File size: 39,922 Bytes
8496edd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
import sys
sys.path.append('../core')
import os
import shutil
from datetime import datetime
import json
import re
# Assuming these imports are correctly set up in your project structure
from llm.llm import LLM
# from prompt.constants import modeling_methods # This was unused in the original code
from input.problem import problem_input
from agent.problem_analysis import ProblemAnalysis
# from agent.method_ranking import MethodRanking
from agent.problem_modeling import ProblemModeling
from agent.task_decompse import TaskDecompose
from agent.task import Task
from agent.create_charts import Chart
from agent.coordinator import Coordinator
from utils.utils import read_json_file, write_json_file, write_text_file, json_to_markdown
from prompt.template import TASK_ANALYSIS_APPEND_PROMPT, TASK_FORMULAS_APPEND_PROMPT, TASK_MODELING_APPEND_PROMPT
from utils.generate_paper import generate_paper_from_json
# from utils.convert_format import markdown_to_latex # Uncomment if needed
from prompt.constants import modeling_methods
def mkdir_output(path):
"""Creates the necessary output directories."""
os.makedirs(path, exist_ok=True)
os.makedirs(os.path.join(path, 'json'), exist_ok=True)
os.makedirs(os.path.join(path, 'markdown'), exist_ok=True)
os.makedirs(os.path.join(path, 'latex'), exist_ok=True) # Assuming latex might be used later
os.makedirs(os.path.join(path, 'code'), exist_ok=True)
os.makedirs(os.path.join(path, 'usage'), exist_ok=True)
os.makedirs(os.path.join(path, 'intermediate'), exist_ok=True) # For intermediate coordinator state if needed
class ModelingAgentSystem:
"""
Manages the step-by-step generation of a mathematical modeling report.
Allows for granular control over section generation and tracks progress.
"""
def __init__(self, problem_path: str, config: dict, dataset_path: str, output_path: str, name: str):
"""
Initializes the Modeling Agent System.
Args:
problem_path: Path to the problem description file (e.g., JSON).
config: Dictionary containing configuration parameters (model_name, rounds, etc.).
dataset_path: Path to the dataset directory associated with the problem.
output_path: Path where generated outputs (json, md, code, etc.) will be saved.
name: A unique name for this run/problem (used in filenames).
"""
self.problem_path = problem_path
self.config = config
self.dataset_path = dataset_path
self.output_path = output_path
self.name = name
# --- Essential State ---
self.paper = {'tasks': []} # Holds the final generated content
self.completed_steps = set() # Tracks completed step names
self.planned_steps = [] # Dynamically updated list of step names
self.dependencies = self._define_dependencies() # Map of step -> prerequisites
# --- LLM & Agents ---
self.llm = LLM(config['model_name'])
self.pa = ProblemAnalysis(self.llm)
# self.mr = MethodRanking(self.llm)
self.pm = ProblemModeling(self.llm)
self.td = TaskDecompose(self.llm)
self.task = Task(self.llm)
self.chart = Chart(self.llm)
self.coordinator = Coordinator(self.llm) # Manages task dependencies and intermediate results
# --- Intermediate Data (Populated during generation) ---
self.problem_str: str | None = None
self.problem: dict | None = None
self.problem_type: str | None = None
self.problem_year: str | None = None
self.problem_analysis: str | None = None
self.modeling_solution: str | None = None
self.task_descriptions: list[str] | None = None
self.order: list[int] | None = None # Execution order of tasks
self.with_code: bool = False
# --- Setup ---
mkdir_output(self.output_path)
self._initialize_problem_and_steps()
print(f"Initialization complete. Starting steps: {self.planned_steps}")
print(f"Already completed: {self.completed_steps}")
def _define_dependencies(self):
"""Defines the prerequisite steps for each generation step."""
# Basic structure, will be expanded after task decomposition
deps = {
'Problem Background': [],
'Problem Requirement': [],
'Problem Analysis': ['Problem Background', 'Problem Requirement'],
'High-Level Modeling': ['Problem Analysis'],
'Task Decomposition': ['High-Level Modeling'],
'Dependency Analysis': ['Task Decomposition'], # Added explicit dependency analysis step
# Task dependencies will be added dynamically
}
return deps
def _update_dependencies_after_decomp(self):
"""Updates dependencies for task-specific steps after decomposition and dependency analysis."""
if not self.order:
print("Warning: Task order not determined. Cannot update task dependencies.")
return
num_tasks = len(self.task_descriptions)
for i in range(1, num_tasks + 1):
task_id = str(i)
task_prereqs = [f'Task {dep_id} Subtask Outcome Analysis' for dep_id in self.coordinator.DAG.get(task_id, [])]
# Add 'Dependency Analysis' as a prerequisite for the *first* step of *any* task
base_task_prereqs = ['Dependency Analysis'] + task_prereqs
self.dependencies[f'Task {i} Description'] = ['Task Decomposition'] # Description comes directly from decomp
self.dependencies[f'Task {i} Analysis'] = [f'Task {i} Description'] + base_task_prereqs
self.dependencies[f'Task {i} Preliminary Formulas'] = [f'Task {i} Analysis']
self.dependencies[f'Task {i} Mathematical Modeling Process'] = [f'Task {i} Preliminary Formulas']
if self.with_code:
self.dependencies[f'Task {i} Code'] = [f'Task {i} Mathematical Modeling Process']
self.dependencies[f'Task {i} Solution Interpretation'] = [f'Task {i} Code']
else:
# If no code, interpretation depends directly on modeling
self.dependencies[f'Task {i} Solution Interpretation'] = [f'Task {i} Mathematical Modeling Process']
self.dependencies[f'Task {i} Subtask Outcome Analysis'] = [f'Task {i} Solution Interpretation']
self.dependencies[f'Task {i} Charts'] = [f'Task {i} Subtask Outcome Analysis']
def _initialize_problem_and_steps(self):
"""Loads the problem input and sets up the initial state."""
print("Loading problem input...")
self.problem_str, self.problem = problem_input(self.problem_path, self.llm)
filename = os.path.splitext(os.path.basename(self.problem_path))[0]
if '_' in filename:
self.problem_year, self.problem_type = filename.split('_')[:2]
else:
self.problem_type = 'X'
self.problem_year = 'XXXX'
self.paper['problem_background'] = self.problem['background']
self.paper['problem_requirement'] = self.problem['problem_requirement']
self.completed_steps.add('Problem Background')
self.completed_steps.add('Problem Requirement')
self.with_code = len(self.problem.get('dataset_path', '')) > 0 or len(self.dataset_path) > 0 # Check both problem spec and explicit path
if self.with_code and os.path.exists(self.dataset_path):
print(f"Copying dataset from {self.dataset_path} to {os.path.join(self.output_path, 'code')}")
shutil.copytree(self.dataset_path, os.path.join(self.output_path, 'code'), dirs_exist_ok=True)
elif self.with_code:
print(f"Warning: Code execution expected, but dataset path '{self.dataset_path}' not found.")
# Initial plan before task decomposition
self.planned_steps = [
'Problem Background',
'Problem Requirement',
'Problem Analysis',
'High-Level Modeling',
'Task Decomposition',
'Dependency Analysis' # Added explicit step
]
def _check_dependencies(self, step_name: str) -> bool:
"""Checks if all prerequisites for a given step are completed."""
if step_name not in self.dependencies:
print(f"Warning: No dependency information defined for step '{step_name}'. Assuming runnable.")
return True # Or False, depending on desired strictness
prerequisites = self.dependencies.get(step_name, [])
for prereq in prerequisites:
if prereq not in self.completed_steps:
print(f"Dependency Error: Step '{step_name}' requires '{prereq}', which is not completed.")
return False
return True
def _update_planned_steps_after_decomp(self):
"""Adds all task-specific steps to the planned steps list."""
if not self.task_descriptions or self.order is None:
print("Error: Cannot update planned steps. Task decomposition or dependency analysis incomplete.")
return
task_step_templates = [
'Description',
'Analysis',
'Preliminary Formulas',
'Mathematical Modeling Process',
'Code' if self.with_code else None, # Add code step only if needed
'Solution Interpretation',
'Subtask Outcome Analysis',
'Charts',
]
# Filter out None template (for no-code case)
task_step_templates = [t for t in task_step_templates if t]
new_task_steps = []
# Add steps in the determined execution order
for task_id_int in self.order:
for template in task_step_templates:
new_task_steps.append(f'Task {task_id_int} {template}')
# Append new task steps after the 'Dependency Analysis' step
dep_analysis_index = self.planned_steps.index('Dependency Analysis')
self.planned_steps = self.planned_steps[:dep_analysis_index+1] + new_task_steps
# Initialize paper['tasks'] structure
self.paper['tasks'] = [{} for _ in range(len(self.task_descriptions))]
# --- Getters ---
def get_completed_steps(self) -> set:
"""Returns the set of names of completed steps."""
return self.completed_steps
def get_planned_steps(self) -> list:
"""Returns the list of names of planned steps (including completed)."""
return self.planned_steps
def get_paper(self) -> dict:
"""Returns the current state of the generated paper dictionary."""
# Ensure tasks are ordered correctly in the final output if needed,
# although appending them in self.order sequence should handle this.
return self.paper
def save_paper(self, intermediate=False):
"""Saves the current paper state to files."""
filename = f"{self.name}_intermediate_{datetime.now().strftime('%Y%m%d%H%M%S')}" if intermediate else self.name
json_path = os.path.join(self.output_path, 'json', f"{filename}.json")
md_path = os.path.join(self.output_path, 'markdown', f"{filename}.md")
# latex_path = os.path.join(self.output_path, 'latex', f"{filename}.tex") # Uncomment if needed
write_json_file(json_path, self.paper)
markdown_str = json_to_markdown(self.paper)
write_text_file(md_path, markdown_str)
# write_text_file(latex_path, markdown_to_latex(markdown_str)) # Uncomment if needed
print(f"Saved paper snapshot to {json_path} and {md_path}")
def save_usage(self):
"""Saves the LLM usage statistics."""
usage_path = os.path.join(self.output_path, 'usage', f"{self.name}.json")
write_json_file(usage_path, self.llm.get_total_usage())
print(f"Saved LLM usage to {usage_path}")
print(f"Total Usage: {self.llm.get_total_usage()}")
# --- Step Generation Methods ---
def _generate_problem_analysis(self, user_prompt: str = '', round: int = 0):
print("Generating: Problem Analysis")
self.problem_analysis = self.pa.analysis(
self.problem_str,
round=round if round > 0 else self.config.get('problem_analysis_round', 0),
user_prompt=user_prompt
)
self.paper['problem_analysis'] = self.problem_analysis
print("Completed: Problem Analysis")
def _generate_high_level_modeling(self, user_prompt: str = '', round: int = 0):
print("Generating: High-Level Modeling")
# modeling_methods = "" # Load from constants if needed, currently unused
self.modeling_solution = self.pm.modeling(
self.problem_str,
self.problem_analysis,
"", # modeling_methods placeholder
round=round if round > 0 else self.config.get('problem_modeling_round', 0),
user_prompt=user_prompt
)
self.paper['high_level_modeling'] = self.modeling_solution # Use a consistent key
print("Completed: High-Level Modeling")
def _generate_task_decomposition(self, user_prompt: str = ''):
print("Generating: Task Decomposition")
self.task_descriptions = self.td.decompose_and_refine(
self.problem_str,
self.problem_analysis,
self.modeling_solution,
self.problem_type,
self.config.get('tasknum', 4), # Default to 4 tasks if not specified
user_prompt=user_prompt
)
self.paper['task_decomposition_summary'] = "\n".join([f"Task {i+1}: {desc}" for i, desc in enumerate(self.task_descriptions)]) # Add summary to paper
print(f"Completed: Task Decomposition ({len(self.task_descriptions)} tasks)")
# Now that we know the tasks, update the planned steps
# self._update_planned_steps_after_decomp() # This will be called after dependency analysis
def _generate_dependency_analysis(self):
print("Generating: Dependency Analysis")
self.order = self.coordinator.analyze_dependencies(
self.problem_str,
self.problem_analysis,
self.modeling_solution,
self.task_descriptions,
self.with_code
)
self.order = [int(i) for i in self.order] # Ensure integer IDs
self.paper['task_execution_order'] = self.order # Store the order
self.paper['task_dependency_analysis'] = self.coordinator.task_dependency_analysis # Store rationale
print(f"Completed: Dependency Analysis. Execution order: {self.order}")
# Update planned steps and dependencies now that order and DAG are known
self._update_planned_steps_after_decomp()
self._update_dependencies_after_decomp()
print(f"Updated planned steps: {self.planned_steps}")
def _generate_task_step(self, task_id: int, step_type: str, user_prompt: str = '', round: int = 0):
"""Handles generation for a specific step within a specific task."""
print(f"Generating: Task {task_id} {step_type}")
task_index = task_id - 1 # 0-based index
# Ensure the task dictionary exists
if task_index >= len(self.paper['tasks']):
print(f"Error: Task index {task_index} out of bounds for self.paper['tasks'].")
return False # Indicate failure
# --- Prepare common inputs for task steps ---
task_description = self.task_descriptions[task_index]
# Retrieve previously generated parts for this task, if they exist
current_task_dict = self.paper['tasks'][task_index]
task_analysis = current_task_dict.get('task_analysis')
task_formulas = current_task_dict.get('preliminary_formulas')
task_modeling = current_task_dict.get('mathematical_modeling_process')
task_code = current_task_dict.get('task_code')
execution_result = current_task_dict.get('execution_result')
task_result = current_task_dict.get('solution_interpretation')
# --- Construct Dependency Prompt ---
task_dependency_ids = [int(i) for i in self.coordinator.DAG.get(str(task_id), [])]
dependency_prompt = ""
dependent_file_prompt = "" # Specifically for coding step
if len(task_dependency_ids) > 0:
# Fetch dependency analysis rationale for the current task
rationale = ""
if self.coordinator.task_dependency_analysis and task_index < len(self.coordinator.task_dependency_analysis):
rationale = self.coordinator.task_dependency_analysis[task_index]
else:
print(f"Warning: Could not find dependency rationale for Task {task_id}")
dependency_prompt = f"This task is Task {task_id}, which depends on the following tasks: {task_dependency_ids}. The dependencies for this task are analyzed as follows: {rationale}\n"
for dep_id in task_dependency_ids:
dep_task_index = dep_id - 1
if dep_task_index < 0 or dep_task_index >= len(self.paper['tasks']):
print(f"Warning: Cannot build dependency prompt. Dependent Task {dep_id} data not found.")
continue
dep_task_dict = self.paper['tasks'][dep_task_index]
# Also try fetching from coordinator memory as a fallback if paper is not updated yet (shouldn't happen with dependency checks)
dep_mem_dict = self.coordinator.memory.get(str(dep_id), {})
dep_code_mem_dict = self.coordinator.code_memory.get(str(dep_id), {})
dependency_prompt += f"---\n# The Description of Task {dep_id}:\n{dep_task_dict.get('task_description', dep_mem_dict.get('task_description', 'N/A'))}\n"
dependency_prompt += f"# The modeling method for Task {dep_id}:\n{dep_task_dict.get('mathematical_modeling_process', dep_mem_dict.get('mathematical_modeling_process', 'N/A'))}\n"
if self.with_code:
# Try getting code structure from paper first, then coordinator memory
code_structure_str = json.dumps(dep_task_dict.get('code_structure', dep_code_mem_dict), indent=2) if dep_task_dict.get('code_structure', dep_code_mem_dict) else "{}" # Default to empty json object string
dependency_prompt += f"# The structure of code for Task {dep_id}:\n{code_structure_str}\n"
dependency_prompt += f"# The result for Task {dep_id}:\n{dep_task_dict.get('solution_interpretation', dep_mem_dict.get('solution_interpretation', 'N/A'))}\n---\n"
dependent_file_prompt += f"# The files generated by code for Task {dep_id}:\n{code_structure_str}\n" # Use the same structure info
else:
dependency_prompt += f"# The result for Task {dep_id}:\n{dep_task_dict.get('solution_interpretation', dep_mem_dict.get('solution_interpretation', 'N/A'))}\n---\n"
# Append general instructions based on the step type
task_analysis_prompt = dependency_prompt + TASK_ANALYSIS_APPEND_PROMPT if step_type == 'Analysis' else dependency_prompt
task_formulas_prompt = dependency_prompt + TASK_FORMULAS_APPEND_PROMPT if step_type == 'Preliminary Formulas' else dependency_prompt
task_modeling_prompt = dependency_prompt + TASK_MODELING_APPEND_PROMPT if step_type == 'Mathematical Modeling Process' else dependency_prompt
# --- Execute Specific Step Logic ---
success = True
try:
if step_type == 'Description':
# Description is directly from task_descriptions, just assign it
self.paper['tasks'][task_index]['task_description'] = task_description
# Store in coordinator memory as well for prompt building if needed later
if str(task_id) not in self.coordinator.memory: self.coordinator.memory[str(task_id)] = {}
self.coordinator.memory[str(task_id)]['task_description'] = task_description
elif step_type == 'Analysis':
task_analysis = self.task.analysis(
task_analysis_prompt, # Includes dependency info
task_description,
user_prompt=user_prompt
)
self.paper['tasks'][task_index]['task_analysis'] = task_analysis
self.coordinator.memory[str(task_id)]['task_analysis'] = task_analysis
elif step_type == 'Preliminary Formulas':
if not task_analysis: raise ValueError(f"Task {task_id} Analysis is missing.")
description_and_analysis = f'## Task Description\n{task_description}\n\n## Task Analysis\n{task_analysis}'
top_modeling_methods = modeling_methods # self.mr.top_methods(description_and_analysis, top_k=self.config.get('top_method_num', 6))
task_formulas = self.task.formulas(
task_formulas_prompt, # Includes dependency info
self.problem.get('data_description', ''),
task_description,
task_analysis,
top_modeling_methods,
round=round if round > 0 else self.config.get('task_formulas_round', 0),
user_prompt=user_prompt
)
self.paper['tasks'][task_index]['preliminary_formulas'] = task_formulas
self.coordinator.memory[str(task_id)]['preliminary_formulas'] = task_formulas
elif step_type == 'Mathematical Modeling Process':
if not task_analysis or not task_formulas: raise ValueError(f"Task {task_id} Analysis or Formulas missing.")
task_modeling = self.task.modeling(
task_modeling_prompt, # Includes dependency info
self.problem.get('data_description', ''),
task_description,
task_analysis,
task_formulas,
round=round if round > 0 else self.config.get('task_modeling_round', 0),
user_prompt=user_prompt
)
self.paper['tasks'][task_index]['mathematical_modeling_process'] = task_modeling
self.coordinator.memory[str(task_id)]['mathematical_modeling_process'] = task_modeling
elif step_type == 'Code' and self.with_code:
if not task_analysis or not task_formulas or not task_modeling:
raise ValueError(f"Task {task_id} Analysis, Formulas, or Modeling missing for coding.")
code_template_path = os.path.join('../data/actor_data/input/code_template', f'main{task_id}.py')
code_template = ""
if os.path.exists(code_template_path):
with open(code_template_path, 'r') as f:
code_template = f.read()
else:
print(f"Warning: Code template not found at {code_template_path}. Using empty template.")
save_path = os.path.join(self.output_path, 'code', f'main{task_id}.py')
work_dir = os.path.join(self.output_path, 'code')
script_name = f'main{task_id}.py'
dataset_input_path = self.problem.get('dataset_path') or self.dataset_path # Prefer path from problem spec
task_code, is_pass, execution_result = self.task.coding(
dataset_input_path, # Use actual dataset path
self.problem.get('data_description', ''),
self.problem.get('variable_description', ''),
task_description,
task_analysis,
task_formulas,
task_modeling,
dependent_file_prompt, # Pass file dependency info
code_template,
script_name,
work_dir,
try_num=5,
round=round if round > 0 else 1,
user_prompt=user_prompt
)
code_structure = self.task.extract_code_structure(task_id, task_code, save_path) # Uses save_path now
# self.paper['tasks'][task_index]['task_code'] = task_code
self.paper['tasks'][task_index]['task_code'] = '```Python\n' + task_code + '\n```'
self.paper['tasks'][task_index]['is_pass'] = is_pass
self.paper['tasks'][task_index]['execution_result'] = execution_result
self.paper['tasks'][task_index]['code_structure'] = code_structure # Store structure in paper
# Update coordinator's code memory as well
self.coordinator.code_memory[str(task_id)] = code_structure
elif step_type == 'Solution Interpretation':
if not task_modeling: raise ValueError(f"Task {task_id} Modeling is missing.")
if self.with_code and execution_result is None: raise ValueError(f"Task {task_id} Code execution result is missing.")
task_result = self.task.result(
task_description,
task_analysis,
task_formulas,
task_modeling,
user_prompt=user_prompt,
execution_result=execution_result if self.with_code else ''
)
self.paper['tasks'][task_index]['solution_interpretation'] = task_result
self.coordinator.memory[str(task_id)]['solution_interpretation'] = task_result
elif step_type == 'Subtask Outcome Analysis':
if not task_result: raise ValueError(f"Task {task_id} Solution Interpretation is missing.")
task_answer = self.task.answer(
task_description,
task_analysis,
task_formulas,
task_modeling,
task_result,
user_prompt=user_prompt
)
self.paper['tasks'][task_index]['subtask_outcome_analysis'] = task_answer
self.coordinator.memory[str(task_id)]['subtask_outcome_analysis'] = task_answer
elif step_type == 'Charts':
# Charts depend on the full task dictionary being available
full_task_dict_str = json.dumps(self.paper['tasks'][task_index], indent=2)
charts = self.chart.create_charts(
full_task_dict_str,
self.config.get('chart_num', 0),
user_prompt=user_prompt
)
self.paper['tasks'][task_index]['charts'] = charts
self.coordinator.memory[str(task_id)]['charts'] = charts # Also save to coordinator memory if needed elsewhere
else:
print(f"Warning: Unknown step type '{step_type}' for Task {task_id}.")
success = False
except Exception as e:
print(f"Error generating Task {task_id} {step_type}: {e}")
import traceback
traceback.print_exc()
success = False # Mark step as failed
if success:
print(f"Completed: Task {task_id} {step_type}")
return success
# --- Main Generation Control ---
def generate_step(self, step_name: str, user_prompt: str = '', round: int = 0, force_regenerate: bool = True) -> bool:
"""
Generates the content for a specific step, checking dependencies first.
Args:
step_name: The name of the step to generate (e.g., 'Problem Analysis', 'Task 1 Preliminary Formulas').
user_prompt: Optional user guidance to influence the generation.
round: Number of improvement rounds to apply (where applicable).
force_regenerate: If True, regenerate the step even if it's already completed.
Returns:
True if the step was generated successfully (or was already complete), False otherwise.
"""
if step_name in self.completed_steps and not force_regenerate:
print(f"Skipping already completed step: '{step_name}'")
return True
if step_name in self.completed_steps and force_regenerate:
print(f"Regenerating step: '{step_name}'")
# Remove the step from completed_steps to allow regeneration
self.completed_steps.remove(step_name)
if not self._check_dependencies(step_name):
print(f"Cannot generate step '{step_name}' due to unmet dependencies.")
return False
# Dispatch to the appropriate generation method
success = False
try:
if step_name == 'Problem Analysis':
self._generate_problem_analysis(user_prompt, round)
success = True
elif step_name == 'High-Level Modeling':
self._generate_high_level_modeling(user_prompt, round)
success = True
elif step_name == 'Task Decomposition':
self._generate_task_decomposition(user_prompt)
success = True # Decomp itself is done, planning/deps updated later
elif step_name == 'Dependency Analysis':
self._generate_dependency_analysis()
success = True # Analysis itself is done
elif step_name.startswith('Task '):
# Parse task ID and step type
match = re.match(r"Task (\d+) (.*)", step_name)
if match:
task_id = int(match.group(1))
step_type = match.group(2)
# Ensure task steps are only generated if their task ID is valid
if self.order and task_id in self.order:
success = self._generate_task_step(task_id, step_type, user_prompt, round)
elif not self.order:
print(f"Error: Cannot generate task step '{step_name}'. Task order not determined yet.")
success = False
else:
print(f"Error: Cannot generate task step '{step_name}'. Task ID {task_id} not found in execution order {self.order}.")
success = False
else:
print(f"Error: Could not parse task step name: '{step_name}'")
success = False
else:
# Handle Problem Background and Requirement (already done in init)
if step_name in ['Problem Background', 'Problem Requirement']:
print(f"Step '{step_name}' completed during initialization.")
success = True # Mark as successful completion
else:
print(f"Error: Unknown step name: '{step_name}'")
success = False
if success:
self.completed_steps.add(step_name)
# Optional: Save intermediate state after each successful step
# self.save_paper(intermediate=True)
except Exception as e:
print(f"Critical error during generation of step '{step_name}': {e}")
import traceback
traceback.print_exc()
success = False
return success
def run_sequential(self, force_regenerate_all: bool = False):
"""
Runs the entire generation process sequentially, step by step.
Args:
force_regenerate_all: If True, regenerate all steps even if already completed.
"""
print("Starting sequential generation...")
current_step_index = 0
# Clear completed steps if regenerating all
if force_regenerate_all:
print("Force regenerating all steps...")
self.completed_steps.clear()
while current_step_index < len(self.planned_steps):
# Check if planned_steps was modified (e.g., by task decomp/dependency analysis)
if current_step_index >= len(self.planned_steps):
print("Reached end of planned steps.")
break # Avoid index error if list shrinks unexpectedly
step_name = self.planned_steps[current_step_index]
print(f"\n--- Attempting Step: {step_name} ({current_step_index + 1}/{len(self.planned_steps)}) ---")
if step_name in self.completed_steps:
print(f"Skipping already completed step: '{step_name}'")
current_step_index += 1
continue
# Record length before generation in case planned_steps changes
length_before = len(self.planned_steps)
success = self.generate_step(step_name, force_regenerate_all)
length_after = len(self.planned_steps)
if success:
print(f"--- Successfully completed step: '{step_name}' ---")
# If the number of planned steps increased, it means task steps were added.
# The loop condition `current_step_index < len(self.planned_steps)`
# will naturally handle iterating through the newly added steps.
# We just need to increment the index to move to the *next* step
# in the potentially updated list.
current_step_index += 1
else:
print(f"--- Failed to complete step: '{step_name}'. Stopping generation. ---")
break # Stop processing if a step fails
print("\nSequential generation process finished.")
self.save_paper() # Save final result
self.save_usage()
print(f"Final paper saved for run '{self.name}' in '{self.output_path}'.")
print(f"Completed steps: {self.completed_steps}")
if current_step_index < len(self.planned_steps):
print(f"Next planned step was: {self.planned_steps[current_step_index]}")
def generate_paper(self, project_dir: str):
# Example usage
metadata = {
"team": "Agent",
"year": self.problem_year,
"problem_type": self.problem_type
}
json_file_path = f"{project_dir}/json/{self.problem_year}_{self.problem_type}.json"
with open(json_file_path, 'w+') as f:
json.dump(self.paper, f, indent=2)
code_dir = f'{project_dir}/code'
metadata['figures'] = [os.path.join(code_dir, f) for f in os.listdir(code_dir) if f.lower().split('.')[-1] in ['png', 'jpg', 'jpeg']]
metadata['codes'] = sorted([os.path.join(code_dir, f) for f in os.listdir(code_dir) if f.lower().split('.')[-1] in ['py']])
generate_paper_from_json(self.llm, self.paper, metadata, os.path.join(project_dir, 'latex'), 'solution')
# --- Example Usage ---
def create_generator(name):
"""Helper function to set up configuration and create the agent system."""
config = {
'top_method_num': 6,
'problem_analysis_round': 0,
'problem_modeling_round': 0,
'task_formulas_round': 0,
'tasknum': 4, # Default task number if not inferred
'chart_num': 0, # Set to > 0 to generate charts
'model_name': 'gpt-4o-mini', # Or your preferred model
"method_name": "MM-Agent-Refactored" # Name for the experiment/output folder
}
# Adjust paths relative to the script location or use absolute paths
base_data_path = '../data/actor_data' # Adjust if necessary
problem_file = os.path.join(base_data_path, 'input', 'problem', f'{name}.json')
dataset_input_path = os.path.join(base_data_path, 'input', 'dataset', name) # Path to check for dataset files
output_dir = os.path.join(base_data_path, 'exps', config["method_name"])
# Create a unique output path for this specific run
run_output_path = os.path.join(output_dir, f"{name}_{datetime.now().strftime('%Y%m%d-%H%M%S')}")
if not os.path.exists(problem_file):
print(f"Error: Problem file not found at {problem_file}")
return None
# Output path is created inside the class constructor now
# if not os.path.exists(output_dir):
# os.makedirs(output_dir)
multi_agent = ModelingAgentSystem(
problem_path=problem_file,
config=config,
dataset_path=dataset_input_path, # Pass the specific dataset path
output_path=run_output_path,
name=name
)
return multi_agent
if __name__ == "__main__":
problem_name = "2024_C" # Example problem name
agent_system = create_generator(problem_name)
if agent_system:
# --- Option 1: Run the whole process sequentially ---
agent_system.run_sequential()
# --- Option 2: Generate specific steps manually (Example) ---
# print("\n--- Manual Step Generation Example ---")
# # Assuming initialization is done in create_generator
# agent_system.generate_step('Problem Analysis')
# agent_system.generate_step('High-Level Modeling')
# agent_system.generate_step('Task Decomposition')
# agent_system.generate_step('Dependency Analysis') # Needed before task steps
# # Now planned_steps and dependencies should be updated
# print("Planned steps after decomp/dep analysis:", agent_system.get_planned_steps())
# print("Dependencies:", agent_system.dependencies) # View the updated dependencies
# # Try generating the first step of the first task in the order
# if agent_system.order:
# first_task_id = agent_system.order[0]
# agent_system.generate_step(f'Task {first_task_id} Description')
# agent_system.generate_step(f'Task {first_task_id} Analysis')
# # ... and so on
# else:
# print("Cannot run manual task steps, order not determined.")
# print("\n--- Final State after Manual Steps ---")
# print("Completed Steps:", agent_system.get_completed_steps())
# final_paper = agent_system.get_paper()
# print("Generated Paper Content (summary):")
# print(json.dumps(final_paper, indent=2, default=str)[:1000] + "\n...") # Print partial paper
# agent_system.save_paper() # Save the result
# agent_system.save_usage()
# --- Option 3: Iterate using the provided loop structure ---
# print("\n--- Iterative Generation Example ---")
# current_step_index = 0
# while current_step_index < len(agent_system.planned_steps):
# # Check if planned_steps changed during iteration
# if current_step_index >= len(agent_system.planned_steps):
# print("Reached end due to plan changes.")
# break
# step_name = agent_system.planned_steps[current_step_index]
# print(f"\nAttempting step ({current_step_index+1}/{len(agent_system.planned_steps)}): {step_name}")
# if step_name in agent_system.completed_steps:
# print(f"Skipping already completed step: '{step_name}'")
# current_step_index += 1
# continue
# success = agent_system.generate_step(step_name)
# if not success:
# print(f"Failed on step: {step_name}. Stopping.")
# break
# # Increment index regardless of whether plan changed,
# # the loop condition handles the updated length
# current_step_index += 1
# print("\n--- Final State after Iterative Loop ---")
# print("Completed Steps:", agent_system.get_completed_steps())
# final_paper = agent_system.get_paper()
# # print("Generated Paper Content (full):")
# # print(json.dumps(final_paper, indent=2, default=str))
# agent_system.save_paper() # Save the result
# agent_system.save_usage()
|