File size: 48,073 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
{
  "title": "Ridge Regression Mastery: 100 MCQs",
  "description": "A comprehensive set of multiple-choice questions designed to teach and test your understanding of Ridge Regression, starting from basic concepts to advanced scenario-based problems.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the main purpose of Ridge Regression?",
      "options": [
        "To reduce bias in predictions",
        "To prevent overfitting by adding L2 regularization",
        "To increase the complexity of the model",
        "To reduce the number of features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge Regression adds L2 regularization to penalize large coefficients, helping prevent overfitting."
    },
    {
      "id": 2,
      "questionText": "Which term is added to the loss function in Ridge Regression?",
      "options": [
        "Sum of squared residuals",
        "Sum of absolute values of coefficients",
        "Sum of squares of coefficients multiplied by alpha",
        "Log-likelihood term"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Ridge Regression adds alpha * sum of squared coefficients to the standard squared error loss."
    },
    {
      "id": 3,
      "questionText": "Ridge Regression is a type of:",
      "options": [
        "Linear Regression with L1 regularization",
        "Linear Regression with L2 regularization",
        "Logistic Regression",
        "Decision Tree Regression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge Regression is Linear Regression with L2 regularization to shrink coefficients."
    },
    {
      "id": 4,
      "questionText": "Which problem does Ridge Regression primarily address?",
      "options": [
        "Underfitting",
        "Overfitting due to multicollinearity",
        "Non-linear data",
        "Categorical features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge Regression reduces overfitting when features are highly correlated."
    },
    {
      "id": 5,
      "questionText": "How does Ridge Regression shrink coefficients?",
      "options": [
        "By adding noise to data",
        "By adding a penalty proportional to the square of coefficients",
        "By removing features randomly",
        "By using stepwise regression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The L2 penalty in Ridge Regression discourages large coefficients."
    },
    {
      "id": 6,
      "questionText": "What happens if alpha=0 in Ridge Regression?",
      "options": [
        "It becomes standard Linear Regression",
        "It becomes Lasso Regression",
        "It ignores the bias term",
        "It fails to converge"
      ],
      "correctAnswerIndex": 0,
      "explanation": "With alpha=0, the L2 penalty is removed, so Ridge Regression is equivalent to Linear Regression."
    },
    {
      "id": 7,
      "questionText": "Ridge Regression is particularly useful when:",
      "options": [
        "The dataset has multicollinearity among features",
        "The dataset has very few samples",
        "There is no noise in data",
        "You want sparse coefficients"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge Regression handles multicollinearity by penalizing large correlated coefficients."
    },
    {
      "id": 8,
      "questionText": "Which metric is commonly used to select the optimal alpha in Ridge Regression?",
      "options": [
        "R-squared",
        "Mean Squared Error on cross-validation",
        "Correlation coefficient",
        "Number of features selected"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Cross-validation MSE is used to find the alpha that balances bias and variance."
    },
    {
      "id": 9,
      "questionText": "What effect does increasing the alpha parameter have?",
      "options": [
        "Increases overfitting",
        "Decreases coefficient values and reduces overfitting",
        "Increases model complexity",
        "Removes features automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Higher alpha increases the penalty on large coefficients, which shrinks them and reduces overfitting."
    },
    {
      "id": 10,
      "questionText": "Why should features be standardized before applying Ridge Regression?",
      "options": [
        "To make computation faster",
        "To give all features equal importance in regularization",
        "To reduce number of samples",
        "To convert all values to integers"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standardization ensures the penalty treats all features fairly, regardless of scale."
    },
    {
      "id": 11,
      "questionText": "Ridge Regression cannot produce sparse models because:",
      "options": [
        "It uses L1 penalty",
        "It uses L2 penalty which shrinks but does not set coefficients to zero",
        "It ignores regularization",
        "It only works with one feature"
      ],
      "correctAnswerIndex": 1,
      "explanation": "L2 penalty reduces coefficient magnitudes but does not eliminate features completely."
    },
    {
      "id": 12,
      "questionText": "Which scenario favors Ridge Regression over Lasso?",
      "options": [
        "You want feature selection",
        "All features are relevant and correlated",
        "You have very few samples",
        "Your target variable is categorical"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge is better when all features contribute and are correlated; Lasso performs feature selection."
    },
    {
      "id": 13,
      "questionText": "Which of the following is a loss function of Ridge Regression?",
      "options": [
        "Sum of squared errors",
        "Sum of squared errors + alpha * sum of squared coefficients",
        "Sum of absolute errors",
        "Mean absolute percentage error"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge adds the L2 penalty to the usual squared error loss function."
    },
    {
      "id": 14,
      "questionText": "Scenario: Your data has 200 features and 50 samples. Linear Regression overfits. What should you do?",
      "options": [
        "Use Ridge Regression with appropriate alpha",
        "Use Linear Regression without changes",
        "Remove all features",
        "Use logistic regression"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization like Ridge helps prevent overfitting when features outnumber samples."
    },
    {
      "id": 15,
      "questionText": "Scenario: Ridge Regression gives large coefficients even after standardization. Likely reason?",
      "options": [
        "Alpha is too small",
        "Data has no noise",
        "Features are uncorrelated",
        "Model is perfect"
      ],
      "correctAnswerIndex": 0,
      "explanation": "A small alpha means the penalty is weak, so coefficients remain large."
    },
    {
      "id": 16,
      "questionText": "Scenario: After increasing alpha, training error increased but test error decreased. This illustrates:",
      "options": [
        "Bias-variance tradeoff",
        "Overfitting",
        "Underfitting",
        "Multicollinearity"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing alpha increases bias (higher training error) but reduces variance (lower test error)."
    },
    {
      "id": 17,
      "questionText": "Which Python library provides Ridge Regression?",
      "options": [
        "numpy",
        "pandas",
        "scikit-learn",
        "matplotlib"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Scikit-learn provides Ridge regression through sklearn.linear_model.Ridge."
    },
    {
      "id": 18,
      "questionText": "Which parameter in Ridge controls regularization strength?",
      "options": [
        "beta",
        "lambda",
        "alpha",
        "gamma"
      ],
      "correctAnswerIndex": 2,
      "explanation": "In scikit-learn's Ridge, alpha sets the L2 penalty strength."
    },
    {
      "id": 19,
      "questionText": "Ridge Regression reduces multicollinearity by:",
      "options": [
        "Shrinking correlated coefficients",
        "Eliminating features",
        "Adding noise",
        "Creating polynomial features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "L2 regularization shrinks correlated coefficients to reduce instability."
    },
    {
      "id": 20,
      "questionText": "Ridge Regression can be used for:",
      "options": [
        "Regression only",
        "Classification only",
        "Clustering",
        "Principal Component Analysis"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge is an extension of Linear Regression and is used for regression tasks."
    },
    {
      "id": 21,
      "questionText": "Standardizing features before Ridge is important because:",
      "options": [
        "It reduces alpha value automatically",
        "It ensures regularization treats all features equally",
        "It changes the target variable",
        "It creates sparse solutions"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Without standardization, features with larger scales are penalized more than smaller ones."
    },
    {
      "id": 22,
      "questionText": "Scenario: Alpha is set very high. Likely effect on model?",
      "options": [
        "Overfitting",
        "Underfitting",
        "Perfect fit",
        "No effect"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Very high alpha over-penalizes coefficients, increasing bias and underfitting the data."
    },
    {
      "id": 23,
      "questionText": "Which type of regularization does Ridge use?",
      "options": [
        "L1",
        "L2",
        "Elastic Net",
        "Dropout"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge uses L2 regularization to shrink coefficients."
    },
    {
      "id": 24,
      "questionText": "Scenario: Two features are highly correlated. Ridge Regression will:",
      "options": [
        "Randomly select one feature",
        "Shrink their coefficients without eliminating either",
        "Eliminate both features",
        "Increase their coefficients"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge shrinks correlated coefficients but keeps both in the model."
    },
    {
      "id": 25,
      "questionText": "Scenario: Dataset has noisy features. Ridge Regression helps by:",
      "options": [
        "Ignoring noise completely",
        "Reducing coefficient magnitudes to prevent overfitting",
        "Removing noisy features automatically",
        "Converting data to categorical"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Regularization reduces sensitivity to noise, helping the model generalize better."
    },
    {
      "id": 26,
      "questionText": "Scenario: You applied Ridge Regression but your test error is still high. What could help?",
      "options": [
        "Decrease alpha",
        "Increase alpha or try dimensionality reduction",
        "Remove the intercept",
        "Ignore standardization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Increasing regularization or using PCA/PLS can help improve generalization when test error is high."
    },
    {
      "id": 27,
      "questionText": "Scenario: Two datasets have the same features, but one has highly correlated inputs. Ridge Regression will:",
      "options": [
        "Shrink coefficients more for correlated features",
        "Perform the same on both",
        "Eliminate correlated features",
        "Fail to converge"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge handles multicollinearity by shrinking coefficients of correlated features."
    },
    {
      "id": 28,
      "questionText": "How can you choose the optimal alpha in Ridge Regression?",
      "options": [
        "Random guess",
        "Cross-validation on a range of alpha values",
        "Using R-squared only",
        "Using the number of features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Cross-validation is used to evaluate model performance for different alpha values and select the best one."
    },
    {
      "id": 29,
      "questionText": "Ridge Regression vs Linear Regression: which statement is true?",
      "options": [
        "Ridge ignores some features",
        "Ridge always has lower training error",
        "Ridge adds L2 penalty to reduce coefficient magnitude",
        "Ridge cannot handle more features than samples"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The L2 penalty in Ridge helps shrink coefficients to reduce overfitting."
    },
    {
      "id": 30,
      "questionText": "Scenario: You have standardized features and apply Ridge Regression with alpha=0.1. Increasing alpha to 10 will:",
      "options": [
        "Increase training error and may decrease test error",
        "Decrease both training and test errors",
        "Have no effect",
        "Eliminate some features automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher alpha increases bias (training error) but can reduce variance (improve test error)."
    },
    {
      "id": 31,
      "questionText": "Why is Ridge Regression sensitive to feature scaling?",
      "options": [
        "L2 penalty depends on coefficient magnitude, which depends on feature scale",
        "It uses absolute values",
        "It ignores intercept",
        "It only works with integers"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Without scaling, large-scale features are penalized more than small-scale features."
    },
    {
      "id": 32,
      "questionText": "Scenario: You have a polynomial dataset. Ridge Regression helps by:",
      "options": [
        "Eliminating polynomial terms",
        "Reducing overfitting caused by high-degree terms",
        "Making all coefficients equal",
        "Removing intercept automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge shrinks coefficients of high-degree polynomial terms, reducing overfitting."
    },
    {
      "id": 33,
      "questionText": "Scenario: Ridge Regression and Lasso applied on same dataset. Lasso gives some zero coefficients while Ridge does not. Why?",
      "options": [
        "Ridge uses L1 penalty",
        "Ridge uses L2 penalty which shrinks but doesn’t eliminate coefficients",
        "Lasso ignores correlated features",
        "Ridge ignores alpha"
      ],
      "correctAnswerIndex": 1,
      "explanation": "L2 penalty in Ridge shrinks coefficients, while L1 penalty in Lasso can set them exactly to zero."
    },
    {
      "id": 34,
      "questionText": "Scenario: Your dataset has features with very different scales. What should you do before Ridge Regression?",
      "options": [
        "Normalize or standardize features",
        "Leave features as they are",
        "Add noise to smaller features",
        "Remove largest features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardizing ensures the penalty treats all features equally."
    },
    {
      "id": 35,
      "questionText": "Scenario: You applied Ridge Regression on noisy data. The coefficients are smaller than in Linear Regression. Why?",
      "options": [
        "Ridge ignores noise",
        "L2 penalty shrinks coefficients to reduce overfitting",
        "Noise is removed automatically",
        "Training error increases"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Regularization shrinks coefficients, making the model less sensitive to noise."
    },
    {
      "id": 36,
      "questionText": "Scenario: You have highly correlated features and want some coefficients exactly zero. What should you use?",
      "options": [
        "Ridge Regression",
        "Lasso Regression",
        "Linear Regression",
        "Polynomial Regression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Lasso uses L1 penalty which can set some coefficients exactly to zero, performing feature selection."
    },
    {
      "id": 37,
      "questionText": "Scenario: Ridge Regression shows underfitting. What adjustment can help?",
      "options": [
        "Decrease alpha",
        "Increase alpha",
        "Remove standardization",
        "Add noise"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Lowering alpha reduces regularization, allowing coefficients to fit data better."
    },
    {
      "id": 38,
      "questionText": "Scenario: Two Ridge models with different alpha are trained. Model A (low alpha) has low training error, high test error. Model B (high alpha) has higher training error, lower test error. This illustrates:",
      "options": [
        "Bias-variance tradeoff",
        "Underfitting",
        "Multicollinearity",
        "Polynomial expansion"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing alpha increases bias (higher training error) but reduces variance (better generalization)."
    },
    {
      "id": 39,
      "questionText": "Scenario: Ridge Regression on dataset with 10,000 features. Most features are irrelevant. Which is better?",
      "options": [
        "Ridge Regression",
        "Lasso Regression",
        "Standard Linear Regression",
        "Decision Tree"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Lasso can eliminate irrelevant features via L1 penalty, producing sparse coefficients."
    },
    {
      "id": 40,
      "questionText": "Scenario: After Ridge Regression, coefficients of correlated features are close but non-zero. This is expected because:",
      "options": [
        "Ridge ignores correlation",
        "L2 penalty shrinks correlated coefficients equally",
        "L1 penalty would do the same",
        "Model is underfitting"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge shrinks coefficients of correlated features similarly, avoiding instability."
    },
    {
      "id": 41,
      "questionText": "Scenario: You want Ridge Regression but with some feature selection. Which method combines L1 and L2 penalties?",
      "options": [
        "Lasso",
        "Elastic Net",
        "Linear Regression",
        "Polynomial Regression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Elastic Net combines L1 (feature selection) and L2 (shrinkage) penalties."
    },
    {
      "id": 42,
      "questionText": "Scenario: Ridge Regression applied without standardization. What can happen?",
      "options": [
        "Features with larger scale get larger penalties",
        "All coefficients shrink equally",
        "Training error drops",
        "Alpha becomes irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Without scaling, features with larger magnitude are penalized more, biasing the model."
    },
    {
      "id": 43,
      "questionText": "Scenario: Ridge Regression applied to high-degree polynomial features. Main risk:",
      "options": [
        "Underfitting",
        "Overfitting due to many terms",
        "Alpha is too low",
        "Features become sparse"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High-degree polynomial features increase model complexity; Ridge shrinks coefficients to control overfitting."
    },
    {
      "id": 44,
      "questionText": "Scenario: You want to compare Ridge Regression performance with different alpha. Best approach?",
      "options": [
        "Single train-test split",
        "K-fold cross-validation",
        "Use R-squared only",
        "Ignore alpha values"
      ],
      "correctAnswerIndex": 1,
      "explanation": "K-fold CV allows evaluating different alpha values reliably and selecting the optimal one."
    },
    {
      "id": 45,
      "questionText": "Scenario: Ridge Regression model has high training error and high test error. What’s happening?",
      "options": [
        "Underfitting due to too high alpha",
        "Overfitting",
        "Model perfect",
        "Features irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High alpha over-penalizes coefficients, increasing bias and underfitting the data."
    },
    {
      "id": 46,
      "questionText": "Scenario: Dataset has multicollinearity. Which regression reduces variance without eliminating features?",
      "options": [
        "Ridge Regression",
        "Lasso Regression",
        "Linear Regression",
        "Polynomial Regression"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge reduces coefficient magnitude for correlated features, lowering variance without zeroing coefficients."
    },
    {
      "id": 47,
      "questionText": "Scenario: Ridge Regression on noisy data. Coefficients are smaller than Linear Regression. Why?",
      "options": [
        "Noise removed automatically",
        "L2 penalty shrinks coefficients",
        "Model ignores target variable",
        "Alpha is zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "L2 penalty makes the model less sensitive to noise by shrinking coefficients."
    },
    {
      "id": 48,
      "questionText": "Scenario: Ridge Regression applied to dataset with features on vastly different scales. Outcome?",
      "options": [
        "Some features penalized more than others",
        "All coefficients equal",
        "Alpha becomes zero",
        "Model fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Without scaling, large-scale features incur larger penalties than small-scale features."
    },
    {
      "id": 49,
      "questionText": "Scenario: Ridge Regression used for dataset with correlated inputs. What happens to their coefficients?",
      "options": [
        "Shrink similarly, remain non-zero",
        "Zeroed out automatically",
        "Become negative",
        "Removed from model"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge shrinks correlated coefficients together without eliminating them."
    },
    {
      "id": 50,
      "questionText": "Scenario: You need Ridge Regression but also want feature selection. Best choice?",
      "options": [
        "Increase alpha",
        "Use Elastic Net combining L1 and L2",
        "Decrease alpha",
        "Ignore multicollinearity"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Elastic Net allows both shrinkage (L2) and feature selection (L1)."
    },
    {
      "id": 51,
      "questionText": "Scenario: Ridge Regression is applied to a dataset with 5000 features, most of which are correlated. What is the main advantage?",
      "options": [
        "Eliminates irrelevant features",
        "Reduces coefficient variance without removing features",
        "Always decreases bias to zero",
        "Removes noise automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge shrinks correlated feature coefficients to reduce variance, maintaining all features in the model."
    },
    {
      "id": 52,
      "questionText": "Scenario: After Ridge Regression, test error is still high. Possible solution?",
      "options": [
        "Increase alpha further",
        "Use dimensionality reduction like PCA before Ridge",
        "Remove standardization",
        "Reduce training samples"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Dimensionality reduction can remove redundant features and improve generalization."
    },
    {
      "id": 53,
      "questionText": "Scenario: Ridge Regression applied to dataset with polynomial features. Observed very high coefficients for high-degree terms. Best approach?",
      "options": [
        "Increase alpha",
        "Decrease alpha",
        "Remove intercept",
        "Ignore polynomial terms"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing alpha penalizes large coefficients, controlling overfitting in polynomial terms."
    },
    {
      "id": 54,
      "questionText": "Scenario: Ridge Regression on dataset with noisy inputs and high multicollinearity. Observed stable coefficients. Why?",
      "options": [
        "L2 penalty reduces sensitivity to noise and stabilizes correlated coefficients",
        "Training error is minimized",
        "Alpha is zero",
        "Model ignores correlated features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge shrinks coefficients to stabilize model against noise and multicollinearity."
    },
    {
      "id": 55,
      "questionText": "Scenario: You perform Ridge Regression with alpha=1 and 10-fold cross-validation. Best alpha is found to be 5. Interpretation?",
      "options": [
        "Model underfits with alpha=1, alpha=5 improves generalization",
        "Model overfits with alpha=5",
        "Cross-validation is irrelevant",
        "Training error is minimal at alpha=1"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher alpha increases bias slightly but reduces variance, improving test performance."
    },
    {
      "id": 56,
      "questionText": "Scenario: Ridge Regression applied to standardized features. Coefficients of two correlated features are nearly equal. This occurs because:",
      "options": [
        "Alpha is too high",
        "L2 penalty shrinks correlated coefficients similarly",
        "Features are independent",
        "Standardization is not needed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge shrinks correlated coefficients together, leading to similar values."
    },
    {
      "id": 57,
      "questionText": "Scenario: You applied Ridge Regression with alpha=0. Ridge behaves like:",
      "options": [
        "Lasso Regression",
        "Linear Regression",
        "Elastic Net",
        "Polynomial Regression"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Alpha=0 removes the L2 penalty, reducing Ridge to standard Linear Regression."
    },
    {
      "id": 58,
      "questionText": "Scenario: Ridge Regression applied on dataset with 1000 features, many irrelevant. Which method could improve sparsity?",
      "options": [
        "Increase alpha",
        "Switch to Lasso or Elastic Net",
        "Decrease alpha",
        "Use standardization only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Lasso (L1) or Elastic Net can set irrelevant coefficients to zero, creating sparse models."
    },
    {
      "id": 59,
      "questionText": "Scenario: Ridge Regression used for a dataset with missing values. Best approach?",
      "options": [
        "Ridge handles missing automatically",
        "Impute missing values before applying Ridge",
        "Remove alpha",
        "Ignore missing values"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Ridge requires complete data; missing values should be imputed or removed first."
    },
    {
      "id": 60,
      "questionText": "Scenario: Ridge Regression on standardized dataset shows training error slightly higher than Linear Regression but test error lower. Reason?",
      "options": [
        "Bias-variance tradeoff: Ridge increased bias slightly but reduced variance",
        "Model underfits completely",
        "Alpha is zero",
        "Data is too small"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization increases bias but reduces variance, improving test performance."
    },
    {
      "id": 61,
      "questionText": "Scenario: Ridge Regression applied with high alpha and low alpha. Observed training and test errors: High alpha → high training, low test; Low alpha → low training, high test. This illustrates:",
      "options": [
        "Bias-variance tradeoff",
        "Overfitting",
        "Multicollinearity",
        "Polynomial expansion"
      ],
      "correctAnswerIndex": 0,
      "explanation": "This is the classic bias-variance tradeoff scenario."
    },
    {
      "id": 62,
      "questionText": "Scenario: Ridge Regression on dataset with categorical variables encoded as one-hot vectors. Main concern?",
      "options": [
        "High multicollinearity due to dummy variables",
        "Alpha selection irrelevant",
        "Scaling not required",
        "Target variable changes"
      ],
      "correctAnswerIndex": 0,
      "explanation": "One-hot encoding can produce correlated dummy features; Ridge helps reduce coefficient variance."
    },
    {
      "id": 63,
      "questionText": "Scenario: Ridge Regression applied on a time-series dataset with lag features. Why standardization is important?",
      "options": [
        "Alpha only applies to standardized features",
        "Regularization penalizes coefficients fairly only if features are on same scale",
        "Intercept is ignored otherwise",
        "Time index must be normalized"
      ],
      "correctAnswerIndex": 1,
      "explanation": "L2 penalty shrinks coefficients fairly only when all features are standardized."
    },
    {
      "id": 64,
      "questionText": "Scenario: Ridge Regression and OLS applied on small dataset with multicollinearity. Observed unstable coefficients with OLS, stable with Ridge. Why?",
      "options": [
        "Ridge reduces coefficient variance through regularization",
        "Ridge increases training error",
        "OLS ignores multicollinearity",
        "Alpha is zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization stabilizes coefficients for correlated features."
    },
    {
      "id": 65,
      "questionText": "Scenario: Ridge Regression applied after PCA. Advantage?",
      "options": [
        "Reduces dimensionality, coefficients shrunk on principal components",
        "Eliminates intercept",
        "No need for alpha",
        "Features become sparse"
      ],
      "correctAnswerIndex": 0,
      "explanation": "PCA reduces dimensionality; Ridge shrinks coefficients on principal components to control overfitting."
    },
    {
      "id": 66,
      "questionText": "Scenario: Ridge Regression applied with alpha very large. Observed training and test errors both high. Reason?",
      "options": [
        "Underfitting due to over-penalization",
        "Overfitting",
        "Alpha too small",
        "Data not standardized"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Excessive alpha causes high bias, leading to underfitting."
    },
    {
      "id": 67,
      "questionText": "Scenario: Ridge Regression applied to polynomial regression with degree 10. Why use Ridge?",
      "options": [
        "Prevent overfitting from high-degree polynomial terms",
        "Increase training error",
        "Eliminate low-degree terms",
        "Remove intercept automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge penalizes large coefficients from high-degree terms, reducing overfitting."
    },
    {
      "id": 68,
      "questionText": "Scenario: Ridge Regression applied to features with different units. Observed coefficients of small-scale features larger than large-scale ones. Reason?",
      "options": [
        "L2 penalty uneven due to lack of standardization",
        "Alpha is zero",
        "Model overfits",
        "Data too small"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Without standardization, penalty is unfair; features with small scale are penalized less."
    },
    {
      "id": 69,
      "questionText": "Scenario: Ridge Regression applied with cross-validation. Optimal alpha selected minimizes:",
      "options": [
        "Training error only",
        "Test error on validation folds",
        "Number of features",
        "Intercept value"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Cross-validation selects alpha that minimizes validation/test error, improving generalization."
    },
    {
      "id": 70,
      "questionText": "Scenario: Ridge Regression applied to dataset with multicollinearity. Coefficients are shrunk but all non-zero. Implication?",
      "options": [
        "Variance reduced, all features retained",
        "Model overfits",
        "Features eliminated automatically",
        "Model fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge reduces variance without eliminating correlated features."
    },
    {
      "id": 71,
      "questionText": "Scenario: Ridge Regression applied to large-scale dataset. Alpha tuning via grid search. Why important?",
      "options": [
        "Different alphas balance bias and variance for optimal performance",
        "Alpha irrelevant",
        "Alpha only affects training error",
        "Regularization unnecessary"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Alpha controls regularization strength; tuning balances bias and variance."
    },
    {
      "id": 72,
      "questionText": "Scenario: Ridge Regression applied with very small alpha. Observed high variance. Why?",
      "options": [
        "L2 penalty too weak to control overfitting",
        "Alpha too large",
        "Data unstandardized",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small alpha provides minimal regularization, leaving high-variance coefficients unchecked."
    },
    {
      "id": 73,
      "questionText": "Scenario: Ridge Regression vs Lasso on highly correlated features. Expected result?",
      "options": [
        "Ridge shrinks coefficients similarly; Lasso selects one and zeroes others",
        "Both eliminate all correlated features",
        "Ridge produces sparse solution; Lasso does not",
        "Alpha irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge keeps all correlated features with smaller coefficients; Lasso may zero some."
    },
    {
      "id": 74,
      "questionText": "Scenario: Ridge Regression applied with alpha=0. Model behaves like:",
      "options": [
        "Linear Regression",
        "Lasso",
        "Elastic Net",
        "Polynomial Regression"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Alpha=0 removes L2 penalty, reducing Ridge to standard Linear Regression."
    },
    {
      "id": 75,
      "questionText": "Scenario: Ridge Regression applied to a dataset with 1000 features, some irrelevant. How to reduce irrelevant features?",
      "options": [
        "Switch to Lasso or Elastic Net",
        "Increase alpha excessively",
        "Decrease alpha to zero",
        "Ignore standardization"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Lasso or Elastic Net can remove irrelevant features via L1 regularization."
    },
    {
      "id": 76,
      "questionText": "Scenario: Ridge Regression applied on medical dataset with 500 features, many correlated. Goal: predict patient outcome. Best approach?",
      "options": [
        "Use Ridge Regression with cross-validated alpha",
        "Use standard Linear Regression",
        "Use Lasso only",
        "Ignore multicollinearity"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge handles correlated features effectively and cross-validation selects optimal alpha."
    },
    {
      "id": 77,
      "questionText": "Scenario: Ridge Regression applied to dataset with outliers. Observation: coefficients not extremely affected. Why?",
      "options": [
        "L2 penalty shrinks coefficients, reducing sensitivity to outliers",
        "Training error minimized",
        "Model ignores target variable",
        "Alpha is zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization prevents large coefficients, making the model less sensitive to outliers."
    },
    {
      "id": 78,
      "questionText": "Scenario: Ridge Regression applied with alpha very small, results similar to Linear Regression. Interpretation?",
      "options": [
        "L2 penalty is too weak to control overfitting",
        "Model underfits",
        "Coefficients are zero",
        "Training error very high"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small alpha means minimal regularization; Ridge behaves like Linear Regression with potential overfitting."
    },
    {
      "id": 79,
      "questionText": "Scenario: Ridge Regression on dataset with 2000 features, many irrelevant. Test error high. Recommended?",
      "options": [
        "Switch to Lasso or Elastic Net",
        "Increase alpha excessively",
        "Decrease alpha",
        "Ignore irrelevant features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Lasso or Elastic Net can remove irrelevant features, improving generalization."
    },
    {
      "id": 80,
      "questionText": "Scenario: Ridge Regression applied on highly noisy dataset. Observed smaller coefficients than Linear Regression. Why?",
      "options": [
        "L2 penalty shrinks coefficients to reduce variance",
        "Model ignores noise",
        "Training error drops to zero",
        "Alpha is zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Regularization reduces sensitivity to noise, shrinking coefficients."
    },
    {
      "id": 81,
      "questionText": "Scenario: Ridge Regression applied to polynomial features with high degree. Observation: large coefficients for high-degree terms. Best solution?",
      "options": [
        "Increase alpha to penalize large coefficients",
        "Decrease alpha",
        "Remove intercept",
        "Ignore polynomial terms"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher alpha controls overfitting from high-degree polynomial terms."
    },
    {
      "id": 82,
      "questionText": "Scenario: Ridge Regression applied to dataset with categorical features encoded as one-hot vectors. Concern?",
      "options": [
        "Multicollinearity due to dummy variables",
        "Alpha irrelevant",
        "Scaling not required",
        "Target variable changes"
      ],
      "correctAnswerIndex": 0,
      "explanation": "One-hot encoding creates correlated dummy features; Ridge shrinks their coefficients."
    },
    {
      "id": 83,
      "questionText": "Scenario: Ridge Regression applied to time-series dataset with lag features. Why standardization important?",
      "options": [
        "L2 penalty penalizes coefficients fairly only if features are on same scale",
        "Intercept ignored otherwise",
        "Time index must be normalized",
        "Alpha irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardizing features ensures L2 penalty treats all lag features fairly."
    },
    {
      "id": 84,
      "questionText": "Scenario: Ridge Regression applied on dataset with missing values. Action required?",
      "options": [
        "Impute missing values before applying Ridge",
        "Remove alpha",
        "Ignore missing values",
        "L2 penalty handles missing automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge requires complete data; missing values must be imputed first."
    },
    {
      "id": 85,
      "questionText": "Scenario: Ridge Regression with very high alpha. Observed high training and test errors. Reason?",
      "options": [
        "Underfitting due to over-penalization",
        "Overfitting",
        "Alpha too small",
        "Data not standardized"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Excessive alpha increases bias, causing underfitting."
    },
    {
      "id": 86,
      "questionText": "Scenario: Ridge Regression applied on dataset with highly correlated features. Coefficients shrunk but non-zero. Implication?",
      "options": [
        "Variance reduced, features retained",
        "Overfitting",
        "Features eliminated",
        "Model fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge reduces variance without removing correlated features."
    },
    {
      "id": 87,
      "questionText": "Scenario: Ridge Regression applied on large-scale dataset. Why tune alpha via grid search?",
      "options": [
        "Alpha balances bias-variance tradeoff for optimal performance",
        "Alpha irrelevant",
        "Alpha only affects training error",
        "Regularization unnecessary"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Grid search finds alpha that provides the best tradeoff between bias and variance."
    },
    {
      "id": 88,
      "questionText": "Scenario: Ridge Regression applied to dataset with polynomial features. High-degree terms dominate coefficients. Solution?",
      "options": [
        "Increase alpha to control large coefficients",
        "Decrease alpha",
        "Remove polynomial terms",
        "Ignore coefficients"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher alpha penalizes large coefficients, reducing overfitting."
    },
    {
      "id": 89,
      "questionText": "Scenario: Ridge Regression applied on dataset with features in different units. Observation: large coefficients for small-scale features. Reason?",
      "options": [
        "L2 penalty uneven due to lack of standardization",
        "Alpha too high",
        "Data uncorrelated",
        "Training error minimal"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Without standardization, small-scale features are penalized less, leading to larger coefficients."
    },
    {
      "id": 90,
      "questionText": "Scenario: Ridge Regression applied with k-fold cross-validation. Optimal alpha minimizes:",
      "options": [
        "Validation/test error",
        "Training error",
        "Number of features",
        "Intercept value"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Cross-validation selects alpha that minimizes test error for better generalization."
    },
    {
      "id": 91,
      "questionText": "Scenario: Ridge Regression applied with very small alpha. Observed high variance. Reason?",
      "options": [
        "L2 penalty too weak to control overfitting",
        "Alpha too large",
        "Data unstandardized",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Minimal regularization leaves coefficients unchecked, causing high variance."
    },
    {
      "id": 92,
      "questionText": "Scenario: Ridge Regression applied alongside Lasso on same dataset. Expected difference?",
      "options": [
        "Ridge shrinks coefficients; Lasso may zero some",
        "Both produce sparse solutions",
        "Ridge eliminates features; Lasso does not",
        "Alpha irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge keeps all coefficients small but non-zero; Lasso can perform feature selection."
    },
    {
      "id": 93,
      "questionText": "Scenario: Ridge Regression applied to dataset with irrelevant features. Test error high. Solution?",
      "options": [
        "Switch to Lasso or Elastic Net",
        "Increase alpha excessively",
        "Decrease alpha",
        "Ignore irrelevant features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Lasso or Elastic Net can remove irrelevant features to improve performance."
    },
    {
      "id": 94,
      "questionText": "Scenario: Ridge Regression applied with standardized features. Coefficients for correlated features similar. Reason?",
      "options": [
        "L2 penalty shrinks correlated coefficients similarly",
        "Alpha too low",
        "Features independent",
        "Data too small"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge shrinks correlated coefficients together, producing similar values."
    },
    {
      "id": 95,
      "questionText": "Scenario: Ridge Regression applied to dataset with noisy features. Coefficients smaller than Linear Regression. Why?",
      "options": [
        "Regularization reduces sensitivity to noise",
        "Training error minimized",
        "Alpha zero",
        "Noise ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "L2 penalty shrinks coefficients, making model less sensitive to noise."
    },
    {
      "id": 96,
      "questionText": "Scenario: Ridge Regression applied to polynomial regression of degree 12. High-degree terms produce large coefficients. Solution?",
      "options": [
        "Increase alpha",
        "Decrease alpha",
        "Remove intercept",
        "Ignore coefficients"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher alpha controls overfitting by shrinking large coefficients from high-degree terms."
    },
    {
      "id": 97,
      "questionText": "Scenario: Ridge Regression applied on dataset with one-hot encoded features. Concern?",
      "options": [
        "Multicollinearity due to dummy variables",
        "Alpha irrelevant",
        "Scaling not needed",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "One-hot encoding creates correlated dummy variables; Ridge shrinks their coefficients."
    },
    {
      "id": 98,
      "questionText": "Scenario: Ridge Regression applied on dataset with missing values. Action required?",
      "options": [
        "Impute missing values first",
        "Ignore missing values",
        "Remove alpha",
        "L2 penalty handles missing automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Ridge requires complete data; missing values must be imputed or removed."
    },
    {
      "id": 99,
      "questionText": "Scenario: Ridge Regression applied with cross-validation. Selected alpha minimizes:",
      "options": [
        "Validation/test error",
        "Training error only",
        "Number of features",
        "Intercept value"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Cross-validation selects alpha that minimizes validation error for optimal generalization."
    },
    {
      "id": 100,
      "questionText": "Scenario: Ridge Regression applied to real-world dataset with high multicollinearity, noisy features, and high-dimensionality. Best approach?",
      "options": [
        "Standardize features, tune alpha via cross-validation, consider Elastic Net if feature selection needed",
        "Use Linear Regression",
        "Ignore alpha",
        "Remove L2 penalty"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardization and cross-validated Ridge handle noise and multicollinearity; Elastic Net adds feature selection."
    }
  ]
}