scenario: K-Means clustering on geospatial data. Best practice?",
        "options": [
          "Use distance metric appropriate for coordinates (e.g., haversine)",
          "Randomly assign clusters",
          "Use Euclidean blindly",
          "Clusters merge arbitrarily"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Euclidean distance may misrepresent geographic distances; use geodesic metrics like haversine."
      },
      {
        "id": 30,
        "questionText": "Scenario: K-Means with highly correlated features. Solution?",
        "options": [
          "Increase K randomly",
          "Apply PCA to reduce correlated dimensions",
          "Ignore correlations",
          "Clusters merge arbitrarily"
        ],
        "correctAnswerIndex": 1,
        "explanation": "PCA reduces correlated features and improves clustering performance."
      },
      {
        "id": 31,
        "questionText": "Scenario: K-Means on non-spherical clusters. Limitation?",
        "options": [
          "Noise ignored",
          "Clusters are always compact",
          "Algorithm automatically adapts",
          "K-Means assumes spherical clusters; non-spherical clusters may be poorly separated"
        ],
        "correctAnswerIndex": 3,
        "explanation": "K-Means relies on Euclidean distance and assumes roughly spherical clusters, so elongated or irregular clusters are not well captured."
      },
      {
        "id": 32,
        "questionText": "Scenario: K-Means clustering produces clusters with very different densities. Challenge?",
        "options": [
          "Distance metric ignored",
          "Clusters always equal",
          "Low-density clusters may be merged incorrectly",
          "Algorithm detects densities automatically"
        ],
        "correctAnswerIndex": 2,
        "explanation": "K-Means does not account for density; clusters with differing densities may not be separated properly."
      },
      {
        "id": 33,
        "questionText": "Scenario: K-Means applied to text embeddings. Best practice?",
        "options": [
          "Increase K arbitrarily",
          "Normalize embeddings to unit vectors before clustering",
          "Remove half the features randomly",
          "Use raw embeddings"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Normalization ensures that distance computation reflects angle similarity rather than magnitude differences."
      },
      {
        "id": 34,
        "questionText": "Scenario: K-Means clustering with missing values. Approach?",
        "options": [
          "Ignore missing values",
          "Randomly assign missing values",
          "Algorithm automatically handles them",
          "Impute missing values before clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "K-Means requires complete numerical data; missing values should be imputed or removed."
      },
      {
        "id": 35,
        "questionText": "Scenario: K-Means clustering on multi-dimensional customer features. Preprocessing step?",
        "options": [
          "Randomly drop features",
          "Scale features so all dimensions contribute equally",
          "Increase K arbitrarily",
          "Leave features unscaled"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Feature scaling ensures that dimensions with larger ranges do not dominate Euclidean distance."
      },
      {
        "id": 36,
        "questionText": "Scenario: K-Means on a dataset with outliers. Solution?",
        "options": [
          "Use standard K-Means without changes",
          "Randomly assign clusters",
          "Increase K to compensate",
          "Remove or preprocess outliers before clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Outliers can distort centroids; preprocessing improves clustering accuracy."
      },
      {
        "id": 37,
        "questionText": "Scenario: K-Means convergence too slow. Solution?",
        "options": [
          "Ignore convergence",
          "Change distance metric arbitrarily",
          "Use Mini-Batch K-Means or reduce dataset size",
          "Increase K randomly"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Mini-Batch K-Means or subsampling speeds up convergence for large datasets."
      },
      {
        "id": 38,
        "questionText": "Scenario: K-Means clustering with highly correlated features. Best approach?",
        "options": [
          "Increase K",
          "Ignore correlation",
          "Merge clusters arbitrarily",
          "Apply PCA or feature selection to reduce redundancy"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Reducing correlated dimensions prevents redundant information from biasing distance calculations."
      },
      {
        "id": 39,
        "questionText": "Scenario: K-Means clustering on skewed data. Issue?",
        "options": [
          "Noise ignored",
          "Algorithm corrects automatically",
          "Clusters may be biased towards dense regions",
          "Clusters always balanced"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Skewed distributions can lead to unequal cluster sizes or poorly defined boundaries."
      },
      {
        "id": 40,
        "questionText": "Scenario: K-Means with K unknown. Methods to select K?",
        "options": [
          "Random choice",
          "Algorithm decides automatically",
          "Use maximum data points",
          "Elbow method, silhouette score, gap statistic"
        ],
        "correctAnswerIndex": 3,
        "explanation": "These methods help determine optimal K by evaluating clustering performance."
      },
      {
        "id": 41,
        "questionText": "Scenario: K-Means produces very similar clusters on repeated runs. Possible reason?",
        "options": [
          "Algorithm converged incorrectly",
          "Data naturally forms stable clusters",
          "Distance metric is wrong",
          "Initialization randomization failed"
        ],
        "correctAnswerIndex": 1,
        "explanation": "If data has well-separated clusters, K-Means results are stable across runs."
      },
      {
        "id": 42,
        "questionText": "Scenario: K-Means on a small dataset with large K. Risk?",
        "options": [
          "Algorithm fails completely",
          "Centroids ignored",
          "Clusters may be too small or empty",
          "Clusters automatically merge"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Too many clusters for small datasets can produce meaningless or empty clusters."
      },
      {
        "id": 43,
        "questionText": "Scenario: K-Means++ initialization. Benefit?",
        "options": [
          "Improves cluster quality by selecting distant initial centroids",
          "Random initialization",
          "Always produces identical clusters",
          "Removes noise automatically"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means++ reduces poor initialization by spreading centroids apart."
      },
      {
        "id": 44,
        "questionText": "Scenario: K-Means with categorical features. Solution?",
        "options": [
          "Use K-Prototypes or encode categories numerically",
          "Clusters merge randomly",
          "Ignore categorical data",
          "Use standard K-Means directly"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Standard K-Means cannot handle categorical data; K-Prototypes or encoding is needed."
      },
      {
        "id": 45,
        "questionText": "Scenario: K-Means on noisy sensor data. Best practice?",
        "options": [
          "Use raw data",
          "Increase K arbitrarily",
          "Filter or preprocess noise before clustering",
          "Ignore convergence"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Noise affects centroids and cluster assignment; preprocessing improves results."
      },
      {
        "id": 46,
        "questionText": "Scenario: K-Means for image segmentation. Metric for colors?",
        "options": [
          "Cosine similarity",
          "Euclidean distance in RGB or LAB space",
          "Hamming distance",
          "Jaccard index"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Euclidean distance is standard for numerical pixel features in color space."
      },
      {
        "id": 47,
        "questionText": "Scenario: K-Means convergence to local minimum. Reason?",
        "options": [
          "Poor initialization of centroids",
          "Algorithm always finds global minimum",
          "Clusters are too compact",
          "Distance metric is incorrect"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Random initial centroids can lead K-Means to converge to suboptimal local minima."
      },
      {
        "id": 48,
        "questionText": "Scenario: K-Means clustering with overlapping clusters. Limitation?",
        "options": [
          "Clusters merge automatically",
          "Algorithm adapts perfectly",
          "Cannot clearly separate overlapping clusters",
          "Noise ignored"
        ],
        "correctAnswerIndex": 2,
        "explanation": "K-Means relies on distance; overlapping clusters may not be correctly assigned."
      },
      {
        "id": 49,
        "questionText": "Scenario: K-Means for market segmentation. Use case?",
        "options": [
          "Remove outliers automatically",
          "Identify customer groups for targeted campaigns",
          "Predict stock prices",
          "Visualize time series"
        ],
        "correctAnswerIndex": 1,
        "explanation": "K-Means clusters similar customers to enable targeted marketing strategies."
      },
      {
        "id": 50,
        "questionText": "Scenario: K-Means for anomaly detection in credit card transactions. Approach?",
        "options": [
          "Transactions far from cluster centroids may be fraudulent",
          "All transactions treated equally",
          "Clusters merge automatically",
          "Noise ignored"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Outliers distant from normal clusters can indicate anomalous or fraudulent activity."
      },
      {
        "id": 51,
        "questionText": "Scenario: K-Means on high-dimensional gene expression data. Best practice?",
        "options": [
          "Clusters merge randomly",
          "Use raw high-dimensional data directly",
          "Increase K arbitrarily",
          "Use PCA or dimensionality reduction before clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Dimensionality reduction helps meaningful clustering and avoids distance dilution."
      },
      {
        "id": 52,
        "questionText": "Scenario: K-Means on very large dataset. Speed-up technique?",
        "options": [
          "Mini-Batch K-Means",
          "Increase K",
          "Ignore convergence",
          "Use raw data"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Mini-Batch K-Means updates centroids using batches, reducing computation time."
      },
      {
        "id": 53,
        "questionText": "Scenario: K-Means applied to IoT sensor data with missing values. Solution?",
        "options": [
          "Impute missing values before clustering",
          "Remove entire dataset",
          "Assign clusters randomly",
          "Ignore missing values"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means requires complete numerical data; missing values must be handled prior to clustering."
      },
      {
        "id": 54,
        "questionText": "Scenario: K-Means applied to customer purchase history. Challenge?",
        "options": [
          "Clusters automatically balanced",
          "Sparse purchase data may lead to poor cluster separation",
          "Algorithm converges perfectly",
          "Noise ignored"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Sparse or high-dimensional data can reduce clustering accuracy; preprocessing helps."
      },
      {
        "id": 55,
        "questionText": "Scenario: K-Means with categorical features encoded as numbers. Risk?",
        "options": [
          "Algorithm works perfectly",
          "Clusters merge automatically",
          "Noise ignored",
          "Numerical encoding may introduce artificial distance relationships"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Direct numeric encoding of categorical data can misrepresent similarity between categories."
      },
      {
        "id": 56,
        "questionText": "Scenario: K-Means for spatial clustering of stores. Best practice?",
        "options": [
          "Increase K arbitrarily",
          "Clusters merge randomly",
          "Use raw coordinates directly",
          "Normalize coordinates or use appropriate distance metric"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Scaling ensures coordinates are comparable and distance computations are accurate."
      },
      {
        "id": 57,
        "questionText": "Scenario: K-Means produces poor clustering. Possible reason?",
        "options": [
          "Data not suitable for K-Means (non-spherical or overlapping)",
          "Centroids incorrect",
          "Algorithm always finds perfect clusters",
          "Distance metric irrelevant"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means struggles with non-spherical or overlapping clusters."
      },
      {
        "id": 58,
        "questionText": "Scenario: K-Means clustering on scaled features. Advantage?",
        "options": [
          "Distance metric changes",
          "Clusters merge automatically",
          "Prevents dominance by features with large range",
          "Algorithm ignores scaling"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Scaling ensures each feature contributes equally to Euclidean distance calculations."
      },
      {
        "id": 59,
        "questionText": "Scenario: K-Means with clusters of unequal variance. Issue?",
        "options": [
          "Noise ignored",
          "Algorithm automatically adjusts",
          "Clusters always compact",
          "Clusters may not accurately represent data structure"
        ],
        "correctAnswerIndex": 3,
        "explanation": "K-Means assumes similar variance; large differences affect cluster quality."
      },
      {
        "id": 60,
        "questionText": "Scenario: K-Means applied to time-series data. Approach?",
        "options": [
          "Use raw sequences directly",
          "Increase K arbitrarily",
          "Clusters merge randomly",
          "Extract meaningful features before clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Feature extraction ensures distance metrics are meaningful for time-series clustering."
      },
      {
        "id": 61,
        "questionText": "Scenario: K-Means clusters overlap. Evaluation metric?",
        "options": [
          "Use SSE only",
          "Clusters merge randomly",
          "Ignore overlap",
          "Silhouette score measures separation and cohesion"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Silhouette score evaluates how well points fit within their clusters vs others."
      },
      {
        "id": 62,
        "questionText": "Scenario: K-Means with too few clusters. Result?",
        "options": [
          "Clusters may merge dissimilar points, reducing interpretability",
          "Algorithm adapts automatically",
          "Clusters always compact",
          "Noise ignored"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Too small K forces dissimilar points into same cluster, reducing accuracy."
      },
      {
        "id": 63,
        "questionText": "Scenario: K-Means for market basket analysis. Limitation?",
        "options": [
          "Algorithm works perfectly",
          "Noise ignored",
          "Clusters merge automatically",
          "Sparse and categorical data requires encoding or alternate methods"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Sparse categorical data needs careful preprocessing or K-Prototypes instead of K-Means."
      },
      {
        "id": 64,
        "questionText": "Scenario: K-Means produces empty clusters. Solution?",
        "options": [
          "Ignore empty clusters",
          "Algorithm fails automatically",
          "Increase K randomly",
          "Reinitialize centroids or reduce K"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Reassigning centroids or reducing K resolves empty clusters."
      },
      {
        "id": 65,
        "questionText": "Scenario: K-Means with high-dimensional data. Challenge?",
        "options": [
          "Distance metrics lose meaning; reduce dimensions",
          "Algorithm adapts automatically",
          "Clusters always accurate",
          "Noise ignored"
        ],
        "correctAnswerIndex": 0,
        "explanation": "High dimensions dilute distances, making clustering unreliable without dimensionality reduction."
      },
      {
        "id": 66,
        "questionText": "Scenario: K-Means on normalized vs unnormalized features. Effect?",
        "options": [
          "Algorithm automatically scales",
          "Normalization ensures fair distance contribution across features",
          "Unnormalized always better",
          "Clusters merge randomly"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Normalized features prevent features with large ranges from dominating clustering."
      },
      {
        "id": 67,
        "questionText": "Scenario: K-Means++ vs random initialization. Advantage?",
        "options": [
          "Improves clustering stability and convergence",
          "Random initialization always better",
          "No difference in results",
          "Removes noise automatically"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means++ selects initial centroids to reduce poor local minima."
      },
      {
        "id": 68,
        "questionText": "Scenario: K-Means on customer purchase amounts. Data skewed. Solution?",
        "options": [
          "Use raw data",
          "Log-transform or scale data before clustering",
          "Increase K",
          "Ignore skew"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Transforming skewed data prevents high-value points from dominating clustering."
      },
      {
        "id": 69,
        "questionText": "Scenario: K-Means on text data after TF-IDF. Challenge?",
        "options": [
          "Algorithm works perfectly",
          "High-dimensional sparse vectors; dimensionality reduction recommended",
          "Noise ignored",
          "Clusters merge randomly"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Sparse high-dimensional TF-IDF vectors may reduce clustering effectiveness without reduction."
      },
      {
        "id": 70,
        "questionText": "Scenario: K-Means applied to IoT device readings. Best practice?",
        "options": [
          "Increase K randomly",
          "Use raw readings",
          "Ignore convergence",
          "Normalize or scale features to ensure meaningful clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Scaling ensures that features contribute equally to distance calculations for clustering."
      },
      {
        "id": 71,
        "questionText": "Scenario: K-Means clustering applied to gene expression data with thousands of features. Best approach?",
        "options": [
          "Apply PCA or feature selection to reduce dimensionality before clustering",
          "Randomly remove features",
          "Increase K arbitrarily",
          "Use all features directly"
        ],
        "correctAnswerIndex": 0,
        "explanation": "High-dimensional gene data can dilute distances; dimensionality reduction ensures meaningful clusters."
      },
      {
        "id": 72,
        "questionText": "Scenario: K-Means with very large K relative to dataset size. Risk?",
        "options": [
          "Clusters may be meaningless or empty",
          "Algorithm automatically adjusts",
          "Distance metric ignored",
          "Clusters merge automatically"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Too many clusters can lead to tiny or empty clusters with no interpretability."
      },
      {
        "id": 73,
        "questionText": "Scenario: K-Means on data with non-uniform density clusters. Limitation?",
        "options": [
          "Noise ignored",
          "Low-density clusters may merge with high-density ones",
          "Algorithm adjusts automatically",
          "Clusters always compact"
        ],
        "correctAnswerIndex": 1,
        "explanation": "K-Means does not handle varying densities well; denser clusters dominate centroid assignment."
      },
      {
        "id": 74,
        "questionText": "Scenario: K-Means on highly skewed financial transaction data. Best preprocessing?",
        "options": [
          "Apply log transformation to reduce skew before clustering",
          "Use raw data",
          "Clusters merge randomly",
          "Increase K arbitrarily"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Log or other transformations reduce the effect of extreme values, improving clustering quality."
      },
      {
        "id": 75,
        "questionText": "Scenario: K-Means on time-series data. Effective method?",
        "options": [
          "Extract meaningful features such as trends or seasonal components before clustering",
          "Use raw sequences directly",
          "Clusters merge automatically",
          "Increase K randomly"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Feature extraction ensures distances reflect meaningful similarities in time-series."
      },
      {
        "id": 76,
        "questionText": "Scenario: K-Means clustering for anomaly detection in network traffic. Strategy?",
        "options": [
          "All points treated equally",
          "Points far from cluster centroids are likely anomalies",
          "Noise ignored",
          "Clusters merge automatically"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Outliers distant from normal traffic clusters are potential anomalies."
      },
      {
        "id": 77,
        "questionText": "Scenario: K-Means applied to image color compression. Challenge?",
        "options": [
          "Algorithm automatically selects K",
          "All clusters identical",
          "Noise ignored",
          "Choosing optimal K to balance compression and image quality"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Selecting K is critical; too few clusters lose color details, too many reduce compression."
      },
      {
        "id": 78,
        "questionText": "Scenario: K-Means++ vs multiple random initializations. Advantage of K-Means++?",
        "options": [
          "Reduces likelihood of poor local minima and improves convergence",
          "Removes noise automatically",
          "Random initializations are better",
          "No difference in results"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means++ selects initial centroids that are distant, improving stability and cluster quality."
      },
      {
        "id": 79,
        "questionText": "Scenario: K-Means applied to sparse TF-IDF text vectors. Best approach?",
        "options": [
          "Use raw sparse vectors directly",
          "Increase K arbitrarily",
          "Reduce dimensionality using techniques like Truncated SVD before clustering",
          "Clusters merge randomly"
        ],
        "correctAnswerIndex": 2,
        "explanation": "High-dimensional sparse data may produce poor clusters; dimensionality reduction improves performance."
      },
      {
        "id": 80,
        "questionText": "Scenario: K-Means clustering with overlapping spherical clusters. How to improve?",
        "options": [
          "K-Means always works",
          "Clusters merge automatically",
          "Reduce K randomly",
          "Use Gaussian Mixture Models (GMM) for soft clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "GMM can model cluster overlap using probability distributions, unlike hard K-Means assignments."
      },
      {
        "id": 81,
        "questionText": "Scenario: K-Means for customer segmentation with categorical attributes. Best practice?",
        "options": [
          "Use K-Prototypes or encode categories numerically",
          "Ignore categorical data",
          "Use standard K-Means directly",
          "Clusters merge randomly"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Prototypes handles mixed numerical and categorical data effectively."
      },
      {
        "id": 82,
        "questionText": "Scenario: K-Means convergence to local minimum. Cause?",
        "options": [
          "Distance metric incorrect",
          "Clusters too compact",
          "Poor or random initialization of centroids",
          "Algorithm always finds global minimum"
        ],
        "correctAnswerIndex": 2,
        "explanation": "K-Means may converge to suboptimal solutions depending on initial centroids."
      },
      {
        "id": 83,
        "questionText": "Scenario: K-Means applied to geospatial clustering. Recommendation?",
        "options": [
          "Increase K randomly",
          "Use appropriate distance metrics like haversine for coordinates",
          "Clusters merge arbitrarily",
          "Use Euclidean distance blindly"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Geographic distances require correct metric to ensure accurate clustering."
      },
      {
        "id": 84,
        "questionText": "Scenario: K-Means with very large datasets. Efficient solution?",
        "options": [
          "Use Mini-Batch K-Means",
          "Increase K arbitrarily",
          "Ignore convergence",
          "Use full dataset only"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Mini-Batch K-Means speeds up computation by using small random batches for centroid updates."
      },
      {
        "id": 85,
        "questionText": "Scenario: K-Means on noisy IoT sensor data. Best preprocessing?",
        "options": [
          "Filter or smooth noise before clustering",
          "Clusters merge automatically",
          "Increase K arbitrarily",
          "Use raw data"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Noise can distort centroids; preprocessing improves clustering reliability."
      },
      {
        "id": 86,
        "questionText": "Scenario: K-Means on very high-dimensional data. Limitation?",
        "options": [
          "Distance metrics lose meaning; dimensionality reduction recommended",
          "Noise ignored",
          "Clusters always accurate",
          "Algorithm adapts automatically"
        ],
        "correctAnswerIndex": 0,
        "explanation": "High-dimensional spaces dilute distances, leading to poor cluster assignments."
      },
      {
        "id": 87,
        "questionText": "Scenario: K-Means for anomaly detection in healthcare data. Approach?",
        "options": [
          "Noise ignored",
          "Points far from cluster centroids may indicate anomalies",
          "Clusters merge automatically",
          "All points treated equally"
        ],
        "correctAnswerIndex": 1,
        "explanation": "Outliers distant from normal clusters can indicate anomalies or rare events."
      },
      {
        "id": 88,
        "questionText": "Scenario: K-Means on image segmentation with varying illumination. Challenge?",
        "options": [
          "Preprocessing like normalization is needed to reduce lighting effect",
          "Algorithm works perfectly",
          "Increase K randomly",
          "Clusters merge automatically"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Differences in lighting affect pixel values; normalization improves clustering consistency."
      },
      {
        "id": 89,
        "questionText": "Scenario: K-Means for market segmentation with mixed purchase behavior. Solution?",
        "options": [
          "Ignore categorical data",
          "Clusters merge randomly",
          "Use numerical encoding or K-Prototypes for categorical and numerical features",
          "Use standard K-Means directly"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Mixed data requires specialized clustering methods for meaningful segmentation."
      },
      {
        "id": 90,
        "questionText": "Scenario: K-Means clustering produces empty clusters repeatedly. Best solution?",
        "options": [
          "Algorithm fails automatically",
          "Increase K arbitrarily",
          "Ignore empty clusters",
          "Reinitialize centroids or reduce K"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Empty clusters occur when centroids have no assigned points; reinitialization or lowering K resolves this."
      },
      {
        "id": 91,
        "questionText": "Scenario: K-Means applied to highly imbalanced datasets. Issue?",
        "options": [
          "Large clusters may dominate, small clusters underrepresented",
          "Clusters always balanced",
          "Noise ignored",
          "Algorithm adapts automatically"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means does not account for cluster size; imbalance may distort results."
      },
      {
        "id": 92,
        "questionText": "Scenario: K-Means applied to network traffic logs for intrusion detection. Best approach?",
        "options": [
          "Use raw logs directly",
          "Increase K arbitrarily",
          "Preprocess logs into numerical features and detect points far from centroids",
          "Clusters merge automatically"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Transforming logs to numerical vectors enables clustering and anomaly detection."
      },
      {
        "id": 93,
        "questionText": "Scenario: K-Means clustering with multiple valid K values. Evaluation metric?",
        "options": [
          "Silhouette score to evaluate cluster quality",
          "Ignore K selection",
          "Use SSE only",
          "Clusters merge randomly"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Silhouette score measures cohesion and separation, helping choose optimal K."
      },
      {
        "id": 94,
        "questionText": "Scenario: K-Means applied to text clustering using word embeddings. Limitation?",
        "options": [
          "High-dimensional vectors may require dimensionality reduction or normalization",
          "Clusters merge randomly",
          "Algorithm works perfectly",
          "Noise ignored"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Dimensionality reduction and normalization improve clustering accuracy for embeddings."
      },
      {
        "id": 95,
        "questionText": "Scenario: K-Means clustering results vary on repeated runs. Best solution?",
        "options": [
          "Use K-Means++ initialization or multiple runs",
          "Clusters merge randomly",
          "Ignore variations",
          "Increase K arbitrarily"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Better initialization reduces sensitivity to random centroid placement."
      },
      {
        "id": 96,
        "questionText": "Scenario: K-Means on scaled features vs unscaled features. Observation?",
        "options": [
          "Scaling ensures fair contribution of all features to distance calculation",
          "Clusters merge randomly",
          "Algorithm adapts automatically",
          "Scaling is unnecessary"
        ],
        "correctAnswerIndex": 0,
        "explanation": "Without scaling, features with larger ranges dominate cluster assignments."
      },
      {
        "id": 97,
        "questionText": "Scenario: K-Means clustering on overlapping clusters. Alternative?",
        "options": [
          "Reduce K randomly",
          "Clusters merge automatically",
          "Use soft clustering like Gaussian Mixture Models",
          "K-Means handles overlap perfectly"
        ],
        "correctAnswerIndex": 2,
        "explanation": "Soft clustering models allow points to belong probabilistically to multiple clusters."
      },
      {
        "id": 98,
        "questionText": "Scenario: K-Means applied to sensor network data with missing values. Solution?",
        "options": [
          "Impute missing values before clustering",
          "Assign clusters randomly",
          "Remove entire dataset",
          "Ignore missing values"
        ],
        "correctAnswerIndex": 0,
        "explanation": "K-Means requires complete data; missing values must be handled prior to clustering."
      },
      {
        "id": 99,
        "questionText": "Scenario: K-Means on customer behavior data with high variance features. Best approach?",
        "options": [
          "Increase K arbitrarily",
          "Clusters merge randomly",
          "Use raw data",
          "Scale or normalize features to prevent dominance by high-variance features"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Scaling ensures fair contribution of each feature to distance computation."
      },
      {
        "id": 100,
        "questionText": "Scenario: K-Means applied to a large dataset with many outliers. Recommendation?",
        "options": [
          "Increase K arbitrarily",
          "Clusters merge automatically",
          "Use raw data directly",
          "Preprocess to remove or handle outliers before clustering"
        ],
        "correctAnswerIndex": 3,
        "explanation": "Outliers distort centroids; preprocessing ensures meaningful cluster assignments."
      }
    ]
  }