chaskick / api_example.py
Mirko Trasciatti
Deploy SAM2 Video Background Remover with Gradio UI and API
3cddaf8
raw
history blame
10.6 kB
"""
Example script showing how to use the SAM2 Video Background Remover API.
This script demonstrates various use cases:
1. Simple single object tracking
2. Multiple object tracking
3. Refined segmentation with background points
4. Batch processing multiple videos
"""
from gradio_client import Client
import json
from pathlib import Path
def example_1_simple_tracking():
"""
Example 1: Track a single object (e.g., person, ball, car)
"""
print("=" * 60)
print("Example 1: Simple Single Object Tracking")
print("=" * 60)
# Connect to your Space
client = Client("furbola/chaskick")
# Simple annotation: click on the center of your object in the first frame
annotations = [
{
"frame_idx": 0, # First frame
"object_id": 1, # First object
"points": [[320, 240]], # x, y coordinates of the object center
"labels": [1] # 1 = this is a foreground point
}
]
# Process the video
result = client.predict(
video_file="./input_video.mp4",
annotations_json=json.dumps(annotations),
remove_background=True,
max_frames=None, # Process all frames
api_name="/segment_video_api"
)
print(f"βœ… Output saved to: {result}")
def example_2_multi_object_tracking():
"""
Example 2: Track multiple objects simultaneously
Useful for: tracking player + ball, multiple people, etc.
"""
print("\n" + "=" * 60)
print("Example 2: Multi-Object Tracking")
print("=" * 60)
client = Client("furbola/chaskick")
annotations = [
# Object 1: Player
{
"frame_idx": 0,
"object_id": 1,
"points": [[320, 240]],
"labels": [1]
},
# Object 2: Ball
{
"frame_idx": 0,
"object_id": 2,
"points": [[500, 300]],
"labels": [1]
},
# Object 3: Another player
{
"frame_idx": 0,
"object_id": 3,
"points": [[150, 200]],
"labels": [1]
}
]
result = client.predict(
video_file="./soccer_match.mp4",
annotations_json=json.dumps(annotations),
remove_background=True,
max_frames=300, # Limit to 300 frames for speed
api_name="/segment_video_api"
)
print(f"βœ… Tracked 3 objects! Output: {result}")
def example_3_refined_segmentation():
"""
Example 3: Use both foreground AND background points for better accuracy
Useful when: object is complex, background is similar color, etc.
"""
print("\n" + "=" * 60)
print("Example 3: Refined Segmentation with Negative Points")
print("=" * 60)
client = Client("furbola/chaskick")
annotations = [
{
"frame_idx": 0,
"object_id": 1,
"points": [
[320, 240], # βœ… Point ON the person's body
[350, 250], # βœ… Another point on the person
[280, 220], # βœ… Third point for better coverage
[100, 100], # ❌ Point on the BACKGROUND to exclude
[600, 400] # ❌ Another background point
],
"labels": [
1, # foreground
1, # foreground
1, # foreground
0, # background (exclude this area)
0 # background (exclude this area)
]
}
]
result = client.predict(
video_file="./person_video.mp4",
annotations_json=json.dumps(annotations),
remove_background=True,
max_frames=None,
api_name="/segment_video_api"
)
print(f"βœ… Refined segmentation complete: {result}")
def example_4_temporal_annotations():
"""
Example 4: Add annotations on multiple frames
Useful when: object changes appearance, camera cuts, occlusions
"""
print("\n" + "=" * 60)
print("Example 4: Multi-Frame Annotations")
print("=" * 60)
client = Client("furbola/chaskick")
annotations = [
# Annotate frame 0
{
"frame_idx": 0,
"object_id": 1,
"points": [[320, 240]],
"labels": [1]
},
# Annotate frame 50 (object might have moved or changed)
{
"frame_idx": 50,
"object_id": 1,
"points": [[450, 300]],
"labels": [1]
},
# Annotate frame 100 (after a camera cut or scene change)
{
"frame_idx": 100,
"object_id": 1,
"points": [[200, 180]],
"labels": [1]
}
]
result = client.predict(
video_file="./long_video.mp4",
annotations_json=json.dumps(annotations),
remove_background=True,
max_frames=None,
api_name="/segment_video_api"
)
print(f"βœ… Multi-frame tracking complete: {result}")
def example_5_batch_processing():
"""
Example 5: Process multiple videos in batch
"""
print("\n" + "=" * 60)
print("Example 5: Batch Processing Multiple Videos")
print("=" * 60)
client = Client("furbola/chaskick")
# List of videos to process
videos = [
{"path": "./video1.mp4", "point": [320, 240]},
{"path": "./video2.mp4", "point": [400, 300]},
{"path": "./video3.mp4", "point": [250, 200]},
]
results = []
for i, video in enumerate(videos, 1):
print(f"\nProcessing video {i}/{len(videos)}: {video['path']}")
annotations = [{
"frame_idx": 0,
"object_id": 1,
"points": [video['point']],
"labels": [1]
}]
try:
result = client.predict(
video_file=video['path'],
annotations_json=json.dumps(annotations),
remove_background=True,
max_frames=200, # Limit frames for faster batch processing
api_name="/segment_video_api"
)
results.append({"input": video['path'], "output": result, "status": "βœ…"})
print(f" βœ… Success: {result}")
except Exception as e:
results.append({"input": video['path'], "output": None, "status": f"❌ {str(e)}"})
print(f" ❌ Failed: {e}")
print("\n" + "=" * 60)
print("Batch Processing Summary:")
print("=" * 60)
for r in results:
print(f"{r['status']} {r['input']} -> {r['output']}")
def example_6_highlight_mode():
"""
Example 6: Highlight objects instead of removing background
Useful for: visualization, debugging, object detection demos
"""
print("\n" + "=" * 60)
print("Example 6: Highlight Mode (Keep Background)")
print("=" * 60)
client = Client("furbola/chaskick")
annotations = [{
"frame_idx": 0,
"object_id": 1,
"points": [[320, 240]],
"labels": [1]
}]
result = client.predict(
video_file="./input_video.mp4",
annotations_json=json.dumps(annotations),
remove_background=False, # Keep background, just highlight the object
max_frames=None,
api_name="/segment_video_api"
)
print(f"βœ… Object highlighted: {result}")
def example_7_find_coordinates():
"""
Example 7: Helper to find coordinates in a video
Opens the first frame so you can identify x,y coordinates
"""
print("\n" + "=" * 60)
print("Example 7: Find Coordinates Helper")
print("=" * 60)
import cv2
video_path = "./input_video.mp4"
# Read first frame
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
cap.release()
if ret:
# Save first frame
cv2.imwrite("first_frame.jpg", frame)
print(f"βœ… Saved first frame to: first_frame.jpg")
print(f" Video size: {frame.shape[1]}x{frame.shape[0]} (width x height)")
print(f" Open this image and note the x,y coordinates of your object")
print(f" Then use those coordinates in your annotation!")
else:
print("❌ Could not read video")
# ============================================================================
# UTILITY FUNCTIONS
# ============================================================================
def create_annotation(frame_idx, object_id, points, labels=None):
"""
Helper function to create annotation objects.
Args:
frame_idx: Frame number (0 = first frame)
object_id: Unique object ID (1, 2, 3, ...)
points: List of [x, y] coordinates, e.g., [[320, 240]]
labels: List of labels (1=foreground, 0=background). Defaults to all 1s.
Returns:
Dictionary with annotation
"""
if labels is None:
labels = [1] * len(points)
return {
"frame_idx": frame_idx,
"object_id": object_id,
"points": points,
"labels": labels
}
def load_annotations_from_file(json_file):
"""Load annotations from a JSON file."""
with open(json_file, 'r') as f:
return json.load(f)
def save_annotations_to_file(annotations, json_file):
"""Save annotations to a JSON file."""
with open(json_file, 'w') as f:
json.dump(annotations, f, indent=2)
# ============================================================================
# MAIN
# ============================================================================
if __name__ == "__main__":
print("""
╔════════════════════════════════════════════════════════════╗
β•‘ SAM2 Video Background Remover - API Examples β•‘
β•‘ Choose an example to run or uncomment in the code β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•
""")
# Uncomment the examples you want to run:
# example_1_simple_tracking()
# example_2_multi_object_tracking()
# example_3_refined_segmentation()
# example_4_temporal_annotations()
# example_5_batch_processing()
# example_6_highlight_mode()
# example_7_find_coordinates()
print("\nβœ… Done! Check the output files.")
print("\nπŸŽ‰ Your Space: https://huggingface.co/spaces/furbola/chaskick")