Spaces:
Runtime error
Runtime error
| # | |
| # Pyserini: Reproducible IR research with sparse and dense representations | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn import metrics | |
| import os | |
| import importlib | |
| import argparse | |
| import sys | |
| sys.path.insert(0, './') | |
| def get_info(path): | |
| docs = [] | |
| targets = [] | |
| for root, _, files in os.walk(path, topdown=False): | |
| for doc_id in files: | |
| docs.append(doc_id) | |
| category = root.split('/')[-1] | |
| targets.append(target_to_index[category]) | |
| return docs, targets | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description='Replication script of pyserini vectorizer') | |
| parser.add_argument('--vectorizer', type=str, required=True, help='E.g. TfidfVectorizer') | |
| args = parser.parse_args() | |
| target_names = ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', | |
| 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc', ] | |
| target_to_index = {t: i for i, t in enumerate(target_names)} | |
| train_docs, train_labels = get_info('./20newsgroups/20news-bydate-train/') | |
| test_docs, test_labels = get_info('./20newsgroups/20news-bydate-test/') | |
| # get vectorizer | |
| lucene_index_path = '20newsgroups/lucene-index.20newsgroup.pos+docvectors+raw' | |
| module = importlib.import_module("pyserini.vectorizer") | |
| VectorizerClass = getattr(module, args.vectorizer) | |
| vectorizer = VectorizerClass(lucene_index_path, min_df=5, verbose=True) | |
| train_vectors = vectorizer.get_vectors(train_docs) | |
| test_vectors = vectorizer.get_vectors(test_docs) | |
| # classifier | |
| clf = LogisticRegression() | |
| clf.fit(train_vectors, train_labels) | |
| pred = clf.predict(test_vectors) | |
| score = metrics.f1_score(test_labels, pred, average='macro') | |
| print(f'f1 score: {score}') | |
| score = round(score, 7) | |
| if args.vectorizer == 'TfidfVectorizer': | |
| assert score == 0.8359058, "tf-idf vectorizer score mismatch" | |
| elif args.vectorizer == 'BM25Vectorizer': | |
| assert score == 0.8421606, "bm25 vectorizer score mismatch" | |
| else: | |
| print('No matching f1 score assertion') | |