Spaces:
Runtime error
Runtime error
| # | |
| # Pyserini: Reproducible IR research with sparse and dense representations | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| from typing import Optional | |
| import torch | |
| from transformers import PreTrainedModel, RobertaConfig, RobertaModel, RobertaTokenizer | |
| from pyserini.encode import DocumentEncoder, QueryEncoder | |
| class AnceEncoder(PreTrainedModel): | |
| config_class = RobertaConfig | |
| base_model_prefix = 'ance_encoder' | |
| load_tf_weights = None | |
| _keys_to_ignore_on_load_missing = [r'position_ids'] | |
| _keys_to_ignore_on_load_unexpected = [r'pooler', r'classifier'] | |
| def __init__(self, config: RobertaConfig): | |
| super().__init__(config) | |
| self.config = config | |
| self.roberta = RobertaModel(config) | |
| self.embeddingHead = torch.nn.Linear(config.hidden_size, 768) | |
| self.norm = torch.nn.LayerNorm(768) | |
| self.init_weights() | |
| # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights | |
| def _init_weights(self, module): | |
| """ Initialize the weights """ | |
| if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| elif isinstance(module, torch.nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, torch.nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| def init_weights(self): | |
| self.roberta.init_weights() | |
| self.embeddingHead.apply(self._init_weights) | |
| self.norm.apply(self._init_weights) | |
| def forward( | |
| self, | |
| input_ids: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| ): | |
| input_shape = input_ids.size() | |
| device = input_ids.device | |
| if attention_mask is None: | |
| attention_mask = ( | |
| torch.ones(input_shape, device=device) | |
| if input_ids is None | |
| else (input_ids != self.roberta.config.pad_token_id) | |
| ) | |
| outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask) | |
| sequence_output = outputs.last_hidden_state | |
| pooled_output = sequence_output[:, 0, :] | |
| pooled_output = self.norm(self.embeddingHead(pooled_output)) | |
| return pooled_output | |
| class AnceDocumentEncoder(DocumentEncoder): | |
| def __init__(self, model_name, tokenizer_name=None, device='cuda:0'): | |
| self.device = device | |
| self.model = AnceEncoder.from_pretrained(model_name) | |
| self.model.to(self.device) | |
| self.tokenizer = RobertaTokenizer.from_pretrained(tokenizer_name or model_name) | |
| def encode(self, texts, titles=None, max_length=256, **kwargs): | |
| if titles is not None: | |
| texts = [f'{title} {text}' for title, text in zip(titles, texts)] | |
| inputs = self.tokenizer( | |
| texts, | |
| max_length=max_length, | |
| padding='longest', | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors='pt' | |
| ) | |
| inputs.to(self.device) | |
| return self.model(inputs["input_ids"]).detach().cpu().numpy() | |
| class AnceQueryEncoder(QueryEncoder): | |
| def __init__(self, model_name: str, tokenizer_name: str = None, device: str = 'cpu'): | |
| self.device = device | |
| self.model = AnceEncoder.from_pretrained(model_name) | |
| self.model.to(self.device) | |
| self.tokenizer = RobertaTokenizer.from_pretrained(tokenizer_name or tokenizer_name) | |
| def encode(self, query: str, **kwargs): | |
| inputs = self.tokenizer( | |
| [query], | |
| max_length=64, | |
| padding='longest', | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors='pt' | |
| ) | |
| inputs.to(self.device) | |
| embeddings = self.model(inputs["input_ids"]).detach().cpu().numpy() | |
| return embeddings.flatten() | |