Spaces:
Runtime error
Runtime error
| # | |
| # Pyserini: Reproducible IR research with sparse and dense representations | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| import argparse | |
| import pandas as pd | |
| from tqdm import tqdm | |
| from pyserini.dsearch import DprQueryEncoder | |
| from pyserini.query_iterator import get_query_iterator, TopicsFormat | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description='Compute embeddings for KILT topics') | |
| parser.add_argument('--topics', required=True) | |
| parser.add_argument('--output', default="embedding.pkl", help="Name and path to output file.") | |
| parser.add_argument('--encoder', metavar='path to query encoder checkpoint or encoder name', | |
| required=True, | |
| help="Path to query encoder pytorch checkpoint or hgf encoder model name") | |
| parser.add_argument('--tokenizer', metavar='name or path', | |
| required=True, | |
| help="Path to a hgf tokenizer name or path") | |
| parser.add_argument('--device', metavar='device to run query encoder', required=False, default='cpu', | |
| help="Device to run query encoder, cpu or [cuda:0, cuda:1, ...]") | |
| args = parser.parse_args() | |
| query_iterator = get_query_iterator(args.topics, TopicsFormat.KILT) | |
| query_encoder = DprQueryEncoder(encoder_dir=args.encoder, tokenizer_name=args.tokenizer, device=args.device) | |
| texts = [] | |
| embeddings = [] | |
| for i, (topic_id, text) in enumerate(tqdm(query_iterator)): | |
| texts.append(text) | |
| embeddings.append(query_encoder.encode(text)) | |
| df = pd.DataFrame({ | |
| 'text': texts, | |
| 'embedding': embeddings | |
| }) | |
| df.to_pickle(args.output) | |