Spaces:
Runtime error
Runtime error
| # | |
| # Pyserini: Reproducible IR research with sparse and dense representations | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| import os | |
| import shutil | |
| import tarfile | |
| import unittest | |
| from random import randint | |
| from urllib.request import urlretrieve | |
| from pyserini.analysis import JAnalyzer, JAnalyzerUtils, Analyzer, get_lucene_analyzer | |
| from pyserini.index.lucene import IndexReader | |
| from pyserini.search.lucene import LuceneSearcher | |
| class TestAnalyzers(unittest.TestCase): | |
| def setUp(self): | |
| # Download pre-built CACM index built using Lucene 9; append a random value to avoid filename clashes. | |
| r = randint(0, 10000000) | |
| self.collection_url = 'https://github.com/castorini/anserini-data/raw/master/CACM/lucene9-index.cacm.tar.gz' | |
| self.tarball_name = 'lucene-index.cacm-{}.tar.gz'.format(r) | |
| self.index_dir = 'index{}/'.format(r) | |
| _, _ = urlretrieve(self.collection_url, self.tarball_name) | |
| tarball = tarfile.open(self.tarball_name) | |
| tarball.extractall(self.index_dir) | |
| tarball.close() | |
| self.searcher = LuceneSearcher(f'{self.index_dir}lucene9-index.cacm') | |
| self.index_utils = IndexReader(f'{self.index_dir}lucene9-index.cacm') | |
| def test_different_analyzers_are_different(self): | |
| self.searcher.set_analyzer(get_lucene_analyzer(stemming=False)) | |
| hits_first = self.searcher.search('information retrieval') | |
| self.searcher.set_analyzer(get_lucene_analyzer()) | |
| hits_second = self.searcher.search('information retrieval') | |
| self.assertNotEqual(hits_first, hits_second) | |
| def test_analyze_with_analyzer(self): | |
| analyzer = get_lucene_analyzer(stemming=False) | |
| self.assertTrue(isinstance(analyzer, JAnalyzer)) | |
| query = 'information retrieval' | |
| only_tokenization = JAnalyzerUtils.analyze(analyzer, query) | |
| token_list = [] | |
| for token in only_tokenization.toArray(): | |
| token_list.append(token) | |
| self.assertEqual(token_list, ['information', 'retrieval']) | |
| def test_analysis(self): | |
| # Default is Porter stemmer | |
| analyzer = Analyzer(get_lucene_analyzer()) | |
| self.assertTrue(isinstance(analyzer, Analyzer)) | |
| tokens = analyzer.analyze('City buses are running on time.') | |
| self.assertEqual(tokens, ['citi', 'buse', 'run', 'time']) | |
| # Specify Porter stemmer explicitly | |
| analyzer = Analyzer(get_lucene_analyzer(stemmer='porter')) | |
| self.assertTrue(isinstance(analyzer, Analyzer)) | |
| tokens = analyzer.analyze('City buses are running on time.') | |
| self.assertEqual(tokens, ['citi', 'buse', 'run', 'time']) | |
| # Specify Krovetz stemmer explicitly | |
| analyzer = Analyzer(get_lucene_analyzer(stemmer='krovetz')) | |
| self.assertTrue(isinstance(analyzer, Analyzer)) | |
| tokens = analyzer.analyze('City buses are running on time.') | |
| self.assertEqual(tokens, ['city', 'bus', 'running', 'time']) | |
| # No stemming | |
| analyzer = Analyzer(get_lucene_analyzer(stemming=False)) | |
| self.assertTrue(isinstance(analyzer, Analyzer)) | |
| tokens = analyzer.analyze('City buses are running on time.') | |
| self.assertEqual(tokens, ['city', 'buses', 'running', 'time']) | |
| # No stopword filter, no stemming | |
| analyzer = Analyzer(get_lucene_analyzer(stemming=False, stopwords=False)) | |
| self.assertTrue(isinstance(analyzer, Analyzer)) | |
| tokens = analyzer.analyze('City buses are running on time.') | |
| self.assertEqual(tokens, ['city', 'buses', 'are', 'running', 'on', 'time']) | |
| # No stopword filter, with stemming | |
| analyzer = Analyzer(get_lucene_analyzer(stemming=True, stopwords=False)) | |
| self.assertTrue(isinstance(analyzer, Analyzer)) | |
| tokens = analyzer.analyze('City buses are running on time.') | |
| self.assertEqual(tokens, ['citi', 'buse', 'ar', 'run', 'on', 'time']) | |
| # HuggingFace analyzer, with bert wordpiece tokenizer | |
| analyzer = Analyzer(get_lucene_analyzer(language="hgf_tokenizer", huggingFaceTokenizer="bert-base-uncased")) | |
| self.assertTrue(isinstance(analyzer, Analyzer)) | |
| tokens = analyzer.analyze('This tokenizer generates wordpiece tokens') | |
| self.assertEqual(tokens, ['this', 'token', '##izer', 'generates', 'word', '##piece', 'token', '##s']) | |
| def test_invalid_analyzer_wrapper(self): | |
| # Invalid JAnalyzer, make sure we get an exception. | |
| with self.assertRaises(TypeError): | |
| Analyzer('str') | |
| def test_invalid_analysis(self): | |
| # Invalid configuration, make sure we get an exception. | |
| with self.assertRaises(ValueError): | |
| Analyzer(get_lucene_analyzer('blah')) | |
| def tearDown(self): | |
| self.searcher.close() | |
| os.remove(self.tarball_name) | |
| shutil.rmtree(self.index_dir) | |