Spaces:
Sleeping
Sleeping
| from .base_agent import BaseAgent | |
| from prompt.constants import modeling_methods | |
| from prompt.template import (TASK_ANALYSIS_PROMPT, TASK_RESULT_PROMPT, TASK_ANSWER_PROMPT, | |
| TASK_FORMULAS_PROMPT, TASK_FORMULAS_CRITIQUE_PROMPT, TASK_FORMULAS_IMPROVEMENT_PROMPT, | |
| TASK_MODELING_PROMPT, TASK_MODELING_CRITIQUE_PROMPT, TASK_MODELING_IMPROVEMENT_PROMPT, | |
| TASK_CODING_PROMPT, TASK_CODING_DEBUG_PROMPT, CODE_STRUCTURE_PROMPT, | |
| TASK_RESULT_WITH_CODE_PROMPT, COO_PROMPT, TASK_CODING_WO_COO_PROMPT) | |
| import sys | |
| import os | |
| import subprocess | |
| import selectors | |
| import tiktoken | |
| import json | |
| class EnvException(Exception): | |
| def __init__(self, message): | |
| self.message = message | |
| def __str__(self): | |
| return self.message | |
| def execute_script(script_path, work_dir): | |
| try: | |
| device = 0 | |
| python = "python" | |
| cmd = f"CUDA_VISIBLE_DEVICES={device} {python} -u {script_path}" | |
| process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, cwd=work_dir) | |
| stdout_lines = [] | |
| stderr_lines = [] | |
| selector = selectors.DefaultSelector() | |
| selector.register(process.stdout, selectors.EVENT_READ) | |
| selector.register(process.stderr, selectors.EVENT_READ) | |
| while process.poll() is None and selector.get_map(): | |
| events = selector.select(timeout=1) | |
| for key, _ in events: | |
| line = key.fileobj.readline() | |
| if key.fileobj == process.stdout: | |
| print("STDOUT:", line, end =" ") | |
| stdout_lines.append(line) | |
| else: | |
| print("STDERR:", line, end =" ") | |
| stderr_lines.append(line) | |
| for line in process.stdout: | |
| line = line | |
| print("STDOUT:", line, end =" ") | |
| stdout_lines.append(line) | |
| for line in process.stderr: | |
| line = line | |
| print("STDERR:", line, end =" ") | |
| stderr_lines.append(line) | |
| return_code = process.returncode | |
| if return_code != 0: | |
| observation = "".join(stderr_lines) | |
| else: | |
| observation = "".join(stdout_lines) | |
| if observation == "" and return_code == 0: | |
| # printed to stderr only | |
| observation = "".join(stderr_lines) | |
| return "The script has been executed. Here is the output:\n" + observation | |
| except Exception as e: | |
| print("++++", "Wrong!") | |
| raise EnvException(f"Something went wrong in executing {script_path}: {e}. Please check if it is ready to be executed.") | |
| class Task(BaseAgent): | |
| def __init__(self, llm, coo=True, rag=True): | |
| super().__init__(llm) | |
| self.coo = coo | |
| self.rag = rag | |
| if coo: | |
| self.coo_prompt = COO_PROMPT | |
| else: | |
| self.coo_prompt = "" | |
| def analysis(self, prompt: str, task_description: str, user_prompt: str = ''): | |
| prompt = TASK_ANALYSIS_PROMPT.format(prompt=prompt, coo_prompt=self.coo_prompt, task_description=task_description, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| def formulas_actor(self, prompt: str, data_summary: str, task_description: str, task_analysis: str, modeling_methods: str, user_prompt: str = ''): | |
| prompt = TASK_FORMULAS_PROMPT.format(prompt=prompt, coo_prompt=self.coo_prompt, data_summary=data_summary, task_description=task_description, task_analysis=task_analysis, modeling_methods=modeling_methods, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| def formulas_critic(self, data_summary: str, task_description: str, task_analysis: str, modeling_formulas: str): | |
| prompt = TASK_FORMULAS_CRITIQUE_PROMPT.format(data_summary=data_summary, task_description=task_description, task_analysis=task_analysis, modeling_formulas=modeling_formulas).strip() | |
| return self.llm.generate(prompt) | |
| def formulas_improvement(self, data_summary: str, task_description: str, task_analysis: str, modeling_formulas: str, modeling_formulas_critique: str, user_prompt: str = ''): | |
| prompt = TASK_FORMULAS_IMPROVEMENT_PROMPT.format(data_summary=data_summary, task_description=task_description, task_analysis=task_analysis, modeling_formulas=modeling_formulas, modeling_formulas_critique=modeling_formulas_critique, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| def formulas(self, prompt: str, data_summary: str, task_description: str, task_analysis: str, modeling_methods: str, round: int = 1, user_prompt: str = ''): | |
| formulas = self.formulas_actor(prompt, data_summary, task_description, task_analysis, modeling_methods, user_prompt) | |
| if self.rag: | |
| for i in range(round): | |
| print(f'FORMULAS Round {i+1}') | |
| formulas_critique = self.formulas_critic(data_summary, task_description, task_analysis, formulas) | |
| formulas = self.formulas_improvement(data_summary, task_description, task_analysis, formulas, formulas_critique, user_prompt) | |
| return formulas | |
| def modeling_actor(self, prompt: str, data_summary: str, task_description: str, task_analysis: str, formulas: str, user_prompt: str = ''): | |
| prompt = TASK_MODELING_PROMPT.format(prompt=prompt, coo_prompt=self.coo_prompt, data_summary=data_summary, task_description=task_description, task_analysis=task_analysis, modeling_formulas=formulas, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| # def modeling_critic(self, task_description: str, task_analysis: str, data_summary: str, formulas: str, modeling_process: str): | |
| # prompt = TASK_MODELING_CRITIQUE_PROMPT.format(task_description=task_description, task_analysis=task_analysis, data_summary=data_summary, modeling_formulas=formulas, modeling_process=modeling_process).strip() | |
| # return self.llm.generate(prompt) | |
| # def modeling_improvement(self, task_description: str, task_analysis: str, data_summary: str, formulas: str, modeling_process: str, modeling_process_critique: str): | |
| # prompt = TASK_MODELING_IMPROVEMENT_PROMPT.format(task_description=task_description, task_analysis=task_analysis, data_summary=data_summary, modeling_formulas=formulas, modeling_process=modeling_process, modeling_process_critique=modeling_process_critique).strip() | |
| # return self.llm.generate(prompt) | |
| # def modeling(self, task_description: str, task_analysis: str, data_summary: str, formulas: str, round: int = 1): | |
| # process = self.modeling_actor(task_description, task_analysis, data_summary, formulas) | |
| # for i in range(round): | |
| # print(f'MODELING Round {i+1}') | |
| # process_critique = self.modeling_critic(task_description, task_analysis, data_summary, formulas, process) | |
| # process = self.modeling_improvement(task_description, task_analysis, data_summary, formulas, process, process_critique) | |
| # return process | |
| def modeling(self, prompt: str, data_summary: str, task_description: str, task_analysis: str, formulas: str, round: int = 1, user_prompt: str = ''): | |
| return self.modeling_actor(prompt, data_summary, task_description, task_analysis, formulas, user_prompt) | |
| def modeling_actor(self, prompt: str, data_summary: str, task_description: str, task_analysis: str, formulas: str, modeling: str, user_prompt: str = ''): | |
| prompt = TASK_MODELING_PROMPT.format(prompt=prompt, coo_prompt=self.coo_prompt, data_summary=data_summary, task_description=task_description, task_analysis=task_analysis, modeling_formulas=formulas, modeling_methods=modeling, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| def coding_actor(self, data_file, data_summary, variable_description, task_description: str, task_analysis: str, formulas: str, modeling: str, dependent_file_prompt: str, code_template: str, script_name: str, work_dir: str, user_prompt: str = ''): | |
| if self.coo: | |
| prompt = TASK_CODING_PROMPT.format(data_file=data_file, data_summary=data_summary, variable_description=variable_description, task_description=task_description, task_analysis=task_analysis, modeling_formulas=formulas, modeling_process=modeling, dependent_file_prompt=dependent_file_prompt, code_template=code_template, user_prompt=user_prompt).strip() | |
| else: | |
| prompt = TASK_CODING_WO_COO_PROMPT.format(data_file=data_file, data_summary=data_summary, variable_description=variable_description, task_description=task_description, task_analysis=task_analysis, modeling_formulas=formulas, modeling_process=modeling, code_template=code_template, user_prompt=user_prompt).strip() | |
| max_retry = 0 | |
| while max_retry < 5: | |
| max_retry += 1 | |
| try: | |
| completion = self.llm.generate(prompt) | |
| new_content = completion.split("```python")[1].split("```")[0].strip() | |
| break | |
| except Exception as e: | |
| # Format control. | |
| print(f"Retry! The code does not start with ```python") | |
| continue | |
| with open(os.path.join(work_dir, script_name), "w") as f: | |
| f.write(new_content) | |
| # Execute the script. | |
| try: | |
| observation = execute_script(script_name, work_dir) | |
| ## If observation is too long, we only keep the last ~2k tokens. | |
| enc = tiktoken.get_encoding("cl100k_base") | |
| tokens = len(enc.encode(observation)) | |
| if tokens >= 2000: | |
| observation = observation[:2000] | |
| tokens = len(enc.encode(observation)) | |
| except Exception as e: | |
| print(e) | |
| input("Ah oh, Got stuck! Press any key to continue.") | |
| return new_content, observation | |
| def coding_debugger(self, code_template: str, modeling: str, code: str, observation: str, script_name: str, work_dir: str, user_prompt: str = ''): | |
| prompt = TASK_CODING_DEBUG_PROMPT.format(code_template=code_template, modeling_process=modeling, code=code, observation=observation, user_prompt=user_prompt).strip() | |
| max_retry = 0 | |
| while max_retry < 5: | |
| max_retry += 1 | |
| try: | |
| completion = self.llm.generate(prompt) | |
| new_content = completion.split("```python")[1].split("```")[0].strip() | |
| break | |
| except Exception as e: | |
| # Format control. | |
| print(f"Retry! The code does not start with ```python") | |
| continue | |
| with open(os.path.join(work_dir, script_name), "w") as f: | |
| f.write(new_content) | |
| # Execute the script. | |
| try: | |
| observation = execute_script(script_name, work_dir) | |
| ## If observation is too long, we only keep the last ~2k tokens. | |
| enc = tiktoken.get_encoding("cl100k_base") | |
| tokens = len(enc.encode(observation)) | |
| if tokens >= 2000: | |
| observation = observation[:2000] | |
| tokens = len(enc.encode(observation)) | |
| except Exception as e: | |
| print(e) | |
| input("Ah oh, Got stuck! Press any key to continue.") | |
| return new_content, observation | |
| def coding(self, data_file, data_summary, variable_description, task_description: str, task_analysis: str, formulas: str, modeling: str, dependent_file_prompt: str, code_template: str, script_name: str, work_dir: str, try_num: int = 5, round: int = 1, user_prompt: str = ''): | |
| for i in range(try_num): | |
| print("="*10 + f" Try: {i + 1} " + "="*10) | |
| iteration = 0 | |
| max_iteration = 3 | |
| while iteration < max_iteration: | |
| print("="*10 + f" Iteration: {iteration + 1} " + "="*10) | |
| if iteration == 0: | |
| code, observation = self.coding_actor(data_file, data_summary, variable_description, task_description, task_analysis, formulas, modeling, dependent_file_prompt, code_template, script_name, work_dir, user_prompt) | |
| # If the script has been successfully executed: Exit. | |
| if "Traceback (most recent call last):" not in observation and "SyntaxError: invalid syntax" not in observation and "IndentationError" not in observation: | |
| return code, True, observation.split("The script has been executed. Here is the output:\n")[1] | |
| else: | |
| code, observation = self.coding_debugger(code_template, modeling, code, observation, script_name, work_dir, user_prompt) | |
| # If the script has been successfully executed: Exit. | |
| if "Traceback (most recent call last):" not in observation and "SyntaxError: invalid syntax" not in observation and "IndentationError" not in observation: | |
| return code, True, observation.split("The script has been executed. Here is the output:\n")[1] | |
| iteration += 1 | |
| return code, False, None | |
| def result(self, task_description: str, task_analysis: str, task_formulas: str, task_modeling: str, user_prompt: str = '', execution_result: str = ''): | |
| if execution_result == '': | |
| prompt = TASK_RESULT_PROMPT.format(task_description=task_description, task_analysis=task_analysis, task_formulas=task_formulas, task_modeling=task_modeling, user_prompt=user_prompt).strip() | |
| else: | |
| prompt = TASK_RESULT_WITH_CODE_PROMPT.format(task_description=task_description, task_analysis=task_analysis, task_formulas=task_formulas, task_modeling=task_modeling, user_prompt=user_prompt, execution_result=execution_result).strip() | |
| return self.llm.generate(prompt) | |
| def answer(self, task_description: str, task_analysis: str, task_formulas: str, task_modeling: str, task_result: str, user_prompt: str = ''): | |
| prompt = TASK_ANSWER_PROMPT.format(task_description=task_description, task_analysis=task_analysis, task_formulas=task_formulas, task_modeling=task_modeling, task_result=task_result, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| def extract_code_structure(self, task_id, code: str, save_path: str): | |
| prompt = CODE_STRUCTURE_PROMPT.format(code=code, save_path=save_path) | |
| count = 0 | |
| for i in range(5): | |
| try: | |
| strucutre = self.llm.generate(prompt) | |
| structure_string = strucutre.strip('```json\n').strip('```') | |
| structure_json = json.loads(structure_string) | |
| for i in range(len(structure_json['file_outputs'])): | |
| structure_json['file_outputs'][i]['file_description'] = 'This file is generated by code for Task {}. '.format(task_id) + structure_json['file_outputs'][i]['file_description'] | |
| return structure_json | |
| except: | |
| continue | |
| if count == 5: | |
| sys.exit("Fail at extract_code_structure") | |