import os import tempfile import logging import numpy as np import torch import torch.nn as nn import whisper import librosa import asyncio import random import requests from datetime import datetime, timedelta from typing import List, Dict, Any, Optional from fastapi import FastAPI, UploadFile, File, HTTPException, Request, Form from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from PIL import Image from torchvision import transforms from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification from speechbrain.inference.classifiers import EncoderClassifier import torchaudio import json from pydantic import BaseModel from supabase import create_client, Client # Setup logging logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", ) logger = logging.getLogger(__name__) class ModelManager: """Centralized model management for all ML models.""" _instance = None def __new__(cls): if cls._instance is None: cls._instance = super(ModelManager, cls).__new__(cls) cls._instance._initialized = False return cls._instance def __init__(self): if self._initialized: return self._initialized = True self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {self.device}") self.emotion_model = None self.whisper_model = None self.text_tokenizer = None self.text_model = None self.speechbrain_model = None # Model paths self.MODEL_PATHS = { 'whisper_model': 'base', 'text_model': 'emotion-distilbert-model', 'speechbrain_model': 'speechbrain/emotion-recognition-wav2vec2-IEMOCAP' } # Constants self.EMOTIONS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"] self.SAMPLE_RATE = 16000 self.TEXT_EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"] # SpeechBrain emotion mapping self.SPEECHBRAIN_EMOTION_MAP = { 'neu': 'Neutral', 'hap': 'Happy', 'sad': 'Sad', 'ang': 'Angry', 'fea': 'Fear', 'dis': 'Disgust', 'sur': 'Surprise' } def load_all_models(self): """Load all required models.""" try: logger.info("Starting to load all models...") self._load_emotion_model() self._load_whisper_model() self._load_text_models() self._load_speechbrain_model() logger.info("All models loaded successfully!") return True except Exception as e: logger.error(f"Error loading models: {str(e)}") raise def _load_emotion_model(self): """Use DeepFace for emotion recognition.""" try: logger.info("Loading DeepFace for emotion recognition...") from deepface import DeepFace self.emotion_model = DeepFace logger.info("DeepFace loaded successfully") except Exception as e: logger.error(f"Failed to initialize DeepFace: {str(e)}") raise def _load_whisper_model(self): """Load the Whisper speech-to-text model.""" try: logger.info("Loading Whisper model...") self.whisper_model = whisper.load_model(self.MODEL_PATHS['whisper_model']) logger.info("Whisper model loaded successfully") except Exception as e: logger.error(f"Failed to load Whisper model: {str(e)}") raise def _load_text_models(self): """Load the text emotion classification model and tokenizer.""" try: logger.info("Loading text emotion model...") model_path = self.MODEL_PATHS['text_model'] # Try to load from local path first, then from HuggingFace Hub if os.path.exists(model_path): self.text_tokenizer = DistilBertTokenizerFast.from_pretrained(model_path) self.text_model = DistilBertForSequenceClassification.from_pretrained(model_path) else: # Use a public emotion model from HuggingFace logger.info("Local model not found, using HuggingFace model...") self.text_tokenizer = DistilBertTokenizerFast.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") self.text_model = DistilBertForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") self.text_model.eval() logger.info("Text models loaded successfully") except Exception as e: logger.error(f"Failed to load text models: {str(e)}") raise def _load_speechbrain_model(self): """Load SpeechBrain emotion recognition model.""" try: logger.info("Loading SpeechBrain emotion recognition model...") self.speechbrain_model = EncoderClassifier.from_hparams( source=self.MODEL_PATHS['speechbrain_model'], savedir="pretrained_models/emotion-recognition-wav2vec2-IEMOCAP", run_opts={"device": "cpu"} ) logger.info("SpeechBrain emotion recognition model loaded successfully") except Exception as e: logger.error(f"Failed to load SpeechBrain model: {str(e)}") raise def get_emotion_model(self): if self.emotion_model is None: self._load_emotion_model() return self.emotion_model def get_whisper_model(self): if self.whisper_model is None: self._load_whisper_model() return self.whisper_model def get_text_models(self): if self.text_model is None or self.text_tokenizer is None: self._load_text_models() return self.text_tokenizer, self.text_model def get_speechbrain_model(self): if self.speechbrain_model is None: self._load_speechbrain_model() return self.speechbrain_model # Initialize FastAPI app app = FastAPI(title="Manan ML API - Emotion Recognition") # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], expose_headers=["*"] ) # Initialize model manager model_manager = ModelManager() # Image transformation pipeline transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) @app.on_event("startup") async def startup_event(): """Initialize all models when the application starts.""" try: logger.info("Starting model initialization...") model_manager.load_all_models() logger.info("All models initialized successfully!") except Exception as e: logger.error(f"Failed to initialize models: {str(e)}") # Don't raise - let the app start and load models on demand @app.get("/") async def root(): """Health check endpoint.""" return { "status": "running", "message": "Manan ML API is running!", "endpoints": [ "/pred_face - Face emotion prediction", "/predict_audio_batch - Voice emotion prediction", "/predict_text/ - Text emotion prediction" ] } @app.get("/health") async def health_check(): """Health check endpoint.""" return {"status": "healthy", "device": str(model_manager.device)} # Helper function for SpeechBrain prediction def predict_emotion_speechbrain(audio_path: str) -> Dict[str, Any]: """Predict emotion from audio using SpeechBrain.""" try: speechbrain_model = model_manager.get_speechbrain_model() signal, sr = torchaudio.load(audio_path) if sr != 16000: resampler = torchaudio.transforms.Resample(sr, 16000) signal = resampler(signal) if signal.dim() == 1: signal = signal.unsqueeze(0) elif signal.dim() == 3: signal = signal.squeeze(1) device = next(speechbrain_model.mods.wav2vec2.parameters()).device signal = signal.to(device) with torch.no_grad(): feats = speechbrain_model.mods.wav2vec2(signal) pooled = speechbrain_model.mods.avg_pool(feats) out = speechbrain_model.mods.output_mlp(pooled) out_prob = speechbrain_model.hparams.softmax(out) score, index = torch.max(out_prob, dim=-1) predicted_emotion = speechbrain_model.hparams.label_encoder.decode_ndim(index.cpu()) if isinstance(predicted_emotion, list): if isinstance(predicted_emotion[0], list): emotion_key = str(predicted_emotion[0][0]).lower()[:3] else: emotion_key = str(predicted_emotion[0]).lower()[:3] else: emotion_key = str(predicted_emotion).lower()[:3] emotion = model_manager.SPEECHBRAIN_EMOTION_MAP.get(emotion_key, 'Neutral') probs = out_prob[0].detach().cpu().numpy() if probs.ndim > 1: probs = probs.flatten() all_emotions = speechbrain_model.hparams.label_encoder.decode_ndim( torch.arange(len(probs)) ) prob_dict = {} for i in range(len(probs)): if i < len(all_emotions): if isinstance(all_emotions[i], list): key = str(all_emotions[i][0]).lower()[:3] else: key = str(all_emotions[i]).lower()[:3] emotion_name = model_manager.SPEECHBRAIN_EMOTION_MAP.get(key, f'emotion_{i}') prob_dict[emotion_name] = float(probs[i]) confidence = float(score[0]) return { 'emotion': emotion, 'confidence': confidence, 'probabilities': prob_dict } except Exception as e: logger.error(f"Error predicting emotion with SpeechBrain: {str(e)}") raise def transcribe_audio(audio_path: str) -> str: """Transcribe audio to text using Whisper.""" try: result = model_manager.whisper_model.transcribe(audio_path) return result["text"].strip() except Exception as e: logger.error(f"Error in audio transcription: {str(e)}") return "" # ============== API ENDPOINTS ============== @app.post("/pred_face") async def predict_face_emotion( files: List[UploadFile] = File(...), questions: str = Form(None) ): """Predict emotions from face images using DeepFace.""" from deepface import DeepFace logger.info(f"Received {len(files)} files for face prediction") if not files: raise HTTPException(status_code=400, detail="No files provided") temp_files = [] try: questions_data = {} question_count = 0 if questions: try: questions_data = json.loads(questions) question_count = len(questions_data) except json.JSONDecodeError: raise HTTPException(status_code=400, detail="Invalid questions JSON format.") else: question_count = 3 questions_data = {str(i): {"text": f"Question {i+1}", "imageCount": 1} for i in range(question_count)} question_files = {str(i): [] for i in range(question_count)} for file in files: if '_' in file.filename and file.filename.startswith('q'): try: q_idx = file.filename.split('_')[0][1:] if q_idx in question_files: question_files[q_idx].append(file) except Exception as e: logger.warning(f"Skipping file {file.filename}: {e}") results = [] for q_idx, q_files in question_files.items(): if not q_files: results.append({ "emotion": "Unknown", "probabilities": {e: 0.0 for e in model_manager.EMOTIONS} }) continue probs_list = [] for file in q_files: try: with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: content = await file.read() tmp.write(content) temp_path = tmp.name temp_files.append(temp_path) analysis = DeepFace.analyze( img_path=temp_path, actions=['emotion'], enforce_detection=False, silent=True ) if isinstance(analysis, list): analysis = analysis[0] emotion_scores = analysis.get('emotion', {}) dominant_emotion = analysis.get('dominant_emotion', 'neutral') normalized_probs = {} for emo in model_manager.EMOTIONS: key = emo.lower() normalized_probs[emo] = emotion_scores.get(key, 0.0) / 100.0 probs_list.append(normalized_probs) except Exception as e: logger.error(f"Error processing {file.filename}: {e}") if probs_list: avg_probs = {} for emo in model_manager.EMOTIONS: avg_probs[emo] = sum(p.get(emo, 0) for p in probs_list) / len(probs_list) dominant_emotion = max(avg_probs, key=avg_probs.get) results.append({ "emotion": dominant_emotion, "probabilities": avg_probs }) else: results.append({ "emotion": "Unknown", "probabilities": {e: 0.0 for e in model_manager.EMOTIONS} }) return results except Exception as e: logger.error(f"Error in face emotion prediction: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) finally: for file_path in temp_files: try: if os.path.exists(file_path): os.remove(file_path) except Exception as e: logger.warning(f"Failed to delete temp file {file_path}: {e}") @app.post("/predict_audio_batch") async def predict_audio_batch(files: List[UploadFile] = File(...)): """Predict emotions from multiple audio files using SpeechBrain.""" logger.info(f"Received {len(files)} audio files for prediction") if not files: raise HTTPException(status_code=400, detail="No audio files provided") temp_files = [] results = [] try: for file in files: try: with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: content = await file.read() tmp.write(content) temp_path = tmp.name temp_files.append(temp_path) prediction = predict_emotion_speechbrain(temp_path) results.append(prediction) logger.info(f"Predicted emotion for {file.filename}: {prediction['emotion']}") except Exception as e: logger.error(f"Error processing {file.filename}: {e}") results.append({ 'emotion': 'Unknown', 'confidence': 0.0, 'probabilities': {}, 'error': str(e) }) return {'status': 'success', 'results': results} except Exception as e: logger.error(f"Error in audio batch prediction: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) finally: for file_path in temp_files: try: if os.path.exists(file_path): os.remove(file_path) except Exception as e: logger.warning(f"Failed to delete temp file {file_path}: {e}") @app.post("/predict_text/") async def predict_text_emotion(files: List[UploadFile] = File(...)): """Transcribe audio and predict text emotion.""" logger.info(f"Received {len(files)} audio files for text prediction") if not files: raise HTTPException(status_code=400, detail="No audio files provided") temp_files = [] results = [] try: tokenizer, text_model = model_manager.get_text_models() whisper_model = model_manager.get_whisper_model() for file in files: try: with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: content = await file.read() tmp.write(content) temp_path = tmp.name temp_files.append(temp_path) # Transcribe transcription = whisper_model.transcribe(temp_path) transcript = transcription["text"].strip() logger.info(f"Transcribed: {transcript}") if not transcript: results.append({ 'transcript': '', 'emotion': 'neutral', 'confidence': 0.0, 'probabilities': {} }) continue # Predict emotion from text inputs = tokenizer( transcript, return_tensors="pt", truncation=True, max_length=128, padding=True ) with torch.no_grad(): outputs = text_model(**inputs) probs = torch.softmax(outputs.logits, dim=1)[0] # Get emotion labels emotion_labels = model_manager.TEXT_EMOTIONS if hasattr(text_model.config, 'id2label'): emotion_labels = [text_model.config.id2label[i] for i in range(len(probs))] prob_dict = {emotion_labels[i]: float(probs[i]) for i in range(len(probs))} predicted_idx = torch.argmax(probs).item() predicted_emotion = emotion_labels[predicted_idx] confidence = float(probs[predicted_idx]) results.append({ 'transcript': transcript, 'emotion': predicted_emotion, 'confidence': confidence, 'probabilities': prob_dict }) except Exception as e: logger.error(f"Error processing {file.filename}: {e}") results.append({ 'transcript': '', 'emotion': 'unknown', 'confidence': 0.0, 'error': str(e) }) return results except Exception as e: logger.error(f"Error in text prediction: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) finally: for file_path in temp_files: try: if os.path.exists(file_path): os.remove(file_path) except Exception as e: logger.warning(f"Failed to delete temp file {file_path}: {e}") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860) # ============================================================================= # AUTHENTICATION & USER MANAGEMENT ENDPOINTS # ============================================================================= # Supabase configuration SUPABASE_URL = os.environ.get("SUPABASE_URL") SUPABASE_KEY = os.environ.get("SUPABASE_KEY") BREVO_API_KEY = os.environ.get("EMAIL_API") # Initialize Supabase client supabase: Client = None try: if SUPABASE_URL and SUPABASE_KEY: supabase = create_client(SUPABASE_URL, SUPABASE_KEY) logger.info("Supabase client initialized successfully") else: logger.warning("Supabase credentials not found in environment variables") except Exception as e: logger.error(f"Failed to initialize Supabase: {str(e)}") # OTP storage (in-memory, resets on restart) otp_store = {} # ------------------------------- # Request Models for Auth # ------------------------------- class OTPRequest(BaseModel): email: str class OTPVerifyRequest(BaseModel): email: str otp: str class RegisterUserRequest(BaseModel): name: str email: str password: str class SendEmotionRequest(BaseModel): email: str emotion: str class UpdateProfilePicRequest(BaseModel): email: str profile_pic_url: str class UpdateProfileRequest(BaseModel): email: str name: str = None age: int = None phone: str = None # ------------------------------- # Helper Function - Send Email via Brevo # ------------------------------- def send_email_brevo(to_email: str, otp: str): url = "https://api.brevo.com/v3/smtp/email" headers = { "accept": "application/json", "api-key": BREVO_API_KEY, "content-type": "application/json", } data = { "sender": {"name": "मनन", "email": "noreplymanan@gmail.com"}, "to": [{"email": to_email}], "subject": "Your Manan OTP Code", "htmlContent": f"""

Your OTP Code

Your verification code is: {otp}

This code will expire in 5 minutes.

""", } response = requests.post(url, headers=headers, json=data) if response.status_code not in [200, 201]: raise HTTPException(status_code=500, detail=f"Email sending failed: {response.text}") # ------------------------------- # Auth Endpoints # ------------------------------- @app.get("/status") def get_status(): try: if supabase is None: return {"status": "Supabase not configured", "supabase_data_retrieved": False} response = supabase.table('users').select("id").limit(1).execute() return {"status": "Connection successful", "supabase_data_retrieved": len(response.data) > 0} except Exception as e: raise HTTPException(status_code=500, detail=f"Connection failed: {str(e)}") @app.post("/send_otp") def send_otp(req: OTPRequest): try: otp = str(random.randint(100000, 999999)) otp_store[req.email] = {"otp": otp, "timestamp": datetime.utcnow()} logger.info(f"OTP generated for {req.email}") # Send email send_email_brevo(req.email, otp) return {"message": f"OTP sent successfully to {req.email}"} except Exception as e: raise HTTPException(status_code=500, detail=f"Error sending OTP: {str(e)}") @app.post("/check_otp") def check_otp(req: OTPVerifyRequest): try: if req.email not in otp_store: raise HTTPException(status_code=404, detail="No OTP found for this email") stored_data = otp_store[req.email] stored_otp = stored_data["otp"] timestamp = stored_data["timestamp"] # Expiry check (5 minutes) if datetime.utcnow() - timestamp > timedelta(minutes=5): del otp_store[req.email] raise HTTPException(status_code=400, detail="OTP expired") if req.otp == stored_otp: # Mark as verified instead of deleting otp_store[req.email]["verified"] = True otp_store[req.email]["otp"] = None return {"verified": True} else: raise HTTPException(status_code=400, detail="Invalid OTP") except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error verifying OTP: {str(e)}") @app.post("/register_user") def register_user(req: RegisterUserRequest): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") # Check OTP verification if req.email not in otp_store or not otp_store[req.email].get("verified", False): raise HTTPException(status_code=403, detail="Email not verified via OTP") # Insert into Supabase response = supabase.table("users").insert({ "name": req.name, "email": req.email, "password": req.password }).execute() # Cleanup del otp_store[req.email] return {"message": "User registered successfully", "data": response.data} except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error registering user: {str(e)}") @app.get("/get_profile/{email}") def get_profile(email: str): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") response = supabase.table("users").select("*").eq("email", email).single().execute() if not response.data: raise HTTPException(status_code=404, detail="User not found") # Remove password from response for security profile_data = response.data.copy() profile_data.pop('password', None) return {"profile": profile_data} except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching profile: {str(e)}") @app.put("/update_profile") def update_profile(req: UpdateProfileRequest): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") update_data = {} if req.name is not None: update_data["name"] = req.name if req.age is not None: update_data["age"] = req.age if req.phone is not None: update_data["phone"] = req.phone if not update_data: raise HTTPException(status_code=400, detail="No data provided for update") response = supabase.table("users").update(update_data).eq("email", req.email).execute() if not response.data: raise HTTPException(status_code=404, detail="User not found") return {"message": "Profile updated successfully", "data": response.data} except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error updating profile: {str(e)}") @app.post("/update_profile_pic") def update_profile_pic(req: UpdateProfilePicRequest): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") response = supabase.table("users").update({ "profilepic": req.profile_pic_url }).eq("email", req.email).execute() if not response.data: raise HTTPException(status_code=404, detail="User not found") return {"message": "Profile picture updated successfully", "data": response.data} except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error updating profile picture: {str(e)}") @app.get("/get_score/{email}") def get_score(email: str): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") user_response = supabase.table("users").select("id").eq("email", email).execute() if not user_response.data: raise HTTPException(status_code=404, detail="User not found") user_id = user_response.data[0]["id"] predict_response = supabase.table("predict").select("prediction, timestamp") \ .eq("user_id", user_id).order("timestamp", desc=True).limit(1).execute() if not predict_response.data: raise HTTPException(status_code=404, detail="No predictions found for this user") return predict_response.data[0] except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching score: {str(e)}") @app.post("/send_emotion") def send_emotion(req: SendEmotionRequest): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") user_response = supabase.table("users").select("id").eq("email", req.email).execute() if not user_response.data: raise HTTPException(status_code=404, detail="User not found") user_id = user_response.data[0]["id"] data = { "user_id": user_id, "prediction": req.emotion, "timestamp": datetime.utcnow().isoformat() } response = supabase.table("predict").insert(data).execute() return {"message": "Emotion saved successfully", "data": response.data} except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error saving emotion: {str(e)}") @app.get("/get_emotion/{email}") def get_emotion(email: str): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") user_response = supabase.table("users").select("id").eq("email", email).execute() if not user_response.data: raise HTTPException(status_code=404, detail="User not found") user_id = user_response.data[0]["id"] predict_response = supabase.table("predict").select("prediction") \ .eq("user_id", user_id).order("timestamp", desc=True).limit(1).execute() if not predict_response.data: return {"emotion": "Neutral"} return {"emotion": predict_response.data[0]["prediction"]} except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching emotion: {str(e)}") @app.get("/get_mental_health_details/{email}") def get_mental_health_details(email: str): try: if supabase is None: raise HTTPException(status_code=500, detail="Supabase not configured") user_response = supabase.table("users").select("id").eq("email", email).execute() if not user_response.data: raise HTTPException(status_code=404, detail="User not found") user_id = user_response.data[0]["id"] # Get most recent prediction recent_prediction = supabase.table("predict").select("prediction, timestamp") \ .eq("user_id", user_id).order("timestamp", desc=True).limit(1).execute() current_prediction = recent_prediction.data[0]["prediction"] if recent_prediction.data else None # Calculate this week's active days week_ago = datetime.utcnow() - timedelta(days=7) weekly_predictions = supabase.table("predict").select("timestamp") \ .eq("user_id", user_id).gte("timestamp", week_ago.isoformat()).execute() if weekly_predictions.data: dates = set() for p in weekly_predictions.data: if p.get("timestamp"): try: ts_str = p["timestamp"].replace('Z', '+00:00') dt = datetime.fromisoformat(ts_str) dates.add(dt.date()) except (ValueError, AttributeError): try: ts_str = p["timestamp"].split('+')[0].split('Z')[0] dt = datetime.strptime(ts_str, '%Y-%m-%dT%H:%M:%S.%f') dates.add(dt.date()) except: try: dt = datetime.strptime(ts_str, '%Y-%m-%dT%H:%M:%S') dates.add(dt.date()) except: pass active_days = len(dates) else: active_days = 0 # Total conversations total_conversations = supabase.table("predict").select("*", count="exact") \ .eq("user_id", user_id).execute() total_count = total_conversations.count if total_conversations else 0 return { "current_prediction": current_prediction, "active_days_this_week": active_days, "total_conversations": total_count } except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching mental health details: {str(e)}") # ============================================================================= # DAILY EMOTION SCORE CALCULATION # ============================================================================= # Valence Mapping for emotions EMO_VALENCE = { "Angry": -0.80, "Disgust": -0.60, "Fear": -0.70, "Happy": 0.90, "Sad": -0.90, "Surprise": 0.20, "Neutral": 0.0, # text emotions "sadness": -0.90, "joy": 0.90, "love": 0.80, "anger": -0.80, "fear": -0.70, "surprise": 0.20 } def valence_from_probabilities(probabilities: Dict[str, float]) -> float: if not probabilities: return 0.0 v = 0.0 total = sum(probabilities.values()) or 1.0 for emo, p in probabilities.items(): key = emo if emo in EMO_VALENCE else emo.capitalize() v += p * EMO_VALENCE.get(key, 0.0) return v / total def valence_to_score(v: float) -> float: return (v + 1) / 2 * 100 # [-1..1] → [0..100] class EmotionItem(BaseModel): emotion: str probabilities: Optional[Dict[str, float]] = None confidence: Optional[float] = 1.0 class ScoreRequest(BaseModel): face_results: Optional[List[EmotionItem]] = [] audio_results: Optional[List[EmotionItem]] = [] text_results: Optional[List[EmotionItem]] = [] @app.post("/calculate_day_score") def calculate_day_score(payload: ScoreRequest): """Calculate weighted day score from face, audio, and text emotions.""" source_weights = { "face": 0.4, "audio": 0.35, "text": 0.25 } accum_num = 0.0 accum_den = 0.0 breakdown = {"face": [], "audio": [], "text": []} # FACE for item in payload.face_results: v = valence_from_probabilities(item.probabilities) \ if item.probabilities else EMO_VALENCE.get(item.emotion, 0.0) score = valence_to_score(v) w = source_weights["face"] * (item.confidence or 1.0) accum_num += score * w accum_den += w breakdown["face"].append({ "emotion": item.emotion, "valence": v, "score": score, "weight": w }) # AUDIO for item in payload.audio_results: v = valence_from_probabilities(item.probabilities) \ if item.probabilities else EMO_VALENCE.get(item.emotion, 0.0) score = valence_to_score(v) w = source_weights["audio"] * (item.confidence or 1.0) accum_num += score * w accum_den += w breakdown["audio"].append({ "emotion": item.emotion, "confidence": item.confidence, "valence": v, "score": score, "weight": w }) # TEXT for item in payload.text_results: v = valence_from_probabilities(item.probabilities) \ if item.probabilities else EMO_VALENCE.get(item.emotion.lower(), 0.0) score = valence_to_score(v) w = source_weights["text"] * (item.confidence or 1.0) accum_num += score * w accum_den += w breakdown["text"].append({ "emotion": item.emotion, "confidence": item.confidence, "valence": v, "score": score, "weight": w }) final_score = accum_num / accum_den if accum_den > 0 else None return { "day_score": final_score, "breakdown": breakdown, "numerator": accum_num, "denominator": accum_den }