File size: 8,470 Bytes
d5c4625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f11b08
 
 
 
 
 
 
 
 
 
d5c4625
 
 
 
 
 
 
 
 
 
 
4f11b08
 
 
 
d5c4625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
026dde3
d5c4625
 
 
 
 
4f11b08
d5c4625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2504e22
d5c4625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import base64
import gc
import json
import os
from io import BytesIO

import gradio as gr
import torch
from json_repair import repair_json
from qwen_vl_utils import process_vision_info
from transformers import (
    AutoProcessor,
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
    Qwen3VLForConditionalGeneration,
)

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

model_ids = [
    "Qwen/Qwen2-VL-2B-Instruct",  # https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
    "Qwen/Qwen2-VL-7B-Instruct",  # https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
    "Qwen/Qwen2.5-VL-3B-Instruct",  # https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
    "Qwen/Qwen2.5-VL-7B-Instruct",  # https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
    "Qwen/Qwen2.5-VL-32B-Instruct",  # https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
    "Qwen/Qwen2.5-VL-72B-Instruct",  # https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
    "Qwen/Qwen3-VL-2B-Instruct",  # https://huggingface.co/Qwen/Qwen3-VL-2B-Instruct
    "Qwen/Qwen3-VL-4B-Instruct",  # https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct
    "Qwen/Qwen3-VL-8B-Instruct",  # https://huggingface.co/Qwen/Qwen3-VL-8B-Instruct
    "Qwen/Qwen3-VL-32B-Instruct",  # https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct
]


def image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str


with gr.Blocks() as demo:
    gr.Markdown("# Qwen-VL Object-Detection")
    gr.Markdown(
        "Compare [Qwen3-VL](https://huggingface.co/collections/Qwen/qwen3-vl), [Qwen2.5-VL](https://huggingface.co/collections/Qwen/qwen25-vl) and [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl) models by [Qwen](https://huggingface.co/Qwen) for object detection in images."
    )

    if DEVICE != "cuda":
        gr.Markdown(
            "⚠️ **CUDA not available.** This application requires a CUDA-compatible GPU to function properly. You can duplicate this space with a CUDA-enabled runtime."
        )

    with gr.Row():
        with gr.Column():
            gr.Markdown("## Inputs")

            image_input = gr.Image(
                label="Input Image",
                type="pil",
            )

            gr.Markdown("## Settings")

            input_model_id = gr.Dropdown(
                choices=model_ids,
                label="Select Model ID",
            )
            default_system_prompt = 'You are a helpful assistant to detect objects in images. When asked to detect elements based on a description, you return a valid JSON object containing bounding boxes for all elements in the form `[{"bbox_2d": [xmin, ymin, xmax, ymax], "label": "placeholder"}, ...]`. For example, a valid response could be: `[{"bbox_2d": [10, 30, 20, 60], "label": "placeholder"}, {"bbox_2d": [40, 15, 52, 27], "label": "placeholder"}]`.'
            system_prompt = gr.Textbox(
                label="System Prompt:",
                lines=3,
                value=default_system_prompt,
            )
            default_user_prompt = "detect object"
            user_prompt = gr.Textbox(
                label="User Prompt:",
                lines=3,
                value=default_user_prompt,
            )
            max_new_tokens = gr.Slider(
                label="Max New Tokens:",
                minimum=32,
                maximum=4096,
                value=256,
                step=32,
                interactive=True,
            )

        with gr.Column():
            gr.Markdown("## Outputs")

            output_annotated_image = gr.AnnotatedImage(
                format="jpeg",
                key="output_annotated_image",
                label="Output Image",
            )

            gr.Markdown("## Detections")

            output_text = gr.Textbox(
                label="Output Text",
                lines=3,
                key="output_text",
            )

    with gr.Row():
        run_button = gr.Button("Run")

    # Global variables to track loaded model
    current_model = None
    current_processor = None
    current_model_id = None

    def run(
        image,
        system_prompt: str,
        user_prompt: str,
        model_id: str,
        max_new_tokens: int = 1024,
    ):
        global current_model, current_processor, current_model_id
        scale = False if model_id.startswith("Qwen/Qwen2.5-VL") else True

        # Only load model if it's different from the currently loaded one
        if current_model_id != model_id or current_model is None:
            # Clear previous model from memory
            if current_model is not None:
                del current_model
                current_model = None

            if current_processor is not None:
                del current_processor
                current_processor = None

            # Force garbage collection and clear CUDA cache
            gc.collect()
            torch.cuda.empty_cache()

            if torch.cuda.is_available():
                torch.cuda.synchronize()

            # Load new model
            if model_id.startswith("Qwen/Qwen2-VL"):
                model_loader = Qwen2VLForConditionalGeneration
            elif model_id.startswith("Qwen/Qwen2.5-VL"):
                model_loader = Qwen2_5_VLForConditionalGeneration
            elif model_id.startswith("Qwen/Qwen3-VL"):
                model_loader = Qwen3VLForConditionalGeneration
            current_model = model_loader.from_pretrained(
                model_id,
                torch_dtype="auto",
                device_map="auto",
            ).eval()
            current_processor = AutoProcessor.from_pretrained(model_id)
            current_model_id = model_id

        model = current_model
        processor = current_processor

        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": f"data:image;base64,{image_to_base64(image)}",
                    },
                    {"type": "text", "text": system_prompt},
                    {"type": "text", "text": user_prompt},
                ],
            }
        ]

        text = processor.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True,
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to(DEVICE)

        generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens)
        generated_ids_trimmed = [
            out_ids[len(in_ids) :]
            for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = processor.batch_decode(
            generated_ids_trimmed,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False,
        )

        output_text = str(output_text[0])
        output_text = repair_json(output_text)
        output_json = json.loads(output_text)

        x_scale = float(image.width / 1000) if scale else 1.0
        y_scale = float(image.height / 1000) if scale else 1.0
        bboxes = []
        for detection in output_json:
            if "bbox_2d" not in detection:
                continue
            if len(detection["bbox_2d"]) != 4:
                continue
            if "label" not in detection:
                continue

            xmin, ymin, xmax, ymax = detection["bbox_2d"]
            label = detection.get("label", "")
            bbox = [
                int(xmin * x_scale),
                int(ymin * y_scale),
                int(xmax * x_scale),
                int(ymax * y_scale),
            ]
            bboxes.append((bbox, label))

        return [(image, bboxes), str(output_text)]

    # Connect the button to the detection function
    run_button.click(
        fn=run,
        inputs=[
            image_input,
            system_prompt,
            user_prompt,
            input_model_id,
            max_new_tokens,
        ],
        outputs=[
            output_annotated_image,
            output_text,
        ],
    )

if __name__ == "__main__":
    demo.launch(
        # share=True,
    )