Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ import torch.nn.functional as F
|
|
| 11 |
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, TextIteratorStreamer, AutoModel, AutoModelForSequenceClassification
|
| 12 |
from kernels import get_kernel
|
| 13 |
from typing import Any, Optional, Dict
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
# Login to HF to get access to the model weights
|
|
@@ -78,11 +79,20 @@ def bot(user_message: str, history: list[dict[str, Any]]):
|
|
| 78 |
|
| 79 |
res = ""
|
| 80 |
history = history + [{"role": "user", "content": user_message}]
|
|
|
|
| 81 |
for model_choice in MODEL_OPTIONS:
|
| 82 |
model, tokenizer = load_model(model_choice) # returns embedding model
|
| 83 |
score = compute_score(user_message, model, tokenizer)["score"]
|
|
|
|
| 84 |
res += f"{model_choice}: {score}\n"
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
history.append({"role": "assistant", "content": res.strip()})
|
| 87 |
return "", history
|
| 88 |
|
|
|
|
| 11 |
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, TextIteratorStreamer, AutoModel, AutoModelForSequenceClassification
|
| 12 |
from kernels import get_kernel
|
| 13 |
from typing import Any, Optional, Dict
|
| 14 |
+
import numpy as np
|
| 15 |
|
| 16 |
|
| 17 |
# Login to HF to get access to the model weights
|
|
|
|
| 79 |
|
| 80 |
res = ""
|
| 81 |
history = history + [{"role": "user", "content": user_message}]
|
| 82 |
+
scores = {}
|
| 83 |
for model_choice in MODEL_OPTIONS:
|
| 84 |
model, tokenizer = load_model(model_choice) # returns embedding model
|
| 85 |
score = compute_score(user_message, model, tokenizer)["score"]
|
| 86 |
+
scores["model_choice"] = score
|
| 87 |
res += f"{model_choice}: {score}\n"
|
| 88 |
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
formula_score = np.median([scores["lapa-llm/fineweb-nemotron-edu-score"], scores["lapa-llm/fineweb-mixtral-edu-score"], scores["lapa-llm/fasttext-quality-score"],]) \
|
| 92 |
+
* item["lapa-llm/alignment-score-model"] * scores["lapa-llm/manipulative-score-model"] * scores["lapa-llm/gec-score-model"]
|
| 93 |
+
|
| 94 |
+
res += f"Formula (combined) score: {formula_score}\n"
|
| 95 |
+
|
| 96 |
history.append({"role": "assistant", "content": res.strip()})
|
| 97 |
return "", history
|
| 98 |
|