Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn.functional as F | |
| from transformers import AutoConfig, Wav2Vec2FeatureExtractor | |
| from src.models import Wav2Vec2ForSpeechClassification #imported from https://github.com/m3hrdadfi/soxan | |
| import gradio as gr | |
| import librosa | |
| device = torch.device("cpu") | |
| model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" | |
| config = AutoConfig.from_pretrained(model_name_or_path) | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) | |
| sampling_rate = feature_extractor.sampling_rate | |
| model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path) | |
| #load input file and resample to 16kHz | |
| def load_data(path): | |
| speech, sampling_rate = librosa.load(path) | |
| if len(speech.shape) > 1: | |
| speech = speech[:,0] + speech[:,1] | |
| if sampling_rate != 16000: | |
| speech = librosa.resample(speech, sampling_rate,16000) | |
| return speech | |
| #modified version of predict function from https://github.com/m3hrdadfi/soxan | |
| def inference(path): | |
| speech = load_data(path) | |
| inputs = feature_extractor(speech, return_tensors="pt").input_values | |
| with torch.no_grad(): | |
| logits = model(inputs).logits | |
| scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
| outputs = {config.id2label[i]: float(round(score,2)) for i, score in enumerate(scores)} | |
| return outputs | |
| inputs = gr.inputs.Audio(label="Input Audio", type="filepath", source="microphone") | |
| outputs = gr.outputs.Label(type="confidences", label = "Output Scores") | |
| title = "Wav2Vec2 Speech Emotion Recognition" | |
| description = "This is a demo of the Wav2Vec2 Speech Emotion Recognition model. Record an audio file and the top emotions inferred will be displayed." | |
| examples = ['data/heart.wav', 'data/happy26.wav', 'data/jm24.wav', 'data/newton.wav', 'data/speeding.wav'] | |
| article = "<a href = 'https://github.com/m3hrdadfi/soxan'> Wav2Vec2 Speech Classification Github Repository" | |
| iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, theme="peach", examples=examples) | |
| iface.launch(debug=True) | |