Spaces:
Running
on
Zero
Running
on
Zero
Darius Morawiec
commited on
Commit
·
9afc0f5
1
Parent(s):
028f4ca
Refactor model loading and processing
Browse files
app.py
CHANGED
|
@@ -145,17 +145,8 @@ with gr.Blocks() as demo:
|
|
| 145 |
current_processor = None
|
| 146 |
current_model_id = None
|
| 147 |
|
| 148 |
-
|
| 149 |
-
def run(
|
| 150 |
-
image,
|
| 151 |
-
model_id: str,
|
| 152 |
-
system_prompt: str,
|
| 153 |
-
user_prompt: str,
|
| 154 |
-
max_new_tokens: int = 1024,
|
| 155 |
-
image_target_size: int | None = None,
|
| 156 |
-
):
|
| 157 |
global current_model, current_processor, current_model_id
|
| 158 |
-
scale = False if model_id.startswith("Qwen/Qwen2.5-VL") else True
|
| 159 |
|
| 160 |
# Only load model if it's different from the currently loaded one
|
| 161 |
if current_model_id != model_id or current_model is None:
|
|
@@ -176,12 +167,14 @@ with gr.Blocks() as demo:
|
|
| 176 |
torch.cuda.synchronize()
|
| 177 |
|
| 178 |
# Load new model
|
|
|
|
| 179 |
if model_id.startswith("Qwen/Qwen2-VL"):
|
| 180 |
model_loader = Qwen2VLForConditionalGeneration
|
| 181 |
elif model_id.startswith("Qwen/Qwen2.5-VL"):
|
| 182 |
model_loader = Qwen2_5_VLForConditionalGeneration
|
| 183 |
elif model_id.startswith("Qwen/Qwen3-VL"):
|
| 184 |
model_loader = Qwen3VLForConditionalGeneration
|
|
|
|
| 185 |
current_model = model_loader.from_pretrained(
|
| 186 |
model_id,
|
| 187 |
torch_dtype="auto",
|
|
@@ -190,13 +183,21 @@ with gr.Blocks() as demo:
|
|
| 190 |
current_processor = AutoProcessor.from_pretrained(model_id)
|
| 191 |
current_model_id = model_id
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
base64_image = image_to_base64(
|
| 197 |
scale_image(image, image_target_size) if image_target_size else image
|
| 198 |
)
|
| 199 |
-
|
| 200 |
messages = [
|
| 201 |
{
|
| 202 |
"role": "user",
|
|
@@ -226,7 +227,11 @@ with gr.Blocks() as demo:
|
|
| 226 |
)
|
| 227 |
inputs = inputs.to(DEVICE)
|
| 228 |
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
generated_ids_trimmed = [
|
| 231 |
out_ids[len(in_ids) :]
|
| 232 |
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
@@ -241,6 +246,7 @@ with gr.Blocks() as demo:
|
|
| 241 |
output_text = repair_json(output_text)
|
| 242 |
output_json = json.loads(output_text)
|
| 243 |
|
|
|
|
| 244 |
x_scale = float(image.width / 1000) if scale else 1.0
|
| 245 |
y_scale = float(image.height / 1000) if scale else 1.0
|
| 246 |
bboxes = []
|
|
|
|
| 145 |
current_processor = None
|
| 146 |
current_model_id = None
|
| 147 |
|
| 148 |
+
def load_model(model_id: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
global current_model, current_processor, current_model_id
|
|
|
|
| 150 |
|
| 151 |
# Only load model if it's different from the currently loaded one
|
| 152 |
if current_model_id != model_id or current_model is None:
|
|
|
|
| 167 |
torch.cuda.synchronize()
|
| 168 |
|
| 169 |
# Load new model
|
| 170 |
+
model_loader = None
|
| 171 |
if model_id.startswith("Qwen/Qwen2-VL"):
|
| 172 |
model_loader = Qwen2VLForConditionalGeneration
|
| 173 |
elif model_id.startswith("Qwen/Qwen2.5-VL"):
|
| 174 |
model_loader = Qwen2_5_VLForConditionalGeneration
|
| 175 |
elif model_id.startswith("Qwen/Qwen3-VL"):
|
| 176 |
model_loader = Qwen3VLForConditionalGeneration
|
| 177 |
+
assert model_loader is not None, f"Unsupported model ID: {model_id}"
|
| 178 |
current_model = model_loader.from_pretrained(
|
| 179 |
model_id,
|
| 180 |
torch_dtype="auto",
|
|
|
|
| 183 |
current_processor = AutoProcessor.from_pretrained(model_id)
|
| 184 |
current_model_id = model_id
|
| 185 |
|
| 186 |
+
return current_model, current_processor
|
| 187 |
+
|
| 188 |
+
def run(
|
| 189 |
+
image,
|
| 190 |
+
model_id: str,
|
| 191 |
+
system_prompt: str,
|
| 192 |
+
user_prompt: str,
|
| 193 |
+
max_new_tokens: int = 1024,
|
| 194 |
+
image_target_size: int | None = None,
|
| 195 |
+
):
|
| 196 |
+
model, processor = load_model(model_id)
|
| 197 |
|
| 198 |
base64_image = image_to_base64(
|
| 199 |
scale_image(image, image_target_size) if image_target_size else image
|
| 200 |
)
|
|
|
|
| 201 |
messages = [
|
| 202 |
{
|
| 203 |
"role": "user",
|
|
|
|
| 227 |
)
|
| 228 |
inputs = inputs.to(DEVICE)
|
| 229 |
|
| 230 |
+
@spaces.GPU(duration=300)
|
| 231 |
+
def _generate(**kwargs):
|
| 232 |
+
return model.generate(**kwargs)
|
| 233 |
+
|
| 234 |
+
generated_ids = _generate(**inputs, max_new_tokens=max_new_tokens)
|
| 235 |
generated_ids_trimmed = [
|
| 236 |
out_ids[len(in_ids) :]
|
| 237 |
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
|
|
| 246 |
output_text = repair_json(output_text)
|
| 247 |
output_json = json.loads(output_text)
|
| 248 |
|
| 249 |
+
scale = False if model_id.startswith("Qwen/Qwen2.5-VL") else True
|
| 250 |
x_scale = float(image.width / 1000) if scale else 1.0
|
| 251 |
y_scale = float(image.height / 1000) if scale else 1.0
|
| 252 |
bboxes = []
|