File size: 46,771 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
{
  "title": "LightGBM Mastery: Part 1 (Q1–25)",
  "description": "Questions 1–25 covering LightGBM fundamentals — boosting basics, leaf-wise growth, histogram optimization, and key parameters.",
  "questions": [
    {
      "id": 1,
      "questionText": "What type of algorithm is LightGBM based on?",
      "options": [
        "Bagging",
        "Boosting",
        "Stacking",
        "Voting"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LightGBM is a boosting algorithm, specifically a gradient boosting framework that builds models sequentially."
    },
    {
      "id": 2,
      "questionText": "Which of the following is a unique characteristic of LightGBM?",
      "options": [
        "It grows trees level-wise",
        "It grows trees leaf-wise",
        "It uses deep neural networks",
        "It averages models"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LightGBM grows trees leaf-wise (best-first) to reduce loss more efficiently compared to level-wise methods."
    },
    {
      "id": 3,
      "questionText": "What type of trees does LightGBM primarily use?",
      "options": [
        "Shallow random trees",
        "Deep neural trees",
        "Decision trees",
        "Regression trees"
      ],
      "correctAnswerIndex": 3,
      "explanation": "LightGBM primarily uses regression trees for both classification and regression tasks."
    },
    {
      "id": 4,
      "questionText": "Which technique allows LightGBM to handle large datasets efficiently?",
      "options": [
        "Feature hashing",
        "Histogram-based algorithm",
        "Random sampling",
        "PCA compression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LightGBM uses a histogram-based algorithm to reduce computation by discretizing continuous features into bins."
    },
    {
      "id": 5,
      "questionText": "Scenario: You have very large dataset with millions of rows. Why is LightGBM preferred over XGBoost?",
      "options": [
        "Because it uses neural networks internally",
        "Because it uses histogram-based splits and leaf-wise growth for efficiency",
        "Because it reduces model interpretability",
        "Because it doesn’t require gradient computation"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LightGBM is optimized for large datasets using histogram-based splits and leaf-wise tree growth."
    },
    {
      "id": 6,
      "questionText": "Which LightGBM parameter controls the number of leaves in a single tree?",
      "options": [
        "num_leaves",
        "max_depth",
        "min_child_samples",
        "n_estimators"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The num_leaves parameter sets the maximum number of leaves in one tree, controlling model complexity."
    },
    {
      "id": 7,
      "questionText": "What happens if num_leaves is set too high?",
      "options": [
        "Model becomes underfit",
        "Model becomes overfit",
        "Model trains faster",
        "Model ignores small features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Too many leaves can make the model overly complex and prone to overfitting."
    },
    {
      "id": 8,
      "questionText": "Which LightGBM parameter controls the learning rate?",
      "options": [
        "shrinkage_rate",
        "alpha",
        "learning_rate",
        "lambda"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The learning_rate parameter determines how much each new tree contributes to the model."
    },
    {
      "id": 9,
      "questionText": "Scenario: Model accuracy stagnates early during training. Which parameter can you increase?",
      "options": [
        "num_leaves",
        "learning_rate",
        "n_estimators",
        "feature_fraction"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Increasing n_estimators (number of boosting iterations) allows the model to learn longer."
    },
    {
      "id": 10,
      "questionText": "What is feature_fraction used for in LightGBM?",
      "options": [
        "Regularization to reduce overfitting by randomly selecting a fraction of features per tree",
        "Adjusting leaf size",
        "Reducing data size by sampling rows",
        "Controlling the number of leaves"
      ],
      "correctAnswerIndex": 0,
      "explanation": "feature_fraction randomly selects a fraction of features to train each tree, helping regularize the model."
    },
    {
      "id": 11,
      "questionText": "Which LightGBM parameter limits tree depth?",
      "options": [
        "max_depth",
        "num_leaves",
        "min_split_gain",
        "subsample"
      ],
      "correctAnswerIndex": 0,
      "explanation": "max_depth directly limits how deep trees can grow, preventing overfitting."
    },
    {
      "id": 12,
      "questionText": "What does min_child_samples control?",
      "options": [
        "Minimum number of samples required in a leaf",
        "Minimum number of features used in a tree",
        "Minimum iterations before early stopping",
        "Minimum value for learning rate"
      ],
      "correctAnswerIndex": 0,
      "explanation": "min_child_samples ensures that leaves have enough data points, acting as a regularization technique."
    },
    {
      "id": 13,
      "questionText": "Scenario: LightGBM model is overfitting. Which change helps reduce it?",
      "options": [
        "Decrease num_leaves",
        "Increase num_leaves",
        "Increase learning rate",
        "Remove regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing num_leaves decreases model complexity and helps combat overfitting."
    },
    {
      "id": 14,
      "questionText": "What does boosting_type='dart' mean in LightGBM?",
      "options": [
        "It uses Dropouts meet Multiple Additive Regression Trees",
        "It disables boosting",
        "It performs bagging only",
        "It builds random forests"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The DART variant of LightGBM randomly drops trees during boosting to improve generalization."
    },
    {
      "id": 15,
      "questionText": "Which LightGBM boosting type uses dropouts for regularization?",
      "options": [
        "gbdt",
        "dart",
        "goss",
        "rf"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The DART boosting type introduces dropout in boosting to prevent overfitting."
    },
    {
      "id": 16,
      "questionText": "What does goss stand for in LightGBM?",
      "options": [
        "Gradient-based One-Side Sampling",
        "Gradient Optimization Sampling System",
        "Global Outlier Sampling Strategy",
        "Generalized Optimization Split Search"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GOSS is Gradient-based One-Side Sampling — a LightGBM optimization that speeds up training by sampling instances with large gradients."
    },
    {
      "id": 17,
      "questionText": "Which LightGBM parameter helps in row subsampling?",
      "options": [
        "bagging_fraction",
        "feature_fraction",
        "lambda_l1",
        "min_split_gain"
      ],
      "correctAnswerIndex": 0,
      "explanation": "bagging_fraction controls the fraction of data used per iteration, providing row-wise subsampling."
    },
    {
      "id": 18,
      "questionText": "Scenario: You want faster training but can tolerate a small loss in accuracy. Which parameter can you reduce?",
      "options": [
        "bagging_fraction",
        "num_leaves",
        "max_depth",
        "feature_fraction"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing bagging_fraction increases speed by using fewer data rows per iteration."
    },
    {
      "id": 19,
      "questionText": "What does lambda_l1 control in LightGBM?",
      "options": [
        "L1 regularization term on weights",
        "L2 regularization term on weights",
        "Dropout rate",
        "Learning rate decay"
      ],
      "correctAnswerIndex": 0,
      "explanation": "lambda_l1 adds L1 regularization on leaf weights to encourage sparsity and reduce overfitting."
    },
    {
      "id": 20,
      "questionText": "Which LightGBM regularization term penalizes large leaf weights using L2 norm?",
      "options": [
        "lambda_l1",
        "lambda_l2",
        "min_child_samples",
        "feature_fraction"
      ],
      "correctAnswerIndex": 1,
      "explanation": "lambda_l2 applies L2 regularization to prevent large leaf weights and stabilize training."
    },
    {
      "id": 21,
      "questionText": "Scenario: Model accuracy is fluctuating during boosting. Which parameter helps smooth this effect?",
      "options": [
        "learning_rate",
        "num_leaves",
        "min_gain_to_split",
        "bagging_freq"
      ],
      "correctAnswerIndex": 0,
      "explanation": "A smaller learning_rate helps stabilize model updates, reducing fluctuations."
    },
    {
      "id": 22,
      "questionText": "What is the role of min_gain_to_split?",
      "options": [
        "Minimum loss reduction required for a split",
        "Minimum number of leaves required per tree",
        "Maximum number of features allowed",
        "Learning rate decay factor"
      ],
      "correctAnswerIndex": 0,
      "explanation": "min_gain_to_split prevents small, insignificant splits by requiring a minimum loss reduction."
    },
    {
      "id": 23,
      "questionText": "Scenario: Dataset contains categorical variables. How does LightGBM handle them efficiently?",
      "options": [
        "Using one-hot encoding automatically",
        "By internally converting them using optimal split algorithms",
        "By ignoring categorical variables",
        "By treating them as numeric values directly"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LightGBM natively supports categorical features by finding optimal split points without full one-hot encoding."
    },
    {
      "id": 24,
      "questionText": "Which parameter in LightGBM is used to handle categorical features?",
      "options": [
        "categorical_feature",
        "cat_var",
        "cat_split",
        "categorical_index"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The categorical_feature parameter specifies which columns are treated as categorical during training."
    },
    {
      "id": 25,
      "questionText": "Scenario: LightGBM is using GPU for training. Which advantage does this offer?",
      "options": [
        "Faster histogram construction and split finding",
        "Automatic feature engineering",
        "Better interpretability",
        "Improved regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GPU acceleration speeds up histogram creation and split computations, significantly reducing training time."
    }
  ]
}
{
  "title": "LightGBM Mastery: Part 2 (Q26–50)",
  "description": "Questions 26–50 exploring LightGBM tuning — sampling, regularization, parameter interactions, parallelization, and practical training strategies.",
  "questions": [
    {
      "id": 26,
      "questionText": "What does the bagging_freq parameter control in LightGBM?",
      "options": [
        "How frequently bagging is performed during training",
        "Number of features to drop per tree",
        "Learning rate schedule frequency",
        "Regularization update interval"
      ],
      "correctAnswerIndex": 0,
      "explanation": "bagging_freq determines after how many boosting iterations LightGBM performs row subsampling."
    },
    {
      "id": 27,
      "questionText": "Which LightGBM optimization helps in handling large-scale datasets efficiently?",
      "options": [
        "Histogram-based binning",
        "Deep tree expansion",
        "Dynamic pruning",
        "Recurrent boosting"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LightGBM uses histogram-based binning to reduce computation and memory usage for large datasets."
    },
    {
      "id": 28,
      "questionText": "Scenario: Dataset contains extreme class imbalance. Which parameter helps mitigate it?",
      "options": [
        "scale_pos_weight",
        "bagging_fraction",
        "num_leaves",
        "min_child_samples"
      ],
      "correctAnswerIndex": 0,
      "explanation": "scale_pos_weight adjusts the relative weight of positive samples to handle imbalanced datasets effectively."
    },
    {
      "id": 29,
      "questionText": "Which LightGBM setting should be increased to make the model less sensitive to noise?",
      "options": [
        "min_child_samples",
        "num_leaves",
        "learning_rate",
        "max_depth"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing min_child_samples ensures leaves contain more data points, making the model more robust to noise."
    },
    {
      "id": 30,
      "questionText": "What is the role of early_stopping_round in LightGBM training?",
      "options": [
        "Stops training when validation loss does not improve after a certain number of rounds",
        "Reduces learning rate automatically",
        "Saves best iteration for retraining",
        "Increases number of leaves gradually"
      ],
      "correctAnswerIndex": 0,
      "explanation": "early_stopping_round halts training if performance on validation data stops improving."
    },
    {
      "id": 31,
      "questionText": "Scenario: You observe that LightGBM trains very fast but underfits. What adjustment helps?",
      "options": [
        "Increase num_leaves or n_estimators",
        "Decrease learning rate",
        "Reduce max_depth",
        "Reduce feature_fraction"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing num_leaves or n_estimators allows the model to capture more complexity and reduce underfitting."
    },
    {
      "id": 32,
      "questionText": "What does LightGBM’s leaf-wise tree growth mean?",
      "options": [
        "It splits the leaf with the highest loss reduction first",
        "It splits all leaves at the same level simultaneously",
        "It grows the tree symmetrically",
        "It uses fixed depth trees"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Leaf-wise growth selects and splits the leaf that gives the greatest loss reduction, leading to faster convergence."
    },
    {
      "id": 33,
      "questionText": "Which parameter combination most affects model complexity?",
      "options": [
        "num_leaves and max_depth",
        "feature_fraction and bagging_fraction",
        "learning_rate and n_estimators",
        "lambda_l1 and lambda_l2"
      ],
      "correctAnswerIndex": 0,
      "explanation": "num_leaves and max_depth jointly control tree structure and hence the complexity of the model."
    },
    {
      "id": 34,
      "questionText": "Scenario: LightGBM runs out of memory on a massive dataset. Which setting helps reduce memory usage?",
      "options": [
        "Reduce max_bin",
        "Increase learning_rate",
        "Set boosting_type to dart",
        "Increase num_leaves"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing max_bin decreases the number of histogram bins, lowering memory requirements."
    },
    {
      "id": 35,
      "questionText": "What does the parameter max_bin represent in LightGBM?",
      "options": [
        "Maximum number of bins to bucket continuous features",
        "Maximum number of leaves per tree",
        "Maximum depth of trees",
        "Maximum iterations for convergence"
      ],
      "correctAnswerIndex": 0,
      "explanation": "max_bin determines how many discrete bins each feature will be divided into during histogram building."
    },
    {
      "id": 36,
      "questionText": "Scenario: Model training takes too long. Which adjustment improves speed most effectively?",
      "options": [
        "Reduce max_bin or use bagging_fraction < 1",
        "Increase num_leaves",
        "Reduce learning_rate only",
        "Increase regularization terms"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing max_bin or using smaller bagging_fraction reduces the dataset processed each iteration, speeding up training."
    },
    {
      "id": 37,
      "questionText": "What is the primary drawback of leaf-wise tree growth?",
      "options": [
        "Higher risk of overfitting on small data",
        "Slower convergence",
        "Worse performance on large datasets",
        "Poor categorical handling"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Leaf-wise growth can overfit on small datasets because it may produce very deep trees."
    },
    {
      "id": 38,
      "questionText": "Which LightGBM parameter defines how many bins are created for each feature?",
      "options": [
        "max_bin",
        "num_leaves",
        "feature_fraction",
        "max_depth"
      ],
      "correctAnswerIndex": 0,
      "explanation": "max_bin sets how finely continuous features are bucketed into discrete bins for histogram-based learning."
    },
    {
      "id": 39,
      "questionText": "What type of regularization do lambda_l1 and lambda_l2 correspond to?",
      "options": [
        "Lasso and Ridge regularization",
        "Elastic Net regularization",
        "Dropout regularization",
        "Tree pruning regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "lambda_l1 and lambda_l2 implement Lasso (L1) and Ridge (L2) regularization respectively."
    },
    {
      "id": 40,
      "questionText": "Scenario: You observe overfitting with high validation error. Which parameters help reduce it?",
      "options": [
        "Increase min_child_samples, decrease num_leaves",
        "Increase learning_rate, increase num_leaves",
        "Reduce lambda_l2",
        "Increase feature_fraction"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing min_child_samples and reducing num_leaves simplify the model, reducing overfitting."
    },
    {
      "id": 41,
      "questionText": "What is the role of monotone_constraints in LightGBM?",
      "options": [
        "Ensure certain features have monotonic relationships with the target",
        "Enforce equal feature importance",
        "Reduce overfitting using L2 regularization",
        "Apply monotonic normalization to inputs"
      ],
      "correctAnswerIndex": 0,
      "explanation": "monotone_constraints force LightGBM to maintain a monotonic relationship for specific features."
    },
    {
      "id": 42,
      "questionText": "Scenario: You want reproducible results from LightGBM training. Which parameter helps?",
      "options": [
        "random_state",
        "seed",
        "boosting_seed",
        "Any of the above"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Setting seed or random_state ensures deterministic behavior in LightGBM training."
    },
    {
      "id": 43,
      "questionText": "Which LightGBM parameter defines the objective function?",
      "options": [
        "objective",
        "metric",
        "boosting_type",
        "learning_rate"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The objective parameter defines the loss function that LightGBM optimizes, e.g., 'binary', 'regression'."
    },
    {
      "id": 44,
      "questionText": "Scenario: You are using LightGBM for multi-class classification. What should the objective be set to?",
      "options": [
        "multiclass",
        "multiclassova",
        "binary",
        "regression"
      ],
      "correctAnswerIndex": 0,
      "explanation": "For multi-class classification, objective='multiclass' should be used with num_class specified."
    },
    {
      "id": 45,
      "questionText": "What does feature_pre_filter in LightGBM control?",
      "options": [
        "Whether features are pre-screened before training",
        "Feature normalization",
        "Automatic feature selection during training",
        "Dropout of low importance features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "feature_pre_filter determines if LightGBM filters out constant or low-variance features before training."
    },
    {
      "id": 46,
      "questionText": "Scenario: You use categorical features in LightGBM. What advantage does native support provide?",
      "options": [
        "Faster training and memory efficiency",
        "One-hot encoding automatically expands features",
        "Improved interpretability",
        "Model regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Native categorical handling avoids one-hot expansion, leading to faster and more efficient training."
    },
    {
      "id": 47,
      "questionText": "Which LightGBM boosting type is best for highly imbalanced datasets?",
      "options": [
        "goss",
        "gbdt",
        "dart",
        "rf"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GOSS (Gradient-based One-Side Sampling) is efficient and works well for imbalanced datasets by focusing on large-gradient samples."
    },
    {
      "id": 48,
      "questionText": "Scenario: LightGBM shows slightly worse accuracy than XGBoost. Which parameter tuning may help?",
      "options": [
        "Reduce learning_rate and increase n_estimators",
        "Increase feature_fraction",
        "Reduce num_leaves",
        "Disable histogram optimization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Decreasing learning_rate while increasing n_estimators allows more refined learning and may improve accuracy."
    },
    {
      "id": 49,
      "questionText": "Which LightGBM metric should you use for binary classification?",
      "options": [
        "binary_logloss",
        "l2",
        "mae",
        "multi_logloss"
      ],
      "correctAnswerIndex": 0,
      "explanation": "binary_logloss measures the log loss for binary classification tasks."
    },
    {
      "id": 50,
      "questionText": "Scenario: You want to save training time without losing much performance. Which parameters can be combined?",
      "options": [
        "Use smaller max_bin, bagging_fraction, and feature_fraction",
        "Increase num_leaves and n_estimators",
        "Reduce learning_rate only",
        "Disable regularization terms"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing max_bin, bagging_fraction, and feature_fraction reduces training cost while maintaining accuracy."
    }
  ]
}
{
  "title": "LightGBM Mastery: Part 3 (Q51–75)",
  "description": "Intermediate to advanced questions (51–75) exploring LightGBM regularization, overfitting control, advanced parameters, and real-world optimization scenarios.",
  "questions": [
    {
      "id": 51,
      "questionText": "What is the function of lambda_l1 in LightGBM?",
      "options": [
        "Applies L1 regularization to leaf weights",
        "Limits number of leaves per tree",
        "Determines the learning rate",
        "Applies L2 regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "lambda_l1 controls L1 regularization on leaf weights to reduce overfitting."
    },
    {
      "id": 52,
      "questionText": "What is the function of lambda_l2 in LightGBM?",
      "options": [
        "Applies L2 regularization to leaf weights",
        "Controls learning rate",
        "Reduces feature fraction",
        "Prunes shallow trees"
      ],
      "correctAnswerIndex": 0,
      "explanation": "lambda_l2 applies L2 regularization on leaf weights to smooth large values and improve generalization."
    },
    {
      "id": 53,
      "questionText": "Scenario: You notice LightGBM overfits heavily. Which parameters could help?",
      "options": [
        "Decrease num_leaves, increase min_data_in_leaf",
        "Increase num_leaves, lower min_data_in_leaf",
        "Increase learning rate",
        "Increase max_depth only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing num_leaves and increasing min_data_in_leaf makes trees simpler and prevents overfitting."
    },
    {
      "id": 54,
      "questionText": "What does 'min_split_gain' control in LightGBM?",
      "options": [
        "Minimum gain required to perform a split",
        "Maximum gain per leaf",
        "Learning rate adjustment",
        "Subsample fraction"
      ],
      "correctAnswerIndex": 0,
      "explanation": "min_split_gain sets a threshold for information gain; splits below this are ignored."
    },
    {
      "id": 55,
      "questionText": "Which LightGBM parameter controls row sampling per iteration?",
      "options": [
        "bagging_fraction",
        "feature_fraction",
        "num_leaves",
        "max_bin"
      ],
      "correctAnswerIndex": 0,
      "explanation": "bagging_fraction randomly samples rows for each boosting round to reduce variance."
    },
    {
      "id": 56,
      "questionText": "What does 'feature_fraction' control in LightGBM?",
      "options": [
        "Fraction of features used per tree",
        "Number of bins per feature",
        "Maximum depth of tree",
        "Feature scaling"
      ],
      "correctAnswerIndex": 0,
      "explanation": "feature_fraction specifies the proportion of features used to build each tree."
    },
    {
      "id": 57,
      "questionText": "Scenario: Increasing feature_fraction improves accuracy but lowers stability. Why?",
      "options": [
        "More features increase model variance",
        "Feature_fraction reduces bias",
        "Learning rate decreases automatically",
        "Tree depth is fixed"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Using more features per iteration reduces randomness and increases variance, which may reduce stability."
    },
    {
      "id": 58,
      "questionText": "Which LightGBM parameter controls data sampling frequency?",
      "options": [
        "bagging_freq",
        "num_iterations",
        "min_child_samples",
        "max_depth"
      ],
      "correctAnswerIndex": 0,
      "explanation": "bagging_freq controls how often (in iterations) row subsampling is performed."
    },
    {
      "id": 59,
      "questionText": "Scenario: You set bagging_fraction=1.0 and feature_fraction=1.0. Effect?",
      "options": [
        "No random sampling; all data and features used every iteration",
        "Strong regularization",
        "Improved generalization",
        "Subsampling increases variance"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Setting both to 1.0 disables random sampling, using all features and samples every iteration."
    },
    {
      "id": 60,
      "questionText": "What does 'max_bin' affect in LightGBM?",
      "options": [
        "Precision of feature discretization",
        "Learning rate",
        "Tree depth",
        "Bagging rate"
      ],
      "correctAnswerIndex": 0,
      "explanation": "max_bin determines how many bins each continuous feature is bucketed into for histogram-based splitting."
    },
    {
      "id": 61,
      "questionText": "Higher max_bin values typically lead to what?",
      "options": [
        "More precise splits but slower training",
        "Faster training with less precision",
        "More regularization",
        "Smaller trees"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing max_bin gives more precise splits but increases memory and training time."
    },
    {
      "id": 62,
      "questionText": "Scenario: Large dataset with limited RAM. What should you adjust?",
      "options": [
        "Decrease max_bin and num_leaves",
        "Increase learning rate",
        "Disable histogram mode",
        "Increase max_depth"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing max_bin and num_leaves lowers memory footprint and speeds up training."
    },
    {
      "id": 63,
      "questionText": "What is the function of 'min_data_in_leaf'?",
      "options": [
        "Minimum number of samples required to form a leaf",
        "Maximum depth limit",
        "Learning rate controller",
        "Number of leaves in total"
      ],
      "correctAnswerIndex": 0,
      "explanation": "min_data_in_leaf ensures a minimum number of samples per leaf to avoid overfitting."
    },
    {
      "id": 64,
      "questionText": "What happens if min_data_in_leaf is set too high?",
      "options": [
        "Model underfits due to shallow trees",
        "Model overfits easily",
        "Learning rate decreases",
        "Training stops early"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Too high min_data_in_leaf makes leaves large and reduces model complexity, causing underfitting."
    },
    {
      "id": 65,
      "questionText": "What parameter limits the maximum tree depth in LightGBM?",
      "options": [
        "max_depth",
        "num_leaves",
        "min_data_in_leaf",
        "feature_fraction"
      ],
      "correctAnswerIndex": 0,
      "explanation": "max_depth caps how deep each tree can grow."
    },
    {
      "id": 66,
      "questionText": "Scenario: You set max_depth=-1. What happens?",
      "options": [
        "Tree depth is unlimited and controlled by num_leaves instead",
        "Training fails",
        "Trees become shallow automatically",
        "Regularization is disabled"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Setting max_depth=-1 removes explicit depth restriction; num_leaves indirectly limits complexity."
    },
    {
      "id": 67,
      "questionText": "What is the effect of increasing num_iterations in LightGBM?",
      "options": [
        "Model trains longer and may overfit if learning_rate is not reduced",
        "Model converges faster",
        "Less accurate model",
        "Shallower trees"
      ],
      "correctAnswerIndex": 0,
      "explanation": "More boosting iterations improve fit but can overfit unless compensated by lower learning rate."
    },
    {
      "id": 68,
      "questionText": "Scenario: Reducing learning_rate but keeping num_iterations constant causes?",
      "options": [
        "Underfitting, since model learns slower",
        "Overfitting",
        "Higher variance",
        "Deeper trees"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Low learning rate with few iterations may lead to underfitting as the model learns too slowly."
    },
    {
      "id": 69,
      "questionText": "What is the main benefit of histogram-based decision trees in LightGBM?",
      "options": [
        "Faster training and lower memory usage",
        "More precise split thresholds",
        "Supports only small datasets",
        "Improves interpretability"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Histogram-based methods speed up training by grouping continuous values into discrete bins."
    },
    {
      "id": 70,
      "questionText": "Scenario: You increase max_bin significantly. What might happen?",
      "options": [
        "Training slows down and may overfit",
        "Training speeds up",
        "Model ignores rare features",
        "Learning rate increases automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher max_bin allows finer splits but can increase overfitting and computation time."
    },
    {
      "id": 71,
      "questionText": "What parameter controls the number of boosting rounds?",
      "options": [
        "num_iterations",
        "max_depth",
        "feature_fraction",
        "min_data_in_leaf"
      ],
      "correctAnswerIndex": 0,
      "explanation": "num_iterations defines the total number of boosting rounds (trees) to train."
    },
    {
      "id": 72,
      "questionText": "Scenario: Decreasing num_iterations while keeping learning_rate fixed will usually?",
      "options": [
        "Reduce model capacity and may underfit",
        "Cause overfitting",
        "Speed up convergence with higher accuracy",
        "Have no effect"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Fewer iterations reduce model capacity, leading to underfitting if learning_rate is unchanged."
    },
    {
      "id": 73,
      "questionText": "What is the benefit of early_stopping_rounds in LightGBM?",
      "options": [
        "Automatically halts training when validation loss stops improving",
        "Reduces learning rate dynamically",
        "Increases tree depth automatically",
        "Samples more features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "early_stopping_rounds prevents overfitting by stopping when performance stops improving on validation data."
    },
    {
      "id": 74,
      "questionText": "Which parameter combination best prevents overfitting?",
      "options": [
        "Lower num_leaves, lower learning_rate, higher min_data_in_leaf",
        "Higher num_leaves, higher learning_rate",
        "Increase max_depth only",
        "Set bagging_fraction=1"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Simpler trees, smaller learning rate, and more data per leaf enhance generalization."
    },
    {
      "id": 75,
      "questionText": "Scenario: Large data, strong overfitting, and high variance. What to do?",
      "options": [
        "Lower num_leaves, use bagging and feature_fraction < 1",
        "Increase tree depth",
        "Raise learning rate",
        "Disable regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Using smaller trees and random sampling helps reduce overfitting and variance."
    }
  ]
}
{
  "title": "LightGBM Mastery: Part 4 (Q76–100)",
  "description": "Advanced and expert-level questions (76–100) exploring LightGBM’s GPU acceleration, categorical feature encoding, distributed learning, interpretability, and fine-tuning strategies.",
  "questions": [
    {
      "id": 76,
      "questionText": "What is one key advantage of LightGBM over XGBoost?",
      "options": [
        "Uses leaf-wise tree growth for faster convergence",
        "Uses level-wise tree growth for stability",
        "Cannot handle large datasets",
        "Lacks regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LightGBM grows trees leaf-wise with depth constraints, achieving faster convergence and lower loss."
    },
    {
      "id": 77,
      "questionText": "What happens if num_leaves is much larger than 2^max_depth?",
      "options": [
        "Overfitting increases due to overly complex trees",
        "Model underfits severely",
        "No effect on model performance",
        "Training halts automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Too many leaves compared to max_depth allow excessive branching, causing overfitting."
    },
    {
      "id": 78,
      "questionText": "Scenario: You enable GPU support in LightGBM. What primary benefit is expected?",
      "options": [
        "Faster histogram construction and split finding",
        "Improved accuracy",
        "Reduced model complexity",
        "Automatic regularization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GPU acceleration speeds up histogram building and split calculations, improving training speed."
    },
    {
      "id": 79,
      "questionText": "Which LightGBM parameter enables GPU training?",
      "options": [
        "device_type='gpu'",
        "gpu_enable=True",
        "use_gpu=1",
        "boosting_type='gpu'"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Setting device_type='gpu' tells LightGBM to use GPU resources for training."
    },
    {
      "id": 80,
      "questionText": "What is the impact of 'boosting_type' parameter?",
      "options": [
        "Selects the boosting algorithm (gbdt, dart, goss)",
        "Controls feature sampling",
        "Defines tree depth",
        "Applies learning rate decay"
      ],
      "correctAnswerIndex": 0,
      "explanation": "boosting_type specifies the boosting algorithm variant such as 'gbdt', 'dart', or 'goss'."
    },
    {
      "id": 81,
      "questionText": "What is DART in LightGBM?",
      "options": [
        "Dropouts meet Multiple Additive Regression Trees",
        "Distributed Automatic Regression Tree",
        "Dynamic Adaptive Regularized Trees",
        "Data Adaptive Reduction Technique"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DART is 'Dropouts meet Multiple Additive Regression Trees', introducing dropout into boosting to reduce overfitting."
    },
    {
      "id": 82,
      "questionText": "Scenario: Using boosting_type='goss'. What does GOSS stand for?",
      "options": [
        "Gradient-based One-Side Sampling",
        "Global Overfitting Sample Selector",
        "Generalized Optimization for Split Search",
        "Gradient Optimization Sampling Strategy"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GOSS stands for Gradient-based One-Side Sampling, reducing data processed per iteration for speed."
    },
    {
      "id": 83,
      "questionText": "What does GOSS primarily do?",
      "options": [
        "Keeps large-gradient samples and randomly drops small-gradient ones",
        "Drops large-gradient samples",
        "Uses all samples equally",
        "Increases number of trees"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GOSS keeps high-gradient samples for training, reducing computation while preserving accuracy."
    },
    {
      "id": 84,
      "questionText": "Scenario: Dataset has many categorical variables. What should you do?",
      "options": [
        "Use LightGBM's built-in categorical feature support",
        "One-hot encode all features manually",
        "Convert to text data",
        "Ignore categorical columns"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LightGBM natively supports categorical features through optimal split encoding without full one-hot expansion."
    },
    {
      "id": 85,
      "questionText": "How does LightGBM handle categorical features internally?",
      "options": [
        "Sorts categories by average target and finds best split",
        "Performs label encoding only",
        "Uses frequency encoding",
        "Applies hash bucketing"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LightGBM sorts categories by their target mean to efficiently find the best split."
    },
    {
      "id": 86,
      "questionText": "Scenario: Training time is long on large data with many features. What can help?",
      "options": [
        "Reduce feature_fraction and bagging_fraction",
        "Increase num_leaves",
        "Disable histogram mode",
        "Increase max_bin drastically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing feature_fraction and bagging_fraction speeds up training by using subsets of features and samples."
    },
    {
      "id": 87,
      "questionText": "What is the role of 'max_cat_threshold'?",
      "options": [
        "Controls maximum thresholds for categorical splits",
        "Limits maximum tree depth",
        "Sets number of categories allowed",
        "Defines learning rate schedule"
      ],
      "correctAnswerIndex": 0,
      "explanation": "max_cat_threshold limits how many thresholds LightGBM evaluates for categorical splits."
    },
    {
      "id": 88,
      "questionText": "Scenario: Distributed LightGBM training is producing inconsistent results. Likely reason?",
      "options": [
        "Non-deterministic data shuffling or parameter differences across nodes",
        "Too high learning rate",
        "Disabled GPU support",
        "Overfitting due to small num_leaves"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Different random seeds or node configurations in distributed mode can cause inconsistency."
    },
    {
      "id": 89,
      "questionText": "What helps ensure reproducible LightGBM results?",
      "options": [
        "Set deterministic=True and fix random_seed",
        "Increase bagging_fraction",
        "Enable GPU mode",
        "Reduce learning rate"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Setting deterministic=True and fixing random_seed ensures consistent results across runs."
    },
    {
      "id": 90,
      "questionText": "Which LightGBM feature allows parallel learning across machines?",
      "options": [
        "Distributed training mode",
        "Bagging",
        "GPU histograms",
        "Early stopping"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Distributed mode enables training across multiple machines using data parallelism."
    },
    {
      "id": 91,
      "questionText": "What is the key difference between DART and standard GBDT?",
      "options": [
        "DART randomly drops trees during training to prevent overfitting",
        "DART doubles learning rate dynamically",
        "DART uses fewer features per tree",
        "DART cannot perform regression tasks"
      ],
      "correctAnswerIndex": 0,
      "explanation": "DART introduces dropout on trees, improving regularization and generalization."
    },
    {
      "id": 92,
      "questionText": "Scenario: Validation accuracy fluctuates heavily between iterations. Likely cause?",
      "options": [
        "Learning rate too high or bagging too aggressive",
        "Too many trees",
        "Too few bins",
        "High lambda_l2"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High learning rate or aggressive subsampling can cause instability in validation metrics."
    },
    {
      "id": 93,
      "questionText": "What does 'linear_tree' parameter enable?",
      "options": [
        "Adds linear models to each leaf for hybrid boosting",
        "Switches boosting type",
        "Performs polynomial regression",
        "Forces shallow trees"
      ],
      "correctAnswerIndex": 0,
      "explanation": "linear_tree enables a linear model within each leaf, combining tree and linear learning."
    },
    {
      "id": 94,
      "questionText": "Scenario: Using linear_tree improved performance slightly but increased training time. Why?",
      "options": [
        "Linear models per leaf require additional optimization",
        "Learning rate reduced automatically",
        "Tree structure became shallower",
        "Fewer bins created per feature"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Each leaf fits a small linear model, increasing training computation but often improving accuracy."
    },
    {
      "id": 95,
      "questionText": "Which LightGBM setting improves memory efficiency on large data?",
      "options": [
        "Use histogram pool sharing and smaller max_bin",
        "Increase max_depth",
        "Enable linear_tree",
        "Disable bagging"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing max_bin and using histogram sharing significantly lower memory usage."
    },
    {
      "id": 96,
      "questionText": "Scenario: Feature importance shows unexpected zeros for numeric features. Why?",
      "options": [
        "Feature was rarely used due to high correlation or low information gain",
        "Model error",
        "Bug in LightGBM",
        "Feature_fraction=1.0"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Highly correlated or uninformative features may never be chosen for splits, yielding zero importance."
    },
    {
      "id": 97,
      "questionText": "What is the purpose of 'monotone_constraints'?",
      "options": [
        "Forces model predictions to follow specified monotonic relationships with features",
        "Restricts tree depth",
        "Balances data classes",
        "Disables early stopping"
      ],
      "correctAnswerIndex": 0,
      "explanation": "monotone_constraints ensure predictions move consistently up or down with certain features."
    },
    {
      "id": 98,
      "questionText": "Scenario: You set monotone_constraints incorrectly. Possible issue?",
      "options": [
        "Model accuracy drops or fails to converge",
        "Training halts immediately",
        "All features are ignored",
        "Learning rate resets"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Wrong monotonic constraints can make optimization infeasible, harming accuracy or convergence."
    },
    {
      "id": 99,
      "questionText": "What metric would you monitor for binary classification?",
      "options": [
        "binary_logloss or AUC",
        "mean_squared_error",
        "poisson",
        "quantile"
      ],
      "correctAnswerIndex": 0,
      "explanation": "For binary tasks, LightGBM supports metrics like binary_logloss and AUC for evaluation."
    },
    {
      "id": 100,
      "questionText": "Scenario: After tuning, training accuracy improves but test accuracy drops. What happened?",
      "options": [
        "Overfitting",
        "Underfitting",
        "Learning rate too small",
        "Too many missing values"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher training accuracy with lower test performance indicates overfitting."
    }
  ]
}